organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(E)-1-(Benzyl­oxyimino)eth­yl]-2-oxo-2H-chromen-7-yl acetate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: Huiwang@scnu.edu.cn

(Received 19 January 2010; accepted 28 January 2010; online 3 February 2010)

The title compound, C20H17NO5, was prepared by the reaction of 3-acetyl-2-oxo-2H-chromen-7-yl acetate with benzyl­oxy­amine. The mol­ecule adopts an E configuration with respect to the C=N double bond. The dihedral angles between the coumarin ring system, the phenyl ring and the C=N—O—C plane of the oxime unit are 35.83 (6), 35.8 (2) and 69.99 (15)°, respectively. In the crystal, a two-dimensional supra­molecular network is assembled through weak inter­molecular C—H⋯O hydrogen-bonding inter­actions.

Related literature

For the pharmacological applications of Schiff base compounds derived from coumarins, see: Jolanta et al. (2006[Jolanta, N. M., Ewa, N. & Julita, G. (2006). Eur. J. Med. Chem. 41, 1301-1309.]); Kontogiorgis et al. (2006[Kontogiorgis, C. A., Savvoglou, K. & Hadjipavlou-Litina, D. J. (2006). J. Enzyme Inhib. Med. Chem. 21, 21-29.]); Kontogiorgis & Hadjipavlou-Litina (2004[Kontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2004). Bioorg. Med. Chem. Lett. 14, 611-614.]); Nofal et al. (2000[Nofal, Z. M., El-Zahar, M. I. & Abd El-Karim, S. S. (2000). Molecules, 5, 99-113.]). For their use as dyes, fluorescent agents and as chemosensors, see: Kachkovski et al. (2004[Kachkovski, O. D., Tolmachev, O. I., Kobryn, L. O., Bila, E. E. & Ganushchak, M. I. (2004). Dyes Pigments, 63, 203-211.]); Turki et al. (2006[Turki, H., Abid, S., El Gharbi, R. & Fery-Forgues, S. (2006). C. R. Chim. 9, 1252-1259.]); Li et al. (2009[Li, H. Y., Gao, S. & Xi, Z. (2009). Inorg. Chem. Commun. 12, 300-303.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17NO5

  • Mr = 351.35

  • Triclinic, [P \overline 1]

  • a = 6.3901 (9) Å

  • b = 11.2413 (16) Å

  • c = 12.9298 (18) Å

  • α = 102.643 (2)°

  • β = 96.923 (2)°

  • γ = 101.860 (2)°

  • V = 873.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.983

  • 5311 measured reflections

  • 3792 independent reflections

  • 2335 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.166

  • S = 1.09

  • 3792 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O5i 0.93 2.51 3.393 (3) 159
C18—H18⋯O5ii 0.93 2.67 3.552 (3) 160
C8—H8⋯O1iii 0.93 2.65 3.397 (2) 138
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) -x-1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coumarin-derived Schiff bases have attracted much attention due to their potential pharmacological applications as antitumor (Jolanta et al., 2006), anti-inflammatory (Kontogiorgis & Hadjipavlou-Litina 2004), antibacterial (Nofal et al., 2000) and antifungal agents (Kontogiorgis et al., 2006). In addition, they can also be used as dyes (Kachkovski et al., 2004), fluorescent agents (Turki et al., 2006) and as colorimetric chemosensors (Li et al., 2009). In our study of bioactive compounds, a series of coumarin-derived Schiff bases have been synthesized. Herein, we report the crystal structure of the title compound, Fig. 1, obtained by the reaction of 3-acetyl-2-oxo-2H-chromen-7-yl acetate with benzyloxy-amine.

The title molecule is composed of a coumarin core with acetoxyl and benzyloxyiminoethyl substituents. The dihedral angles between the coumarin ring system, the phenyl ring and the C=N—O—C plane of the oxime unit are 35.83 (6)°, 35.8 (2) ° and 69.99 (15) °, respectively. The benzyloxyiminoethyl and coumarin systems are located on opposite sides of the C=N double bond plane, therefor the molecule presents an E configuration. In the crystal structure, intermolecular C6—H6···O5 hydrogen bonding interactions (Table 1) assemble a two-dimensional supramolecular layer as shown in Fig. 2. Additional weak C8—H8···O1 and C18—H18···O5 contacts are also observed. The overall crystal packing is shown in Fig. 3.

Related literature top

For the pharmacological applications of Schiff base compounds derived from coumarins, see: Jolanta et al. (2006); Kontogiorgis et al. (2006); Kontogiorgis & Hadjipavlou-Litina (2004); Nofal et al. (2000). For their use as dyes, fluorescent agents and as chemosensors, see: Kachkovski et al. (2004); Turki et al. (2006); Li et al. (2009).

Experimental top

A solution of benzyloxy-amine hydrochloride (2 mmol) in ethanol (10 ml) was added to a solution of 3-acetyl-2-oxo-2H-chromen-7-yl acetate (1 mmol) in ethanol (10 ml) at room temperature, the solution pH was then maintained at a value of 7 by the addition of sodium hydroxide. The reaction mixture was refluxed for 5 h at 353 K (monitored by TLC). After completion of the reaction, the reaction solution was purified by column chromatography (ethyl acetate: petroleum ether = 2:3). The eluate was evaporated to give the title compound (286 mg, yield: 81.5%). Single crystals suitable for X-ray analysis were obtained by recrystallization from DMSO, m.p. 426 K. ESI-MS (m/z): 352 (M+1); Analysis calculated for C20H17NO5: C 68.37%, H 4.88%, N 3.99%; Found: C 68.54%, H 4.32%, N 3.78%.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing weak C—H···O hydrogen bonds as dashed lines.
[Figure 3] Fig. 3. Crystal packing in the title compound.
3-[(E)-1-(Benzyloxyimino)ethyl]-2-oxo-2H-chromen-7-yl acetate top
Crystal data top
C20H17NO5Z = 2
Mr = 351.35F(000) = 368
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3901 (9) ÅCell parameters from 1332 reflections
b = 11.2413 (16) Åθ = 2.8–24.5°
c = 12.9298 (18) ŵ = 0.10 mm1
α = 102.643 (2)°T = 298 K
β = 96.923 (2)°Block, colorless
γ = 101.860 (2)°0.25 × 0.20 × 0.18 mm
V = 873.5 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3792 independent reflections
Radiation source: fine-focus sealed tube2335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 27.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 86
Tmin = 0.977, Tmax = 0.983k = 1214
5311 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.076P)2 + 0.0611P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3792 reflectionsΔρmax = 0.33 e Å3
238 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (4)
Crystal data top
C20H17NO5γ = 101.860 (2)°
Mr = 351.35V = 873.5 (2) Å3
Triclinic, P1Z = 2
a = 6.3901 (9) ÅMo Kα radiation
b = 11.2413 (16) ŵ = 0.10 mm1
c = 12.9298 (18) ÅT = 298 K
α = 102.643 (2)°0.25 × 0.20 × 0.18 mm
β = 96.923 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3792 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2335 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.983Rint = 0.025
5311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.09Δρmax = 0.33 e Å3
3792 reflectionsΔρmin = 0.23 e Å3
238 parameters
Special details top

Experimental. FT—IR (KBr): 1763, 1717, 1615, 1426, 1365, 1200, 1030 cm-1; 1H NMR δ (400 Hz, DMSO, TMS): 8.08 (s, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.36–7.28 (m, 5H) 7.26 (d, J = 2.0 Hz, 1H), 7.14 (dd, J = 2.0, 8.4 Hz, 1H), 5.17 (s, 2H), 2.27 (s, 3H), 2.11 (s, 3H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33761 (19)0.48915 (12)0.62680 (10)0.0488 (4)
C20.2517 (3)0.56481 (18)0.72817 (15)0.0499 (5)
O20.3700 (2)0.62098 (15)0.77276 (12)0.0710 (5)
C30.0274 (3)0.56859 (17)0.77165 (15)0.0472 (5)
C40.0814 (3)0.49479 (17)0.71383 (15)0.0478 (5)
H40.22340.49700.74210.057*
C50.0893 (3)0.33485 (18)0.54693 (16)0.0504 (5)
H50.23010.33200.57250.060*
C60.0133 (3)0.26229 (17)0.44758 (16)0.0503 (5)
H60.05680.20970.40620.060*
C70.2229 (3)0.26729 (17)0.40849 (15)0.0448 (4)
O40.3080 (2)0.19654 (12)0.30368 (10)0.0542 (4)
C200.5180 (4)0.12835 (19)0.27716 (18)0.0591 (6)
O50.6377 (3)0.12328 (15)0.34060 (14)0.0791 (5)
C210.5679 (4)0.0639 (2)0.1608 (2)0.0821 (8)
H21C0.71670.01730.14240.123*
H21A0.47490.00760.14550.123*
H21B0.54450.12510.11940.123*
C80.3309 (3)0.34359 (17)0.46779 (14)0.0450 (4)
H80.47060.34710.44100.054*
C90.2257 (3)0.41476 (16)0.56822 (14)0.0415 (4)
C100.0149 (3)0.41373 (16)0.61081 (14)0.0427 (4)
C110.0738 (3)0.65509 (19)0.87771 (16)0.0539 (5)
C120.0328 (4)0.7832 (2)0.90913 (19)0.0729 (7)
H12C0.16070.84040.95360.109*
H12B0.08570.78040.94840.109*
H12A0.00300.81110.84560.109*
N10.2041 (3)0.61121 (16)0.93402 (13)0.0644 (5)
O30.3083 (3)0.70165 (14)1.03000 (11)0.0744 (5)
C130.4579 (5)0.6475 (3)1.0870 (2)0.0940 (9)
H13B0.56900.62951.04520.113*
H13A0.38160.57001.10060.113*
C140.5568 (4)0.74251 (19)1.19015 (17)0.0609 (6)
C150.4399 (4)0.7731 (2)1.26843 (19)0.0677 (6)
H150.29370.73261.25730.081*
C160.5268 (5)0.8596 (2)1.3618 (2)0.0812 (8)
H160.44150.87721.41390.097*
C170.7365 (5)0.9205 (2)1.3795 (2)0.0820 (8)
H170.79440.98111.44370.098*
C180.8661 (4)0.8957 (3)1.3058 (2)0.0842 (8)
H181.01150.93841.31940.101*
C190.7778 (4)0.8050 (3)1.2092 (2)0.0817 (7)
H190.86440.78621.15790.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0384 (7)0.0550 (8)0.0484 (8)0.0149 (6)0.0013 (6)0.0035 (6)
C20.0446 (11)0.0558 (11)0.0473 (11)0.0116 (9)0.0061 (9)0.0102 (9)
O20.0508 (9)0.0869 (11)0.0646 (10)0.0236 (8)0.0070 (7)0.0079 (8)
C30.0426 (10)0.0514 (11)0.0448 (10)0.0066 (8)0.0044 (8)0.0123 (8)
C40.0359 (10)0.0543 (11)0.0510 (11)0.0074 (8)0.0004 (8)0.0153 (9)
C50.0354 (10)0.0531 (11)0.0627 (12)0.0126 (8)0.0064 (9)0.0138 (9)
C60.0430 (11)0.0463 (10)0.0618 (12)0.0125 (8)0.0130 (9)0.0103 (9)
C70.0427 (10)0.0419 (9)0.0480 (11)0.0059 (8)0.0076 (8)0.0118 (8)
O40.0472 (8)0.0580 (8)0.0494 (8)0.0078 (6)0.0067 (6)0.0023 (6)
C200.0505 (13)0.0480 (11)0.0688 (14)0.0118 (9)0.0011 (11)0.0009 (10)
O50.0550 (10)0.0705 (10)0.0932 (12)0.0003 (8)0.0205 (9)0.0079 (9)
C210.0753 (16)0.0762 (16)0.0731 (16)0.0155 (13)0.0072 (13)0.0128 (13)
C80.0374 (10)0.0488 (10)0.0481 (11)0.0125 (8)0.0029 (8)0.0109 (8)
C90.0377 (10)0.0428 (9)0.0464 (10)0.0126 (7)0.0081 (8)0.0128 (8)
C100.0364 (10)0.0432 (9)0.0472 (10)0.0058 (7)0.0054 (8)0.0134 (8)
C110.0495 (12)0.0610 (12)0.0456 (11)0.0079 (9)0.0042 (9)0.0091 (9)
C120.0735 (16)0.0703 (15)0.0628 (14)0.0169 (12)0.0027 (12)0.0030 (11)
N10.0720 (12)0.0609 (11)0.0453 (10)0.0069 (9)0.0095 (9)0.0015 (8)
O30.0890 (12)0.0662 (10)0.0523 (9)0.0159 (8)0.0181 (8)0.0014 (7)
C130.126 (2)0.0769 (17)0.0661 (16)0.0340 (16)0.0280 (15)0.0053 (13)
C140.0722 (15)0.0542 (12)0.0487 (12)0.0134 (11)0.0092 (11)0.0092 (9)
C150.0686 (15)0.0641 (14)0.0688 (15)0.0136 (11)0.0064 (12)0.0186 (12)
C160.109 (2)0.0721 (16)0.0676 (16)0.0310 (16)0.0149 (15)0.0201 (13)
C170.099 (2)0.0624 (15)0.0700 (17)0.0142 (15)0.0147 (16)0.0070 (13)
C180.0612 (16)0.0781 (17)0.098 (2)0.0013 (13)0.0165 (15)0.0231 (15)
C190.0776 (18)0.0987 (19)0.0770 (17)0.0287 (15)0.0165 (14)0.0307 (15)
Geometric parameters (Å, º) top
O1—C91.372 (2)C9—C101.396 (2)
O1—C21.375 (2)C11—N11.283 (3)
C2—O21.202 (2)C11—C121.494 (3)
C2—C31.464 (3)C12—H12C0.9600
C3—C41.350 (3)C12—H12B0.9600
C3—C111.479 (3)C12—H12A0.9600
C4—C101.423 (2)N1—O31.410 (2)
C4—H40.9300O3—C131.447 (3)
C5—C61.365 (3)C13—C141.489 (3)
C5—C101.403 (3)C13—H13B0.9700
C5—H50.9300C13—H13A0.9700
C6—C71.390 (3)C14—C151.355 (3)
C6—H60.9300C14—C191.408 (3)
C7—C81.372 (3)C15—C161.347 (3)
C7—O41.392 (2)C15—H150.9300
O4—C201.363 (2)C16—C171.340 (4)
C20—O51.190 (2)C16—H160.9300
C20—C211.483 (3)C17—C181.356 (4)
C21—H21C0.9600C17—H170.9300
C21—H21A0.9600C18—C191.398 (4)
C21—H21B0.9600C18—H180.9300
C8—C91.375 (2)C19—H190.9300
C8—H80.9300
C9—O1—C2122.88 (14)C5—C10—C4124.61 (17)
O2—C2—O1116.29 (17)N1—C11—C3113.44 (18)
O2—C2—C3126.37 (18)N1—C11—C12125.35 (19)
O1—C2—C3117.34 (17)C3—C11—C12121.10 (18)
C4—C3—C2119.42 (17)C11—C12—H12C109.5
C4—C3—C11122.05 (18)C11—C12—H12B109.5
C2—C3—C11118.53 (17)H12C—C12—H12B109.5
C3—C4—C10121.90 (17)C11—C12—H12A109.5
C3—C4—H4119.0H12C—C12—H12A109.5
C10—C4—H4119.0H12B—C12—H12A109.5
C6—C5—C10120.80 (17)C11—N1—O3110.70 (17)
C6—C5—H5119.6N1—O3—C13107.54 (16)
C10—C5—H5119.6O3—C13—C14106.20 (19)
C5—C6—C7119.80 (18)O3—C13—H13B110.5
C5—C6—H6120.1C14—C13—H13B110.5
C7—C6—H6120.1O3—C13—H13A110.5
C8—C7—C6121.47 (17)C14—C13—H13A110.5
C8—C7—O4122.92 (16)H13B—C13—H13A108.7
C6—C7—O4115.48 (16)C15—C14—C19117.5 (2)
C20—O4—C7120.76 (15)C15—C14—C13122.1 (2)
O5—C20—O4123.2 (2)C19—C14—C13120.4 (2)
O5—C20—C21127.0 (2)C16—C15—C14122.7 (2)
O4—C20—C21109.8 (2)C16—C15—H15118.7
C20—C21—H21C109.5C14—C15—H15118.7
C20—C21—H21A109.5C17—C16—C15119.9 (3)
H21C—C21—H21A109.5C17—C16—H16120.0
C20—C21—H21B109.5C15—C16—H16120.0
H21C—C21—H21B109.5C16—C17—C18121.5 (3)
H21A—C21—H21B109.5C16—C17—H17119.3
C7—C8—C9117.84 (17)C18—C17—H17119.3
C7—C8—H8121.1C17—C18—C19119.0 (3)
C9—C8—H8121.1C17—C18—H18120.5
O1—C9—C8116.92 (15)C19—C18—H18120.5
O1—C9—C10120.20 (16)C18—C19—C14119.4 (2)
C8—C9—C10122.89 (16)C18—C19—H19120.3
C9—C10—C5117.19 (17)C14—C19—H19120.3
C9—C10—C4118.17 (16)
C9—O1—C2—O2176.76 (17)C8—C9—C10—C4177.57 (16)
C9—O1—C2—C32.8 (3)C6—C5—C10—C90.2 (3)
O2—C2—C3—C4176.5 (2)C6—C5—C10—C4178.29 (17)
O1—C2—C3—C43.0 (3)C3—C4—C10—C92.0 (3)
O2—C2—C3—C114.3 (3)C3—C4—C10—C5179.96 (18)
O1—C2—C3—C11176.28 (16)C4—C3—C11—N136.2 (3)
C2—C3—C4—C100.6 (3)C2—C3—C11—N1144.62 (19)
C11—C3—C4—C10178.60 (16)C4—C3—C11—C12140.3 (2)
C10—C5—C6—C70.7 (3)C2—C3—C11—C1238.9 (3)
C5—C6—C7—C80.3 (3)C3—C11—N1—O3175.21 (16)
C5—C6—C7—O4175.76 (16)C12—C11—N1—O31.1 (3)
C8—C7—O4—C2045.7 (2)C11—N1—O3—C13177.84 (19)
C6—C7—O4—C20138.31 (18)N1—O3—C13—C14177.2 (2)
C7—O4—C20—O51.4 (3)O3—C13—C14—C1567.9 (3)
C7—O4—C20—C21179.04 (17)O3—C13—C14—C19111.6 (3)
C6—C7—C8—C90.6 (3)C19—C14—C15—C160.1 (3)
O4—C7—C8—C9176.27 (15)C13—C14—C15—C16179.4 (2)
C2—O1—C9—C8179.99 (16)C14—C15—C16—C170.8 (4)
C2—O1—C9—C100.1 (3)C15—C16—C17—C181.0 (4)
C7—C8—C9—O1179.15 (15)C16—C17—C18—C190.4 (4)
C7—C8—C9—C101.0 (3)C17—C18—C19—C140.6 (4)
O1—C9—C10—C5179.54 (15)C15—C14—C19—C180.8 (3)
C8—C9—C10—C50.6 (3)C13—C14—C19—C18178.8 (2)
O1—C9—C10—C42.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O5i0.932.513.393 (3)159
C18—H18···O5ii0.932.673.552 (3)160
C8—H8···O1iii0.932.653.397 (2)138
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H17NO5
Mr351.35
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.3901 (9), 11.2413 (16), 12.9298 (18)
α, β, γ (°)102.643 (2), 96.923 (2), 101.860 (2)
V3)873.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.977, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
5311, 3792, 2335
Rint0.025
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.166, 1.09
No. of reflections3792
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O5i0.932.513.393 (3)159.0
C18—H18···O5ii0.932.673.552 (3)159.6
C8—H8···O1iii0.932.653.397 (2)137.6
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x1, y+1, z+1.
 

Acknowledgements

We are grateful to the Science and Technology Plan Project of Guangdong Province (No. 2008B010600008) for financial support.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJolanta, N. M., Ewa, N. & Julita, G. (2006). Eur. J. Med. Chem. 41, 1301–1309.  Web of Science PubMed Google Scholar
First citationKachkovski, O. D., Tolmachev, O. I., Kobryn, L. O., Bila, E. E. & Ganushchak, M. I. (2004). Dyes Pigments, 63, 203–211.  CrossRef CAS Google Scholar
First citationKontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2004). Bioorg. Med. Chem. Lett. 14, 611–614.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKontogiorgis, C. A., Savvoglou, K. & Hadjipavlou-Litina, D. J. (2006). J. Enzyme Inhib. Med. Chem. 21, 21–29.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, H. Y., Gao, S. & Xi, Z. (2009). Inorg. Chem. Commun. 12, 300–303.  Web of Science CrossRef CAS Google Scholar
First citationNofal, Z. M., El-Zahar, M. I. & Abd El-Karim, S. S. (2000). Molecules, 5, 99–113.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurki, H., Abid, S., El Gharbi, R. & Fery-Forgues, S. (2006). C. R. Chim. 9, 1252–1259.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds