metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m263-m264

Tris(piperazinediium) phosphatododeca­molybo(V,VI)phosphate

aCollege of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao Shandong 266555, People's Republic of China, bCollege of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130023, People's Republic of China, and cCollege of Chemical Engineering, Northeast Dianli University, Jilin 132012, People's Republic of China
*Correspondence e-mail: luyukun1983@sina.com

(Received 29 December 2009; accepted 20 January 2010; online 6 February 2010)

The title compound, (C4H12N2)3[PMo12O40] or (H2pip)3[PMo12O40] (pip is piperazine), was prepared under hydro­thermal conditions. The asymmetric unit contains one-sixth of a mixed-valent Mo(V,VI) pseudo-Keggin-type [PMo12O40]6− anion and half a piperazinediium cation, (H2pip)2+. The discrete Keggin-type [PMo12O40]6- anion has [\overline{3}] site symmetry and the three (H2pip)2+ cations each have [\overline{1}] site symmetry at the centres of the mol­ecules. The central P atom is on special position [\overline{3}], which is a roto-inversion position and generates the disorder of the PO4 tetra­hedron. Furthermore, six doubly bridging oxide groups are also disordered with an occupancy factor of 0.5 for each O atom. The anions and cations are linked by an extensive network of inter­molecular N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For polyoxometalate chemistry, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34-48.]); Hill (1998[Hill, C. L. (1998). Chem. Rev. 98, 1-2.]); Kurth et al. (2001[Kurth, D. G., Volkmer, D., Pope, M. T. & Müller, A. (2001). Polyoxometalate Chemistry, p. 301. Dordrecht: Kluwer.]). For related structures, see: Han et al. (2005[Han, Z. G., Zhao, Y. L., Peng, J., Tian, A. X., Liu, Q., Ma, J. F., Wang, E. B. & Hu, N. H. (2005). CrystEngComm, 7, 380-387.]); Li et al. (2007[Li, Y. G., Dai, L. M., Wang, Y. H., Wang, X. L., Wang, E. B., Su, Z. M. & Xu, L. (2007). Chem. Commun. pp. 2593-2595.]); Yuan et al. (2008[Yuan, J.-H., Wang, C., Yu, M.-J. & Li, J. (2008). Acta Cryst. E64, m831.]). For general background to bond-valence calculations, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N2)3[PMo12O40]

  • Mr = 2086.72

  • Trigonal, [R \overline 3c ]

  • a = 17.890 (3) Å

  • c = 23.600 (6) Å

  • V = 6541 (2) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 3.49 mm−1

  • T = 296 K

  • 0.20 × 0.16 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.517, Tmax = 0.682

  • 11291 measured reflections

  • 1413 independent reflections

  • 1363 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.053

  • S = 1.14

  • 1413 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O6 0.90 2.22 2.812 (4) 123
N1—H1D⋯O50 0.90 2.43 2.926 (6) 115
N1—H1C⋯O4i 0.90 2.20 3.041 (7) 155
N1—H1C⋯O40i 0.90 2.16 3.047 (7) 168
N1—H1C⋯O30ii 0.90 2.52 3.091 (6) 122
N1—H1D⋯O5 0.90 2.19 2.852 (6) 130
N1—H1D⋯O1iii 0.90 2.14 2.900 (4) 142
C1—H1A⋯O6 0.97 2.58 3.101 (5) 114
C1—H1B⋯O4iv 0.97 2.58 3.347 (7) 137
C2—H2A⋯O2iv 0.97 2.43 3.291 (4) 148
C2—H2B⋯O3ii 0.97 2.43 3.156 (6) 132
C2—H2B⋯O2v 0.97 2.42 3.068 (4) 124
Symmetry codes: (i) -x+y, -x, z; (ii) y, -x+y, -z; (iii) [x+{\script{1\over 3}}, x-y+{\script{2\over 3}}, z+{\script{1\over 6}}]; (iv) [x-y+{\script{2\over 3}}, x+{\script{1\over 3}}, -z+{\script{1\over 3}}]; (v) [-y+{\script{2\over 3}}, -x+{\script{1\over 3}}, z-{\script{1\over 6}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polyoxometalates (POMs) comprise a rich and diverse family of metal oxygen clusters made up of early transition metals (primarily including W, Mo and V) with unique redox, acidic, magnetic and catalytic properties (Pope & Müller, 1991; Hill, 1998). The Keggin-type structure was of epoch-making significance in the history of POMs chemistry (Kurth, 2001). The Keggin-type polyanions, [PMo12O40]3-, have been indicated as excellent building blocks to construct novel compounds (Li et al., 2007; Yuan et al., 2008).

The structure of the title compound consists of a discrete polyoxoanion [PMo12O40]6- and three diprotonated piperazine molecules. The heteropolyoxoanion [PMo12O40]6- has a roto-inversion symmetry with the P1 atom located on the 3 centre. The pseudo-Keggin unit [PMo12O40]6- may be viewed as a shell of {Mo12O36} encapsulating a disordered {PO4} moiety, present at its center and responsible for the local tetrahedral geometry. The central P atom is surrounded by a cube of eight oxygen (six O7 and two O8) atoms with each of them half occupied due to the inversion symmetry at P1, and each oxygen of the {PO4} group covalently bonded to three different molybdenum centers of the shell (Fig. 1). All Mo centers possess similar distorted octahedral geometry MoO6 defined by one terminal oxygen atom, four doubly bridging oxo-groups and one central oxygen atom. Six doubly bridging oxo-groups (O3, O30, O4, O40, O5 and O50) are disordered with occupancy factor 0.5.

Extensive hydrogen bonding interactions help to stabilize the structure (Table 1). Each (H2pip)2+ cation donates eight N—H···O hydrogen bonds to eight bridging oxygen atoms from two [PMo12O40]6- anions and two ones to two terminal oxygen atoms from the other two [PMo12O40]6- anions. Each [PMo12O40]6- anion joins twelve (H2pip)2+ cations to generate a three-dimensional supramolecular network structure (Fig.2).

Result of bond valence sum (Brown & Altermatt, 1985) calculation for Mo centers gives the average value 5.71 (5.52 for Mo1 and 5.89 for Mo2) in good agreement with the expected value of 5.75, which reveals that there exist three MoV and nine MoVI atoms in the Keggin-type compound. The three classes of Mo—O average distances are 1.663, 1.925 and 2.482 Å, being obviously larger than the corresponding distances in [PMo12O40]5- (1.638, 1.891 and 2.443 Å) (Han et al., 2005).

Related literature top

For polyoxometalate chemistry, see: Pope & Müller (1991); Hill (1998); Kurth et al. (2001). For related structures, see: Han et al. (2005); Li et al. (2007); Yuan et al. (2008). For general background to bond-valence calculations, see: Brown & Altermatt (1985).

Experimental top

A mixture of KH2PO4.2H2O(0.70 g, 5 mmol), MoO3.2H2O (0.45 g, 2.5 mmol), pip (0.43 g, 5 mmol), H3BO3 (0.31 g, 5 mmol) and 18 ml water was stirred for 2 h in air; it was adjusted to pH = 1 with HCl solution (18 wt %) and was heated in a 25 ml stainless steel reactor with a Teflon-liner at 180°C for 5 days, and then cooled to room temperature. Black polyhedron crystals were isolated with 71% yield (based on Mo). Elemental analysis for 1: Anal. Calcd: C, 6.91; H, 1.74; N, 4.03; found: C, 6.96; H, 1.67; N, 4.11.

Refinement top

All H atoms were placed at calculated positions (H–C = 0.97 Å), with Uiso(H) = 1.2 Ueq(C) and (H–N = 0.90 Å), with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted. [Symmetry codes: (i) -x, -y, -z; (ii)x-y, x, -z; (iii) -x + y, -x, z; (iv) -y, x-y, z; (v) y, -x + y, -z; (vi) -x + 2/3,-y + 1/3, -z + 1/3]
[Figure 2] Fig. 2. Ball-stick representation of the three-dimensional supramolecular network structure of (I).
Tris(piperazinediium) phosphatododecamolybdo(V,VI)phosphate top
Crystal data top
(C4H12N2)3[PMo12O40]Dx = 3.178 Mg m3
Mr = 2086.72Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 7741 reflections
a = 17.890 (3) Åθ = 2.3–25.9°
c = 23.600 (6) ŵ = 3.49 mm1
V = 6541 (2) Å3T = 296 K
Z = 6Polyhedron, black
F(000) = 59340.20 × 0.16 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1413 independent reflections
Radiation source: fine-focus sealed tube1363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 10 pixels mm-1θmax = 25.9°, θmin = 2.2°
ω scansh = 2120
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2121
Tmin = 0.517, Tmax = 0.682l = 2528
11291 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0243P)2 + 29.698P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1413 reflectionsΔρmax = 0.66 e Å3
142 parametersΔρmin = 0.61 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000246 (16)
Crystal data top
(C4H12N2)3[PMo12O40]Z = 6
Mr = 2086.72Mo Kα radiation
Trigonal, R3cµ = 3.49 mm1
a = 17.890 (3) ÅT = 296 K
c = 23.600 (6) Å0.20 × 0.16 × 0.11 mm
V = 6541 (2) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1413 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1363 reflections with I > 2σ(I)
Tmin = 0.517, Tmax = 0.682Rint = 0.056
11291 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0243P)2 + 29.698P]
where P = (Fo2 + 2Fc2)/3
1413 reflectionsΔρmax = 0.66 e Å3
142 parametersΔρmin = 0.61 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O400.0237 (5)0.1531 (4)0.0737 (3)0.0207 (13)0.50
O300.0735 (4)0.2139 (4)0.0190 (2)0.0197 (11)0.50
O500.1366 (4)0.1818 (4)0.0714 (2)0.0194 (11)0.50
C10.2710 (2)0.1678 (2)0.20485 (14)0.0309 (8)
H1A0.21220.14140.21870.037*
H1B0.30580.22050.22610.037*
C20.3615 (2)0.2263 (2)0.11974 (13)0.0268 (7)
H2A0.39920.28090.13830.032*
H2B0.36050.23730.07960.032*
Mo10.038697 (18)0.177638 (17)0.000676 (10)0.02000 (11)
Mo20.046862 (16)0.131369 (17)0.123257 (11)0.01944 (11)
N10.27315 (17)0.18861 (18)0.14324 (12)0.0247 (6)
H1C0.23750.14020.12410.030*
H1D0.25410.22620.13860.030*
O10.05695 (18)0.26048 (17)0.00042 (11)0.0377 (6)
O20.06793 (17)0.1903 (2)0.18145 (11)0.0451 (7)
O30.0872 (4)0.2510 (4)0.0075 (2)0.0184 (11)0.50
O40.0138 (4)0.1855 (4)0.0855 (3)0.0191 (13)0.50
O50.1516 (4)0.2187 (4)0.0842 (2)0.0187 (11)0.50
O60.09680 (17)0.06339 (16)0.14146 (18)0.0583 (10)
O70.0325 (2)0.0921 (2)0.02241 (16)0.0151 (8)0.50
O80.00000.00000.0639 (3)0.0148 (13)0.50
P10.00000.00000.00000.0119 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O400.027 (3)0.026 (4)0.017 (3)0.019 (3)0.001 (2)0.003 (2)
O300.019 (3)0.020 (3)0.020 (3)0.010 (3)0.000 (2)0.000 (2)
O500.019 (3)0.021 (3)0.018 (3)0.010 (3)0.000 (2)0.002 (2)
C10.0290 (18)0.045 (2)0.0244 (16)0.0228 (16)0.0041 (13)0.0029 (14)
C20.0221 (16)0.0303 (17)0.0239 (16)0.0099 (14)0.0001 (12)0.0070 (13)
Mo10.02413 (17)0.01744 (16)0.02263 (17)0.01355 (12)0.00507 (10)0.00335 (9)
Mo20.01881 (16)0.02439 (17)0.01642 (16)0.01178 (12)0.00270 (9)0.00659 (10)
N10.0208 (13)0.0267 (14)0.0283 (14)0.0131 (11)0.0023 (11)0.0028 (11)
O10.0555 (17)0.0341 (14)0.0390 (14)0.0340 (13)0.0132 (12)0.0100 (11)
O20.0340 (15)0.0623 (19)0.0436 (16)0.0276 (14)0.0132 (12)0.0350 (14)
O30.020 (3)0.014 (3)0.022 (3)0.009 (3)0.001 (2)0.001 (2)
O40.023 (3)0.020 (3)0.021 (3)0.015 (3)0.000 (2)0.005 (2)
O50.021 (3)0.019 (3)0.018 (3)0.011 (3)0.001 (2)0.003 (2)
O60.0199 (13)0.0171 (13)0.137 (3)0.0088 (10)0.0052 (16)0.0017 (15)
O70.0169 (19)0.016 (2)0.0123 (18)0.0078 (16)0.0009 (15)0.0017 (14)
O80.015 (2)0.015 (2)0.015 (3)0.0074 (10)0.0000.000
P10.0117 (5)0.0117 (5)0.0124 (8)0.0058 (2)0.0000.000
Geometric parameters (Å, º) top
O40—O40.586 (5)Mo2—O61.884 (3)
O40—Mo11.830 (7)Mo2—O6iv1.921 (3)
O40—Mo21.898 (7)Mo2—O51.968 (6)
O30—O30.641 (5)Mo2—O41.991 (7)
O30—Mo11.833 (6)Mo2—O72.458 (4)
O30—Mo1i1.892 (6)Mo2—O82.494 (4)
O50—O50.650 (5)N1—H1C0.9000
O50—Mo1i1.833 (5)N1—H1D0.9000
O50—Mo21.855 (6)O3—Mo1i2.007 (6)
C1—N11.497 (4)O5—Mo1i2.061 (5)
C1—C2ii1.504 (5)O6—Mo2v1.921 (3)
C1—H1A0.9700O7—P11.541 (4)
C1—H1B0.9700O7—O81.747 (5)
C2—N11.481 (4)O7—O7iii1.793 (5)
C2—C1ii1.504 (5)O7—O7i1.793 (5)
C2—H2A0.9700O7—Mo1i2.492 (4)
C2—H2B0.9700O8—P11.508 (7)
Mo1—O11.669 (2)O8—O7v1.747 (5)
Mo1—O50iii1.833 (5)O8—O7iv1.747 (5)
Mo1—O30iii1.892 (6)O8—Mo2v2.494 (4)
Mo1—O31.970 (6)O8—Mo2iv2.494 (4)
Mo1—O3iii2.007 (6)P1—O8vi1.508 (7)
Mo1—O42.039 (7)P1—O7i1.541 (4)
Mo1—O5iii2.061 (5)P1—O7vi1.541 (4)
Mo1—O72.485 (4)P1—O7v1.541 (4)
Mo1—O7iii2.492 (4)P1—O7iii1.541 (4)
Mo2—O21.656 (2)P1—O7iv1.541 (4)
O4—O40—Mo1102.6 (13)O6—Mo2—O792.98 (15)
O4—O40—Mo290.4 (13)O40—Mo2—O758.4 (2)
Mo1—O40—Mo2145.2 (4)O6iv—Mo2—O792.46 (15)
O3—O30—Mo192.6 (9)O5—Mo2—O772.26 (18)
O3—O30—Mo1i90.9 (9)O4—Mo2—O772.59 (19)
Mo1—O30—Mo1i147.3 (3)O2—Mo2—O8158.13 (17)
O5—O50—Mo1i101.3 (9)O50—Mo2—O883.6 (2)
O5—O50—Mo290.2 (9)O6—Mo2—O864.16 (14)
Mo1i—O50—Mo2151.6 (3)O40—Mo2—O884.4 (2)
N1—C1—C2ii110.1 (3)O6iv—Mo2—O863.75 (14)
N1—C1—H1A109.6O5—Mo2—O8102.89 (18)
C2ii—C1—H1A109.6O4—Mo2—O8101.46 (19)
N1—C1—H1B109.6O7—Mo2—O841.32 (15)
C2ii—C1—H1B109.6C2—N1—C1111.5 (2)
H1A—C1—H1B108.1C2—N1—H1C109.3
N1—C2—C1ii110.2 (3)C1—N1—H1C109.3
N1—C2—H2A109.6C2—N1—H1D109.3
C1ii—C2—H2A109.6C1—N1—H1D109.3
N1—C2—H2B109.6H1C—N1—H1D108.0
C1ii—C2—H2B109.6O30—O3—Mo168.4 (9)
H2A—C2—H2B108.1O30—O3—Mo1i70.5 (9)
O1—Mo1—O40109.5 (2)Mo1—O3—Mo1i128.0 (3)
O1—Mo1—O50iii110.5 (2)O40—O4—Mo272.5 (12)
O40—Mo1—O50iii139.9 (3)O40—O4—Mo161.1 (12)
O1—Mo1—O30110.5 (2)Mo2—O4—Mo1124.0 (3)
O40—Mo1—O3093.3 (3)O50—O5—Mo270.5 (8)
O50iii—Mo1—O3075.3 (3)O50—O5—Mo1i60.7 (8)
O1—Mo1—O30iii110.9 (2)Mo2—O5—Mo1i125.0 (3)
O40—Mo1—O30iii74.5 (3)Mo2—O6—Mo2v139.8 (2)
O50iii—Mo1—O30iii88.9 (2)P1—O7—O854.2 (2)
O30—Mo1—O30iii138.6 (4)P1—O7—O7iii54.43 (7)
O1—Mo1—O394.28 (19)O8—O7—O7iii89.79 (17)
O40—Mo1—O389.8 (3)P1—O7—O7i54.43 (7)
O50iii—Mo1—O389.9 (2)O8—O7—O7i89.79 (17)
O30—Mo1—O318.98 (15)O7iii—O7—O7i88.7 (3)
O30iii—Mo1—O3153.5 (3)P1—O7—Mo2124.6 (2)
O1—Mo1—O3iii94.68 (19)O8—O7—Mo270.4 (2)
O40—Mo1—O3iii88.2 (3)O7iii—O7—Mo2132.5 (2)
O50iii—Mo1—O3iii86.0 (2)O7i—O7—Mo2132.1 (2)
O30—Mo1—O3iii152.5 (3)P1—O7—Mo1123.5 (2)
O30iii—Mo1—O3iii18.62 (15)O8—O7—Mo1131.7 (2)
O3—Mo1—O3iii171.0 (3)O7iii—O7—Mo169.08 (18)
O1—Mo1—O494.32 (19)O7i—O7—Mo1130.5 (3)
O40—Mo1—O416.3 (2)Mo2—O7—Mo192.09 (13)
O50iii—Mo1—O4154.9 (2)P1—O7—Mo1i123.1 (2)
O30—Mo1—O493.5 (3)O8—O7—Mo1i132.1 (2)
O30iii—Mo1—O485.0 (3)O7iii—O7—Mo1i129.8 (3)
O3—Mo1—O485.0 (3)O7i—O7—Mo1i68.69 (18)
O3iii—Mo1—O495.3 (3)Mo2—O7—Mo1i92.48 (13)
O1—Mo1—O5iii93.53 (18)Mo1—O7—Mo1i91.83 (12)
O40—Mo1—O5iii155.4 (2)P1—O8—O7v55.9 (2)
O50iii—Mo1—O5iii18.00 (17)P1—O8—O7iv55.9 (2)
O30—Mo1—O5iii86.4 (2)O7v—O8—O7iv91.7 (3)
O30iii—Mo1—O5iii89.6 (2)P1—O8—O755.9 (2)
O3—Mo1—O5iii97.2 (2)O7v—O8—O791.7 (3)
O3iii—Mo1—O5iii81.2 (2)O7iv—O8—O791.7 (3)
O4—Mo1—O5iii171.7 (2)P1—O8—Mo2124.17 (12)
O1—Mo1—O7159.29 (14)O7v—O8—Mo2130.90 (13)
O40—Mo1—O758.4 (2)O7iv—O8—Mo2131.30 (13)
O50iii—Mo1—O783.9 (2)O7—O8—Mo268.26 (14)
O30—Mo1—O757.5 (2)P1—O8—Mo2v124.17 (12)
O30iii—Mo1—O783.3 (2)O7v—O8—Mo2v68.26 (14)
O3—Mo1—O770.30 (18)O7iv—O8—Mo2v130.90 (13)
O3iii—Mo1—O7101.25 (18)O7—O8—Mo2v131.30 (13)
O4—Mo1—O771.25 (19)Mo2—O8—Mo2v91.53 (17)
O5iii—Mo1—O7101.87 (18)P1—O8—Mo2iv124.17 (12)
O1—Mo1—O7iii158.48 (13)O7v—O8—Mo2iv131.30 (13)
O40—Mo1—O7iii85.4 (2)O7iv—O8—Mo2iv68.26 (14)
O50iii—Mo1—O7iii55.5 (2)O7—O8—Mo2iv130.90 (13)
O30—Mo1—O7iii83.1 (2)Mo2—O8—Mo2iv91.53 (17)
O30iii—Mo1—O7iii56.9 (2)Mo2v—O8—Mo2iv91.53 (17)
O3—Mo1—O7iii101.45 (18)O8vi—P1—O8180.0
O3iii—Mo1—O7iii69.63 (18)O8vi—P1—O7i69.92 (14)
O4—Mo1—O7iii101.55 (19)O8—P1—O7i110.08 (14)
O5iii—Mo1—O7iii70.14 (18)O8vi—P1—O7vi69.92 (14)
O7—Mo1—O7iii42.23 (15)O8—P1—O7vi110.08 (14)
O2—Mo2—O50111.8 (2)O7i—P1—O7vi108.86 (14)
O2—Mo2—O6101.02 (16)O8vi—P1—O7110.08 (14)
O50—Mo2—O683.7 (2)O8—P1—O769.92 (14)
O2—Mo2—O40110.1 (2)O7i—P1—O771.14 (14)
O50—Mo2—O4089.8 (3)O7vi—P1—O7180.0 (4)
O6—Mo2—O40148.3 (2)O8vi—P1—O7v110.08 (14)
O2—Mo2—O6iv101.43 (16)O8—P1—O7v69.92 (14)
O50—Mo2—O6iv146.7 (2)O7i—P1—O7v71.14 (14)
O6—Mo2—O6iv87.82 (16)O7vi—P1—O7v71.14 (14)
O40—Mo2—O6iv80.8 (2)O7—P1—O7v108.86 (14)
O2—Mo2—O593.44 (19)O8vi—P1—O7iii69.92 (14)
O50—Mo2—O519.28 (15)O8—P1—O7iii110.08 (14)
O6—Mo2—O592.81 (19)O7i—P1—O7iii108.86 (14)
O40—Mo2—O590.9 (3)O7vi—P1—O7iii108.86 (14)
O6iv—Mo2—O5164.7 (2)O7—P1—O7iii71.14 (14)
O2—Mo2—O493.90 (19)O7v—P1—O7iii180.0 (3)
O50—Mo2—O491.0 (3)O8vi—P1—O7iv110.08 (14)
O6—Mo2—O4165.1 (2)O8—P1—O7iv69.92 (14)
O40—Mo2—O417.11 (16)O7i—P1—O7iv180.0 (3)
O6iv—Mo2—O489.0 (2)O7vi—P1—O7iv71.14 (14)
O5—Mo2—O486.5 (3)O7—P1—O7iv108.86 (14)
O2—Mo2—O7160.55 (15)O7v—P1—O7iv108.86 (14)
O50—Mo2—O756.0 (2)O7iii—P1—O7iv71.14 (14)
O4—O40—Mo1—O121.8 (14)O1—Mo1—O7—O8111.4 (4)
Mo2—O40—Mo1—O1131.3 (6)O40—Mo1—O7—O852.7 (4)
O4—O40—Mo1—O50iii162.3 (11)O50iii—Mo1—O7—O8112.8 (4)
Mo2—O40—Mo1—O50iii52.7 (9)O30—Mo1—O7—O8170.8 (4)
O4—O40—Mo1—O3091.4 (13)O30iii—Mo1—O7—O823.2 (4)
Mo2—O40—Mo1—O3018.2 (7)O3—Mo1—O7—O8155.1 (4)
O4—O40—Mo1—O30iii128.9 (14)O3iii—Mo1—O7—O828.1 (4)
Mo2—O40—Mo1—O30iii121.6 (7)O4—Mo1—O7—O863.7 (4)
O4—O40—Mo1—O372.7 (13)O5iii—Mo1—O7—O8111.4 (4)
Mo2—O40—Mo1—O336.8 (6)O7iii—Mo1—O7—O869.8 (3)
O4—O40—Mo1—O3iii116.1 (13)O1—Mo1—O7—O7iii178.8 (3)
Mo2—O40—Mo1—O3iii134.4 (6)O40—Mo1—O7—O7iii122.4 (3)
Mo2—O40—Mo1—O4109.5 (17)O50iii—Mo1—O7—O7iii43.0 (3)
O4—O40—Mo1—O5iii179.8 (10)O30—Mo1—O7—O7iii119.4 (3)
Mo2—O40—Mo1—O5iii70.3 (10)O30iii—Mo1—O7—O7iii46.5 (3)
O4—O40—Mo1—O7139.5 (14)O3—Mo1—O7—O7iii135.1 (3)
Mo2—O40—Mo1—O730.0 (5)O3iii—Mo1—O7—O7iii41.6 (3)
O4—O40—Mo1—O7iii174.2 (13)O4—Mo1—O7—O7iii133.5 (3)
Mo2—O40—Mo1—O7iii64.7 (6)O5iii—Mo1—O7—O7iii41.6 (3)
O3—O30—Mo1—O132.5 (10)O1—Mo1—O7—O7i109.7 (4)
Mo1i—O30—Mo1—O1128.2 (6)O40—Mo1—O7—O7i168.5 (4)
O3—O30—Mo1—O4079.8 (9)O50iii—Mo1—O7—O7i26.0 (3)
Mo1i—O30—Mo1—O4016.0 (7)O30—Mo1—O7—O7i50.4 (3)
O3—O30—Mo1—O50iii139.3 (10)O30iii—Mo1—O7—O7i115.6 (3)
Mo1i—O30—Mo1—O50iii125.0 (7)O3—Mo1—O7—O7i66.0 (3)
O3—O30—Mo1—O30iii149.9 (9)O3iii—Mo1—O7—O7i110.7 (3)
Mo1i—O30—Mo1—O30iii54.2 (6)O4—Mo1—O7—O7i157.4 (3)
Mo1i—O30—Mo1—O395.7 (11)O5iii—Mo1—O7—O7i27.5 (3)
O3—O30—Mo1—O3iii172.2 (5)O7iii—Mo1—O7—O7i69.1 (4)
Mo1i—O30—Mo1—O3iii76.5 (8)O1—Mo1—O7—Mo246.0 (4)
O3—O30—Mo1—O463.5 (9)O40—Mo1—O7—Mo212.7 (3)
Mo1i—O30—Mo1—O432.3 (7)O50iii—Mo1—O7—Mo2178.2 (2)
O3—O30—Mo1—O5iii124.9 (9)O30—Mo1—O7—Mo2105.4 (2)
Mo1i—O30—Mo1—O5iii139.4 (6)O30iii—Mo1—O7—Mo288.63 (19)
O3—O30—Mo1—O7128.6 (10)O3—Mo1—O7—Mo289.7 (2)
Mo1i—O30—Mo1—O732.8 (5)O3iii—Mo1—O7—Mo293.52 (19)
O3—O30—Mo1—O7iii164.7 (9)O4—Mo1—O7—Mo21.6 (2)
Mo1i—O30—Mo1—O7iii69.0 (6)O5iii—Mo1—O7—Mo2176.75 (17)
O5—O50—Mo2—O218.4 (9)O7iii—Mo1—O7—Mo2135.2 (2)
Mo1i—O50—Mo2—O2133.3 (7)O1—Mo1—O7—Mo1i46.5 (4)
O5—O50—Mo2—O6117.7 (9)O40—Mo1—O7—Mo1i105.3 (3)
Mo1i—O50—Mo2—O6127.3 (7)O50iii—Mo1—O7—Mo1i89.3 (2)
O5—O50—Mo2—O4093.3 (9)O30—Mo1—O7—Mo1i12.9 (2)
Mo1i—O50—Mo2—O4021.6 (7)O30iii—Mo1—O7—Mo1i178.8 (2)
O5—O50—Mo2—O6iv166.0 (7)O3—Mo1—O7—Mo1i2.81 (18)
Mo1i—O50—Mo2—O6iv51.1 (9)O3iii—Mo1—O7—Mo1i173.92 (18)
Mo1i—O50—Mo2—O5114.9 (13)O4—Mo1—O7—Mo1i94.2 (2)
O5—O50—Mo2—O476.3 (9)O5iii—Mo1—O7—Mo1i90.70 (19)
Mo1i—O50—Mo2—O438.7 (7)O7iii—Mo1—O7—Mo1i132.3 (3)
O5—O50—Mo2—O7144.4 (9)O7iii—O7—O8—P144.36 (15)
Mo1i—O50—Mo2—O729.4 (6)O7i—O7—O8—P144.36 (15)
O5—O50—Mo2—O8177.7 (9)Mo2—O7—O8—P1179.77 (14)
Mo1i—O50—Mo2—O862.7 (7)Mo1—O7—O8—P1105.6 (3)
O4—O40—Mo2—O219.0 (13)Mo1i—O7—O8—P1104.8 (3)
Mo1—O40—Mo2—O2132.1 (6)P1—O7—O8—O7v45.85 (16)
O4—O40—Mo2—O5094.2 (12)O7iii—O7—O8—O7v90.21 (18)
Mo1—O40—Mo2—O5018.9 (6)O7i—O7—O8—O7v1.5 (3)
O4—O40—Mo2—O6171.7 (10)Mo2—O7—O8—O7v133.9 (2)
Mo1—O40—Mo2—O658.6 (9)Mo1—O7—O8—O7v151.4 (2)
O4—O40—Mo2—O6iv117.9 (13)Mo1i—O7—O8—O7v59.0 (5)
Mo1—O40—Mo2—O6iv129.0 (6)P1—O7—O8—O7iv45.85 (16)
O4—O40—Mo2—O575.0 (12)O7iii—O7—O8—O7iv1.5 (3)
Mo1—O40—Mo2—O538.1 (6)O7i—O7—O8—O7iv90.21 (18)
Mo1—O40—Mo2—O4113.1 (16)Mo2—O7—O8—O7iv134.4 (2)
O4—O40—Mo2—O7143.5 (13)Mo1—O7—O8—O7iv59.7 (5)
Mo1—O40—Mo2—O730.3 (5)Mo1i—O7—O8—O7iv150.7 (2)
O4—O40—Mo2—O8177.8 (13)P1—O7—O8—Mo2179.77 (14)
Mo1—O40—Mo2—O864.7 (6)O7iii—O7—O8—Mo2135.9 (2)
C1ii—C2—N1—C157.4 (4)O7i—O7—O8—Mo2135.4 (2)
C2ii—C1—N1—C257.3 (4)Mo1—O7—O8—Mo274.6 (3)
Mo1i—O30—O3—Mo1147.5 (4)Mo1i—O7—O8—Mo275.0 (3)
Mo1—O30—O3—Mo1i147.5 (4)P1—O7—O8—Mo2v108.0 (3)
O1—Mo1—O3—O30149.7 (9)O7iii—O7—O8—Mo2v152.3 (3)
O40—Mo1—O3—O30100.7 (9)O7i—O7—O8—Mo2v63.6 (4)
O50iii—Mo1—O3—O3039.1 (9)Mo2—O7—O8—Mo2v71.8 (3)
O30iii—Mo1—O3—O3048.1 (14)Mo1—O7—O8—Mo2v146.5 (2)
O3iii—Mo1—O3—O3023.6 (10)Mo1i—O7—O8—Mo2v3.1 (6)
O4—Mo1—O3—O30116.3 (9)P1—O7—O8—Mo2iv108.1 (3)
O5iii—Mo1—O3—O3055.6 (9)O7iii—O7—O8—Mo2iv63.8 (4)
O7—Mo1—O3—O3044.5 (9)O7i—O7—O8—Mo2iv152.5 (3)
O7iii—Mo1—O3—O3015.5 (9)Mo2—O7—O8—Mo2iv72.1 (3)
O1—Mo1—O3—Mo1i170.2 (3)Mo1—O7—O8—Mo2iv2.5 (6)
O40—Mo1—O3—Mo1i60.7 (4)Mo1i—O7—O8—Mo2iv147.1 (2)
O50iii—Mo1—O3—Mo1i79.2 (4)O2—Mo2—O8—P1179.9 (2)
O30—Mo1—O3—Mo1i40.0 (7)O50—Mo2—O8—P143.38 (17)
O30iii—Mo1—O3—Mo1i8.1 (9)O6—Mo2—O8—P1129.43 (12)
O3iii—Mo1—O3—Mo1i16.5 (4)O40—Mo2—O8—P147.0 (2)
O4—Mo1—O3—Mo1i76.3 (4)O6iv—Mo2—O8—P1129.51 (12)
O5iii—Mo1—O3—Mo1i95.6 (4)O5—Mo2—O8—P142.59 (17)
O7—Mo1—O3—Mo1i4.4 (3)O4—Mo2—O8—P146.4 (2)
O7iii—Mo1—O3—Mo1i24.5 (4)O7—Mo2—O8—P10.23 (14)
Mo1—O40—O4—Mo2147.5 (7)O2—Mo2—O8—O7v107.8 (4)
Mo2—O40—O4—Mo1147.5 (7)O50—Mo2—O8—O7v28.7 (4)
O2—Mo2—O4—O40162.2 (12)O6—Mo2—O8—O7v57.4 (3)
O50—Mo2—O4—O4085.9 (13)O40—Mo2—O8—O7v119.1 (4)
O6—Mo2—O4—O4017 (2)O6iv—Mo2—O8—O7v158.4 (4)
O6iv—Mo2—O4—O4060.8 (12)O5—Mo2—O8—O7v29.5 (4)
O5—Mo2—O4—O40104.6 (13)O4—Mo2—O8—O7v118.4 (4)
O7—Mo2—O4—O4032.1 (12)O7—Mo2—O8—O7v72.3 (4)
O8—Mo2—O4—O402.2 (13)O2—Mo2—O8—O7iv107.9 (4)
O2—Mo2—O4—Mo1163.3 (4)O50—Mo2—O8—O7iv115.6 (4)
O50—Mo2—O4—Mo151.3 (4)O6—Mo2—O8—O7iv158.3 (4)
O6—Mo2—O4—Mo117.6 (11)O40—Mo2—O8—O7iv25.2 (4)
O40—Mo2—O4—Mo134.6 (10)O6iv—Mo2—O8—O7iv57.3 (3)
O6iv—Mo2—O4—Mo195.3 (4)O5—Mo2—O8—O7iv114.8 (4)
O5—Mo2—O4—Mo170.1 (4)O4—Mo2—O8—O7iv25.9 (4)
O7—Mo2—O4—Mo12.5 (3)O7—Mo2—O8—O7iv72.0 (4)
O8—Mo2—O4—Mo132.4 (4)O2—Mo2—O8—O7179.9 (3)
O1—Mo1—O4—O40159.5 (13)O50—Mo2—O8—O743.6 (2)
O50iii—Mo1—O4—O4027.6 (17)O6—Mo2—O8—O7129.66 (18)
O30—Mo1—O4—O4089.6 (13)O40—Mo2—O8—O746.8 (2)
O30iii—Mo1—O4—O4048.9 (13)O6iv—Mo2—O8—O7129.28 (18)
O3—Mo1—O4—O40106.6 (13)O5—Mo2—O8—O742.8 (2)
O3iii—Mo1—O4—O4064.4 (13)O4—Mo2—O8—O746.1 (2)
O5iii—Mo1—O4—O401 (3)O2—Mo2—O8—Mo2v45.7 (3)
O7—Mo1—O4—O4035.7 (13)O50—Mo2—O8—Mo2v90.84 (19)
O7iii—Mo1—O4—O405.9 (13)O6—Mo2—O8—Mo2v4.78 (12)
O1—Mo1—O4—Mo2162.3 (4)O40—Mo2—O8—Mo2v178.8 (2)
O40—Mo1—O4—Mo238.2 (11)O6iv—Mo2—O8—Mo2v96.28 (18)
O50iii—Mo1—O4—Mo210.6 (9)O5—Mo2—O8—Mo2v91.6 (2)
O30—Mo1—O4—Mo251.4 (4)O4—Mo2—O8—Mo2v179.4 (2)
O30iii—Mo1—O4—Mo287.0 (4)O7—Mo2—O8—Mo2v134.44 (16)
O3—Mo1—O4—Mo268.4 (4)O2—Mo2—O8—Mo2iv45.9 (3)
O3iii—Mo1—O4—Mo2102.5 (4)O50—Mo2—O8—Mo2iv177.6 (2)
O5iii—Mo1—O4—Mo237.6 (19)O6—Mo2—O8—Mo2iv96.35 (18)
O7—Mo1—O4—Mo22.5 (3)O40—Mo2—O8—Mo2iv87.2 (2)
O7iii—Mo1—O4—Mo232.3 (4)O6iv—Mo2—O8—Mo2iv4.70 (12)
Mo1i—O50—O5—Mo2153.9 (5)O5—Mo2—O8—Mo2iv176.80 (18)
Mo2—O50—O5—Mo1i153.9 (5)O4—Mo2—O8—Mo2iv87.8 (2)
O2—Mo2—O5—O50163.0 (9)O7—Mo2—O8—Mo2iv133.99 (16)
O6—Mo2—O5—O5061.8 (9)O7v—O8—P1—O8vi0 (100)
O40—Mo2—O5—O5086.8 (9)O7iv—O8—P1—O8vi0 (23)
O6iv—Mo2—O5—O5030.3 (14)O7—O8—P1—O8vi0 (100)
O4—Mo2—O5—O50103.3 (9)Mo2—O8—P1—O8vi0 (100)
O7—Mo2—O5—O5030.5 (8)Mo2v—O8—P1—O8vi0 (100)
O8—Mo2—O5—O502.4 (9)Mo2iv—O8—P1—O8vi0 (23)
O2—Mo2—O5—Mo1i169.1 (3)O7v—O8—P1—O7i60.0
O50—Mo2—O5—Mo1i27.9 (7)O7iv—O8—P1—O7i180.0
O6—Mo2—O5—Mo1i89.7 (3)O7—O8—P1—O7i60.0
O40—Mo2—O5—Mo1i58.9 (4)Mo2—O8—P1—O7i59.75 (15)
O6iv—Mo2—O5—Mo1i2.4 (9)Mo2v—O8—P1—O7i60.25 (15)
O4—Mo2—O5—Mo1i75.4 (3)Mo2iv—O8—P1—O7i179.75 (15)
O7—Mo2—O5—Mo1i2.6 (3)O7v—O8—P1—O7vi60.0
O8—Mo2—O5—Mo1i25.5 (3)O7iv—O8—P1—O7vi60.0
O2—Mo2—O6—Mo2v153.3 (3)O7—O8—P1—O7vi180.0
O50—Mo2—O6—Mo2v95.6 (4)Mo2—O8—P1—O7vi179.75 (15)
O40—Mo2—O6—Mo2v16.4 (6)Mo2v—O8—P1—O7vi59.75 (15)
O6iv—Mo2—O6—Mo2v52.1 (4)Mo2iv—O8—P1—O7vi60.25 (15)
O5—Mo2—O6—Mo2v112.6 (3)O7v—O8—P1—O7120.0
O4—Mo2—O6—Mo2v25.8 (10)O7iv—O8—P1—O7120.0
O7—Mo2—O6—Mo2v40.2 (3)Mo2—O8—P1—O70.25 (15)
O8—Mo2—O6—Mo2v9.7 (3)Mo2v—O8—P1—O7120.25 (15)
O2—Mo2—O7—P1179.9 (3)Mo2iv—O8—P1—O7119.75 (15)
O50—Mo2—O7—P1124.1 (3)O7iv—O8—P1—O7v120.0
O6—Mo2—O7—P143.7 (3)O7—O8—P1—O7v120.0
O40—Mo2—O7—P1121.9 (4)Mo2—O8—P1—O7v119.75 (15)
O6iv—Mo2—O7—P144.2 (3)Mo2v—O8—P1—O7v0.25 (15)
O5—Mo2—O7—P1135.7 (3)Mo2iv—O8—P1—O7v120.25 (15)
O4—Mo2—O7—P1132.4 (3)O7v—O8—P1—O7iii180.0
O8—Mo2—O7—P10.22 (13)O7iv—O8—P1—O7iii60.0
O2—Mo2—O7—O8179.9 (3)O7—O8—P1—O7iii60.0
O50—Mo2—O7—O8124.3 (3)Mo2—O8—P1—O7iii60.25 (15)
O6—Mo2—O7—O843.93 (13)Mo2v—O8—P1—O7iii179.75 (15)
O40—Mo2—O7—O8121.6 (3)Mo2iv—O8—P1—O7iii59.75 (15)
O6iv—Mo2—O7—O844.02 (13)O7v—O8—P1—O7iv120.0
O5—Mo2—O7—O8135.9 (2)O7—O8—P1—O7iv120.0
O4—Mo2—O7—O8132.2 (2)Mo2—O8—P1—O7iv120.25 (15)
O2—Mo2—O7—O7iii109.2 (3)Mo2v—O8—P1—O7iv119.75 (15)
O50—Mo2—O7—O7iii165.0 (4)Mo2iv—O8—P1—O7iv0.25 (15)
O6—Mo2—O7—O7iii114.6 (2)O8—O7—P1—O8vi180.0
O40—Mo2—O7—O7iii50.9 (3)O7iii—O7—P1—O8vi59.27 (17)
O6iv—Mo2—O7—O7iii26.7 (2)O7i—O7—P1—O8vi59.27 (17)
O5—Mo2—O7—O7iii153.4 (3)Mo2—O7—P1—O8vi179.74 (15)
O4—Mo2—O7—O7iii61.5 (3)Mo1—O7—P1—O8vi59.6 (2)
O8—Mo2—O7—O7iii70.69 (16)Mo1i—O7—P1—O8vi58.9 (2)
O2—Mo2—O7—O7i109.2 (3)O7iii—O7—P1—O8120.73 (17)
O50—Mo2—O7—O7i53.3 (3)O7i—O7—P1—O8120.73 (17)
O6—Mo2—O7—O7i27.0 (2)Mo2—O7—P1—O80.26 (15)
O40—Mo2—O7—O7i167.4 (4)Mo1—O7—P1—O8120.4 (2)
O6iv—Mo2—O7—O7i115.0 (2)Mo1i—O7—P1—O8121.1 (2)
O5—Mo2—O7—O7i65.0 (3)O8—O7—P1—O7i120.73 (17)
O4—Mo2—O7—O7i156.8 (3)O7iii—O7—P1—O7i118.5 (3)
O8—Mo2—O7—O7i70.97 (16)Mo2—O7—P1—O7i120.5 (2)
O2—Mo2—O7—Mo146.0 (4)Mo1—O7—P1—O7i118.9 (4)
O50—Mo2—O7—Mo1101.8 (2)Mo1i—O7—P1—O7i0.36 (16)
O6—Mo2—O7—Mo1177.83 (12)O8—O7—P1—O7vi60.87 (7)
O40—Mo2—O7—Mo112.3 (2)O7iii—O7—P1—O7vi59.9 (2)
O6iv—Mo2—O7—Mo189.88 (12)O7i—O7—P1—O7vi178.39 (15)
O5—Mo2—O7—Mo190.2 (2)Mo2—O7—P1—O7vi61.1 (2)
O4—Mo2—O7—Mo11.7 (2)Mo1—O7—P1—O7vi59.5 (2)
O8—Mo2—O7—Mo1133.89 (18)Mo1i—O7—P1—O7vi178.03 (18)
O2—Mo2—O7—Mo1i46.0 (4)O8—O7—P1—O7v59.27 (17)
O50—Mo2—O7—Mo1i9.9 (2)O7iii—O7—P1—O7v180.0
O6—Mo2—O7—Mo1i90.25 (12)O7i—O7—P1—O7v61.5 (3)
O40—Mo2—O7—Mo1i104.2 (3)Mo2—O7—P1—O7v59.0 (2)
O6iv—Mo2—O7—Mo1i178.20 (12)Mo1—O7—P1—O7v179.64 (15)
O5—Mo2—O7—Mo1i1.74 (18)Mo1i—O7—P1—O7v61.8 (4)
O4—Mo2—O7—Mo1i93.6 (2)O8—O7—P1—O7iii120.73 (17)
O8—Mo2—O7—Mo1i134.18 (18)O7i—O7—P1—O7iii118.5 (3)
O1—Mo1—O7—P1179.1 (2)Mo2—O7—P1—O7iii121.0 (2)
O40—Mo1—O7—P1122.1 (4)Mo1—O7—P1—O7iii0.36 (15)
O50iii—Mo1—O7—P143.3 (3)Mo1i—O7—P1—O7iii118.2 (4)
O30—Mo1—O7—P1119.7 (3)O8—O7—P1—O7iv59.27 (17)
O30iii—Mo1—O7—P146.2 (3)O7iii—O7—P1—O7iv61.5 (3)
O3—Mo1—O7—P1135.4 (3)O7i—O7—P1—O7iv180.0
O3iii—Mo1—O7—P141.3 (3)Mo2—O7—P1—O7iv59.5 (2)
O4—Mo1—O7—P1133.2 (3)Mo1—O7—P1—O7iv61.1 (4)
O5iii—Mo1—O7—P141.9 (3)Mo1i—O7—P1—O7iv179.64 (16)
O7iii—Mo1—O7—P10.32 (13)
Symmetry codes: (i) y, x+y, z; (ii) x+2/3, y+1/3, z+1/3; (iii) xy, x, z; (iv) y, xy, z; (v) x+y, x, z; (vi) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O60.902.222.812 (4)123
N1—H1D···O500.902.432.926 (6)115
N1—H1C···O4v0.902.203.041 (7)155
N1—H1C···O40v0.902.163.047 (7)168
N1—H1C···O30i0.902.523.091 (6)122
N1—H1D···O50.902.192.852 (6)130
N1—H1D···O1vii0.902.142.900 (4)142
C1—H1A···O60.972.583.101 (5)114
C1—H1B···O4viii0.972.583.347 (7)137
C2—H2A···O2viii0.972.433.291 (4)148
C2—H2B···O3i0.972.433.156 (6)132
C2—H2B···O2ix0.972.423.068 (4)124
Symmetry codes: (i) y, x+y, z; (v) x+y, x, z; (vii) x+1/3, xy+2/3, z+1/6; (viii) xy+2/3, x+1/3, z+1/3; (ix) y+2/3, x+1/3, z1/6.

Experimental details

Crystal data
Chemical formula(C4H12N2)3[PMo12O40]
Mr2086.72
Crystal system, space groupTrigonal, R3c
Temperature (K)296
a, c (Å)17.890 (3), 23.600 (6)
V3)6541 (2)
Z6
Radiation typeMo Kα
µ (mm1)3.49
Crystal size (mm)0.20 × 0.16 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.517, 0.682
No. of measured, independent and
observed [I > 2σ(I)] reflections
11291, 1413, 1363
Rint0.056
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.053, 1.14
No. of reflections1413
No. of parameters142
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0243P)2 + 29.698P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.66, 0.61

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O60.902.222.812 (4)122.7
N1—H1D···O500.902.432.926 (6)115.1
N1—H1C···O4i0.902.203.041 (7)154.5
N1—H1C···O40i0.902.163.047 (7)167.9
N1—H1C···O30ii0.902.523.091 (6)122.2
N1—H1D···O50.902.192.852 (6)130.1
N1—H1D···O1iii0.902.142.900 (4)141.8
C1—H1A···O60.972.583.101 (5)113.8
C1—H1B···O4iv0.972.583.347 (7)136.6
C2—H2A···O2iv0.972.433.291 (4)148.1
C2—H2B···O3ii0.972.433.156 (6)131.8
C2—H2B···O2v0.972.423.068 (4)124.1
Symmetry codes: (i) x+y, x, z; (ii) y, x+y, z; (iii) x+1/3, xy+2/3, z+1/6; (iv) xy+2/3, x+1/3, z+1/3; (v) y+2/3, x+1/3, z1/6.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20571032 and 20333070).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHan, Z. G., Zhao, Y. L., Peng, J., Tian, A. X., Liu, Q., Ma, J. F., Wang, E. B. & Hu, N. H. (2005). CrystEngComm, 7, 380–387.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHill, C. L. (1998). Chem. Rev. 98, 1–2.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKurth, D. G., Volkmer, D., Pope, M. T. & Müller, A. (2001). Polyoxometalate Chemistry, p. 301. Dordrecht: Kluwer.  Google Scholar
First citationLi, Y. G., Dai, L. M., Wang, Y. H., Wang, X. L., Wang, E. B., Su, Z. M. & Xu, L. (2007). Chem. Commun. pp. 2593–2595.  Web of Science CSD CrossRef Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34–48.  CrossRef Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, J.-H., Wang, C., Yu, M.-J. & Li, J. (2008). Acta Cryst. E64, m831.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m263-m264
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds