metal-organic compounds
trans-Chlorido(dimethyl sulfoxide-κS)(pyridine-2-carboxylato-κ2N,O)platinum(II)
aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr
In the title complex, [Pt(C6H4NO2)Cl(C2H6OS)], the PtII ion is in a distorted square-planar environment defined by the N and O atoms from the chelating pyridine-2-carboxylate (pic) anionic ligand, one S atom of the dimethyl sulfoxide molecule and one Cl ion. The complex is disposed about a crystallographic mirror plane parallel to the ac plane passing through all the atoms of the complex except the methyl atoms of the dimethyl sulfoxide. The molecules are stacked in columns along the b axis with a Pt⋯Pt distance of 4.9508 (5) Å. Within the column, intermolecular C—H⋯O hydrogen bonds and weak π–π interactions between adjacent pyridine rings are present, the shortest centroid–centroid distance being 5.153 (4) Å.
Related literature
For the P21/n, see: Annibale et al. (1986). For details of Pt(IV)–pic complexes, see: Griffith et al. (2005); Kim et al. (2009).
of the title complex with the monoclinicExperimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810005520/si2243sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810005520/si2243Isup2.hkl
Single crystals of the title complex were unexpectedly obtained by reacting K2PtCl4 (0.2000 g, 0.482 mmol) and pyridine-2-carboxylic acid (0.1192 g, 0.968 mmol) in H2O (10 ml) under reflux for 5 h. Crystals suitable for X-ray analysis were obtained by slow evaporation from a dimethyl sulfoxide solution of the pale yellow reaction product at 80 °C.
H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 (aromatic) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)]. The highest peak (2.60 e Å-3) and the deepest hole (-0.79 e Å-3) in the difference Fourier map are located 0.87 and 1.04 Å, respectively, from the atom Pt1.
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Pt(C6H4NO2)Cl(C2H6OS)] | F(000) = 800 |
Mr = 430.77 | Dx = 2.588 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 3961 reflections |
a = 19.5900 (15) Å | θ = 2.7–26.0° |
b = 6.9450 (6) Å | µ = 13.11 mm−1 |
c = 8.1266 (6) Å | T = 200 K |
V = 1105.64 (15) Å3 | Block, colorless |
Z = 4 | 0.21 × 0.17 × 0.09 mm |
Bruker SMART 1000 CCD diffractometer | 1169 independent reflections |
Radiation source: fine-focus sealed tube | 1085 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −24→23 |
Tmin = 0.631, Tmax = 1.000 | k = −8→8 |
6423 measured reflections | l = −7→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0345P)2 + 1.8204P] where P = (Fo2 + 2Fc2)/3 |
1169 reflections | (Δ/σ)max = 0.001 |
89 parameters | Δρmax = 2.60 e Å−3 |
0 restraints | Δρmin = −0.79 e Å−3 |
[Pt(C6H4NO2)Cl(C2H6OS)] | V = 1105.64 (15) Å3 |
Mr = 430.77 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 19.5900 (15) Å | µ = 13.11 mm−1 |
b = 6.9450 (6) Å | T = 200 K |
c = 8.1266 (6) Å | 0.21 × 0.17 × 0.09 mm |
Bruker SMART 1000 CCD diffractometer | 1169 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1085 reflections with I > 2σ(I) |
Tmin = 0.631, Tmax = 1.000 | Rint = 0.042 |
6423 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.10 | Δρmax = 2.60 e Å−3 |
1169 reflections | Δρmin = −0.79 e Å−3 |
89 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.087714 (15) | 0.2500 | 1.04929 (4) | 0.01771 (13) | |
Cl1 | 0.14026 (11) | 0.2500 | 1.3016 (2) | 0.0265 (5) | |
S1 | 0.18928 (11) | 0.2500 | 0.9332 (2) | 0.0209 (4) | |
O1 | −0.0036 (3) | 0.2500 | 1.1647 (7) | 0.0243 (13) | |
O2 | −0.1160 (3) | 0.2500 | 1.1182 (8) | 0.0311 (14) | |
O3 | 0.1947 (3) | 0.2500 | 0.7524 (8) | 0.0353 (15) | |
N1 | 0.0258 (3) | 0.2500 | 0.8489 (8) | 0.0204 (15) | |
C1 | 0.0441 (5) | 0.2500 | 0.6884 (10) | 0.029 (2) | |
H1 | 0.0911 | 0.2500 | 0.6596 | 0.035* | |
C2 | −0.0051 (5) | 0.2500 | 0.5652 (11) | 0.035 (2) | |
H2 | 0.0085 | 0.2500 | 0.4530 | 0.042* | |
C3 | −0.0726 (4) | 0.2500 | 0.6045 (12) | 0.0274 (19) | |
H3 | −0.1066 | 0.2500 | 0.5211 | 0.033* | |
C4 | −0.0903 (4) | 0.2500 | 0.7672 (12) | 0.028 (2) | |
H4 | −0.1372 | 0.2500 | 0.7968 | 0.034* | |
C5 | −0.0410 (4) | 0.2500 | 0.8904 (11) | 0.0205 (17) | |
C6 | −0.0570 (4) | 0.2500 | 1.0681 (10) | 0.0217 (18) | |
C7 | 0.2372 (3) | 0.0507 (9) | 1.0071 (8) | 0.0300 (14) | |
H7A | 0.2145 | −0.0694 | 0.9755 | 0.045* | |
H7B | 0.2405 | 0.0577 | 1.1273 | 0.045* | |
H7C | 0.2832 | 0.0539 | 0.9593 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.0175 (2) | 0.02225 (19) | 0.0134 (2) | 0.000 | 0.00107 (12) | 0.000 |
Cl1 | 0.0231 (11) | 0.0425 (12) | 0.0138 (10) | 0.000 | −0.0040 (8) | 0.000 |
S1 | 0.0195 (11) | 0.0258 (10) | 0.0174 (10) | 0.000 | 0.0024 (8) | 0.000 |
O1 | 0.018 (3) | 0.044 (3) | 0.011 (3) | 0.000 | 0.003 (2) | 0.000 |
O2 | 0.024 (3) | 0.047 (4) | 0.022 (3) | 0.000 | 0.003 (3) | 0.000 |
O3 | 0.036 (4) | 0.055 (4) | 0.015 (3) | 0.000 | 0.016 (3) | 0.000 |
N1 | 0.023 (4) | 0.019 (3) | 0.019 (4) | 0.000 | 0.000 (3) | 0.000 |
C1 | 0.028 (5) | 0.049 (5) | 0.009 (4) | 0.000 | 0.003 (3) | 0.000 |
C2 | 0.037 (6) | 0.047 (6) | 0.020 (5) | 0.000 | −0.001 (4) | 0.000 |
C3 | 0.021 (5) | 0.038 (5) | 0.023 (5) | 0.000 | −0.006 (4) | 0.000 |
C4 | 0.023 (5) | 0.033 (5) | 0.028 (5) | 0.000 | 0.001 (4) | 0.000 |
C5 | 0.023 (4) | 0.013 (3) | 0.025 (4) | 0.000 | −0.002 (4) | 0.000 |
C6 | 0.019 (4) | 0.024 (4) | 0.022 (5) | 0.000 | 0.002 (3) | 0.000 |
C7 | 0.023 (3) | 0.029 (3) | 0.038 (4) | 0.007 (3) | 0.005 (3) | 0.005 (3) |
Pt1—O1 | 2.020 (5) | C1—H1 | 0.9500 |
Pt1—N1 | 2.031 (7) | C2—C3 | 1.361 (13) |
Pt1—S1 | 2.202 (2) | C2—H2 | 0.9500 |
Pt1—Cl1 | 2.2945 (19) | C3—C4 | 1.367 (14) |
S1—O3 | 1.473 (6) | C3—H3 | 0.9500 |
S1—C7i | 1.778 (6) | C4—C5 | 1.390 (13) |
S1—C7 | 1.778 (6) | C4—H4 | 0.9500 |
O1—C6 | 1.308 (10) | C5—C6 | 1.477 (12) |
O2—C6 | 1.225 (11) | C7—H7A | 0.9800 |
N1—C5 | 1.352 (10) | C7—H7B | 0.9800 |
N1—C1 | 1.352 (11) | C7—H7C | 0.9800 |
C1—C2 | 1.390 (13) | ||
O1—Pt1—N1 | 81.0 (2) | C3—C2—H2 | 119.8 |
O1—Pt1—S1 | 177.70 (16) | C1—C2—H2 | 119.8 |
N1—Pt1—S1 | 101.31 (19) | C2—C3—C4 | 118.2 (8) |
O1—Pt1—Cl1 | 88.98 (16) | C2—C3—H3 | 120.9 |
N1—Pt1—Cl1 | 169.97 (19) | C4—C3—H3 | 120.9 |
S1—Pt1—Cl1 | 88.72 (7) | C3—C4—C5 | 121.4 (8) |
O3—S1—C7i | 107.4 (3) | C3—C4—H4 | 119.3 |
O3—S1—C7 | 107.4 (3) | C5—C4—H4 | 119.3 |
C7i—S1—C7 | 102.3 (5) | N1—C5—C4 | 119.5 (8) |
O3—S1—Pt1 | 119.5 (3) | N1—C5—C6 | 116.7 (7) |
C7i—S1—Pt1 | 109.4 (2) | C4—C5—C6 | 123.8 (8) |
C7—S1—Pt1 | 109.4 (2) | O2—C6—O1 | 123.7 (8) |
C6—O1—Pt1 | 115.4 (5) | O2—C6—C5 | 121.7 (8) |
C5—N1—C1 | 119.8 (7) | O1—C6—C5 | 114.7 (7) |
C5—N1—Pt1 | 112.2 (6) | S1—C7—H7A | 109.5 |
C1—N1—Pt1 | 127.9 (6) | S1—C7—H7B | 109.5 |
N1—C1—C2 | 120.7 (8) | H7A—C7—H7B | 109.5 |
N1—C1—H1 | 119.6 | S1—C7—H7C | 109.5 |
C2—C1—H1 | 119.6 | H7A—C7—H7C | 109.5 |
C3—C2—C1 | 120.3 (9) | H7B—C7—H7C | 109.5 |
N1—Pt1—S1—O3 | 0.0 | N1—C1—C2—C3 | 0.000 (2) |
Cl1—Pt1—S1—O3 | 180.0 | C1—C2—C3—C4 | 0.000 (2) |
N1—Pt1—S1—C7i | 124.3 (3) | C2—C3—C4—C5 | 0.000 (2) |
Cl1—Pt1—S1—C7i | −55.7 (3) | C1—N1—C5—C4 | 0.000 (2) |
N1—Pt1—S1—C7 | −124.3 (3) | Pt1—N1—C5—C4 | 180.000 (2) |
Cl1—Pt1—S1—C7 | 55.7 (3) | C1—N1—C5—C6 | 180.000 (2) |
N1—Pt1—O1—C6 | 0.000 (2) | Pt1—N1—C5—C6 | 0.000 (2) |
Cl1—Pt1—O1—C6 | 180.000 (2) | C3—C4—C5—N1 | 0.000 (2) |
O1—Pt1—N1—C5 | 0.000 (1) | C3—C4—C5—C6 | 180.000 (2) |
S1—Pt1—N1—C5 | 180.000 (1) | Pt1—O1—C6—O2 | 180.000 (2) |
Cl1—Pt1—N1—C5 | 0.000 (4) | Pt1—O1—C6—C5 | 0.000 (2) |
O1—Pt1—N1—C1 | 180.000 (1) | N1—C5—C6—O2 | 180.000 (2) |
S1—Pt1—N1—C1 | 0.000 (1) | C4—C5—C6—O2 | 0.000 (2) |
Cl1—Pt1—N1—C1 | 180.000 (3) | N1—C5—C6—O1 | 0.000 (2) |
C5—N1—C1—C2 | 0.000 (2) | C4—C5—C6—O1 | 180.000 (2) |
Pt1—N1—C1—C2 | 180.000 (1) |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O3 | 0.95 | 2.16 | 2.995 (11) | 145 |
C2—H2···O1ii | 0.95 | 2.35 | 3.255 (11) | 158 |
C7—H7A···O2iii | 0.98 | 2.42 | 3.323 (8) | 152 |
C7—H7B···Cl1 | 0.98 | 2.77 | 3.355 (7) | 119 |
Symmetry codes: (ii) x, y, z−1; (iii) −x, y−1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Pt(C6H4NO2)Cl(C2H6OS)] |
Mr | 430.77 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 200 |
a, b, c (Å) | 19.5900 (15), 6.9450 (6), 8.1266 (6) |
V (Å3) | 1105.64 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 13.11 |
Crystal size (mm) | 0.21 × 0.17 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.631, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6423, 1169, 1085 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.065, 1.10 |
No. of reflections | 1169 |
No. of parameters | 89 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.60, −0.79 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).
Pt1—O1 | 2.020 (5) | Pt1—S1 | 2.202 (2) |
Pt1—N1 | 2.031 (7) | Pt1—Cl1 | 2.2945 (19) |
O1—Pt1—N1 | 81.0 (2) | O1—Pt1—Cl1 | 88.98 (16) |
O1—Pt1—S1 | 177.70 (16) | N1—Pt1—Cl1 | 169.97 (19) |
N1—Pt1—S1 | 101.31 (19) | S1—Pt1—Cl1 | 88.72 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O3 | 0.95 | 2.16 | 2.995 (11) | 145.3 |
C2—H2···O1i | 0.95 | 2.35 | 3.255 (11) | 158.0 |
C7—H7A···O2ii | 0.98 | 2.42 | 3.323 (8) | 152.2 |
C7—H7B···Cl1 | 0.98 | 2.77 | 3.355 (7) | 119.2 |
Symmetry codes: (i) x, y, z−1; (ii) −x, y−1/2, −z+2. |
Acknowledgements
This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).
References
Annibale, G., Cattalini, L., Canovese, L., Pitteri, B., Tiripicchio, A., Tiripicchio Camellini, M. & Tobe, M. L. (1986). J. Chem. Soc. Dalton Trans. pp. 1101–1105. CSD CrossRef Web of Science Google Scholar
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Griffith, D., Lyssenko, K., Jensen, P., Kruger, P. E. & Marmion, C. J. (2005). Dalton Trans. pp. 956–961. Web of Science CSD CrossRef Google Scholar
Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m667. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title complex, [Pt(C6H4NO2)Cl(C2H6OS)], crystallized in the orthorhombic space group Pnma, whereas, in the previously reported X-ray structure analysis, the complex crystallized in the monoclinic space group P21/n (Annibale et al., 1986). The PtII ion lies in a distorted square-planar environment defined by the N and O atoms from the chelating pyridine-2-carboxylate (pic) anionic ligand, one S atom of the dimethyl sulfoxide molecule and one Cl ion (Fig. 1). The tight O1—Pt1—N1 chelate angle [81.0 (2)°] results in non-linear trans axes [<O1—Pt1—S1 = 177.70 (16)° and <N1—Pt1—Cl1 = 169.97 (19)°] (Table 1). The complex is disposed about a crystallographic mirror plane parallel to the ac plane passing through all the atoms of the complex at the special positions (x,1/4,z), except the methyl atoms of the dimethyl sulfoxide (Fig. 2). The molecules are stacked in columns along the b axis with a Pt···Pt distance of 4.9508 (5) Å. In the column, intermolecular C—H···O hydrogen bond (Table 2) and weak π-π interactions between adjacent pyridine rings are present, the shortest centroid-centroid distance being 5.153 (4) Å, and the ring planes are parallel and shifted for 3.807 Å. The intramolecular C—H···O and C—H···Cl hydrogen bonds are also observed (Table 2).