metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis{1,2-bis­­[bis­­(2-meth­oxy­ethyl)phosphino]ethane}di­chloridoiron(II)

aDepartment of Chemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, USA
*Correspondence e-mail: dtyler@uoregon.edu

(Received 27 January 2010; accepted 29 January 2010; online 6 February 2010)

The Fe atom in the title compound, [FeCl2(C14H32O4P2)2], has a distorted octa­hedral coordination with four P atoms in equatorial positions and two Cl atoms in apical positions.

Related literature

For the applications of similar complexes in dinitro­gen binding, see: Gilbertson et al. (2007[Gilbertson, J. D., Szymczak, N. K., Crossland, J. L., Miller, W. K., Lyon, D. K., Foxman, B. M., Davis, J. & Tyler, D. R. (2007). Inorg. Chem. 46, 1205-1214.]); Lyon (1993[Lyon, D. K. (1993). Fe Phosphine Complexes for N2 Removal from Natural Gas. US Patent No. 5 225 174.]); MacKay & Fryzuk (2004[MacKay, B. A. & Fryzuk, M. D. (2004). Chem. Rev. 104, 385-401.]). For related structures, see: Herbowski & Deutsch (1993[Herbowski, A. & Deutsch, E. A. (1993). J. Organomet. Chem. 460, 19-23.]); Miller et al. (2002[Miller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453-5465.]).

[Scheme 1]

Experimental

Crystal data
  • [FeCl2(C14H32O4P2)2]

  • Mr = 779.42

  • Monoclinic, P 21 /c

  • a = 12.3417 (7) Å

  • b = 12.1825 (7) Å

  • c = 25.3621 (15) Å

  • β = 100.124 (1)°

  • V = 3753.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 173 K

  • 0.32 × 0.19 × 0.09 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS, University of Göttingen, Germany.]) Tmin = 0.794, Tmax = 0.935

  • 41489 measured reflections

  • 8193 independent reflections

  • 7057 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.03

  • 8193 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 1.70 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—P1 2.2581 (6)
Fe1—P2 2.2770 (5)
Fe1—P3 2.2792 (6)
Fe1—P4 2.2814 (5)
Fe1—Cl2 2.3491 (5)
Fe1—Cl1 2.3529 (5)
P1—Fe1—P3 175.71 (2)
P2—Fe1—P4 178.82 (2)
Cl2—Fe1—Cl1 179.11 (2)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Numerous iron-diphosphine complexes have shown the ability to coordinate dinitrogen (MacKay & Fryzuk, 2004). Because of this ability, these complexes have received interest as dinitrogen scrubbers for nitrogen-containing natural gas streams (Lyon, 1993). One requirement for a successful dinitrogen scrubber is high solubility in water, a solvent in which methane has limited solubility. Research in our group has explored the synthesis of iron-diphosphine complexes containing water-soluble phosphine ligands, specifically diphosphine ligands containing hydroxyl and methoxy functional groups (Gilbertson et al., 2007; Miller et al., 2002). One problem facing hydroxyl functionalized phosphine ligands is that the hydroxyl groups have been shown in some cases to coordinate to the metal center. The methoxy functionalized phosphines are not plagued by this problem and thus have been our recent focus. Here we report the synthesis and structural characterization of a water-soluble iron dichloride phosphine complex, trans-Fe(DMeOEtPE)2Cl2 (DMeOEtPE=1,2-bis(dimethoxyethylphosphino)ethane).

The Fe atom in trans-Fe(DMeOEtPE)2Cl2 has a distorted octahedral coordination with four P atoms in equatorial and two Cl atoms in apical positions (Fig. 1). The Fe(1)—P distances are in the range 2.2581 (6)-2.2814 (5) Å, and the Fe(1)—Cl(1,2) distances are 2.3529 (5) and 2.3491 (5) Å, respectively.

Related literature top

For the applications of similar complexes in dinitrogen binding, see: Gilbertson et al. (2007); Lyon (1993); MacKay & Fryzuk (2004). For related structures, see: Herbowski & Deutsch (1993); Miller et al. (2002).

Experimental top

1,2-bis(dimethoxyethylphosphino)ethane (DMeOEtPE) was synthesized as previously reported (Herbowski & Deutsch, 1993). trans-Fe(DMeOEtPE)2Cl2 was prepared by adding DMeOEtPE (0.826 g, 2.53 mmol) to a stirring solution of FeCl24H2O (0.25 g, 1.26 mmol) in 30 ml of toluene under an argon atmosphere. The reaction was allowed to stir at room temperature for 24 hrs. The resulting green solution was carefully decanted into a clean flask, leaving a small amount of oily, red impurity in the original vessel. Approximately 20 ml of the toluene was removed under vacuum followed by addition of hexane (50 ml). Vacuum was applied to remove some of the hexane and chill the mixture. A green crystalline product was obtained by filtration followed by a hexane rinse and drying in vacuo. Yield 0.73 g, 74%. 31P{1H} NMR (toluene-d8) at 233 K: 55 ppm.

Refinement top

The H atoms were positioned geometrically and refined using the riding model approximation, C—H = 0.99 and 0.98 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C), respectively for CH2 and CH3 groups. There are eight flexible (CH2CH2OCH3) groups in the structure and as a result there are elongations of displacement ellipsoids for some atoms. On the residial density there is one peak, 1.699 e Å3, corresponding to a second position for the O(4) atom. The treatment of the disorder shows that the O(4) atom in the terminal C(15)O(4) C(16) group is disordered over two postions in ratio 84/16. Such refinement doesn't significantly improve the final crystal structure and the second possible position for the disordered C(15)O(4) C(16) group was not taken into consideration.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 50% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity.
trans-Bis{1,2-bis[bis(2-methoxyethyl)phosphino]ethane}dichloridoiron(II) top
Crystal data top
[FeCl2(C14H32O4P2)2]F(000) = 1664
Mr = 779.42Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5483 reflections
a = 12.3417 (7) Åθ = 2.3–27.0°
b = 12.1825 (7) ŵ = 0.76 mm1
c = 25.3621 (15) ÅT = 173 K
β = 100.124 (1)°Block, light green
V = 3753.9 (4) Å30.32 × 0.19 × 0.09 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
8193 independent reflections
Radiation source: fine-focus sealed tube7057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 1515
Tmin = 0.794, Tmax = 0.935k = 1515
41489 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0481P)2 + 2.6254P]
where P = (Fo2 + 2Fc2)/3
8193 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 1.70 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[FeCl2(C14H32O4P2)2]V = 3753.9 (4) Å3
Mr = 779.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3417 (7) ŵ = 0.76 mm1
b = 12.1825 (7) ÅT = 173 K
c = 25.3621 (15) Å0.32 × 0.19 × 0.09 mm
β = 100.124 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
8193 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
7057 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.935Rint = 0.033
41489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.03Δρmax = 1.70 e Å3
8193 reflectionsΔρmin = 0.52 e Å3
388 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.22245 (2)0.97476 (2)0.194352 (10)0.01452 (8)
Cl10.08642 (4)0.83773 (4)0.187910 (19)0.02216 (11)
Cl20.35615 (4)1.11358 (4)0.200262 (19)0.02214 (11)
P10.30134 (4)0.87521 (4)0.136197 (19)0.01708 (11)
P20.33088 (4)0.87234 (4)0.257867 (19)0.01768 (11)
P30.13372 (4)1.06472 (4)0.253109 (19)0.01742 (11)
P40.11197 (4)1.07416 (4)0.130031 (19)0.01745 (11)
O10.19237 (15)0.71639 (14)0.00460 (6)0.0400 (4)
O20.54120 (13)1.03024 (14)0.07202 (7)0.0341 (4)
O30.26896 (14)0.60274 (13)0.26502 (7)0.0352 (4)
O40.57019 (19)0.95126 (18)0.38323 (9)0.0639 (6)
O50.27939 (14)1.12839 (14)0.37116 (6)0.0341 (4)
O60.03861 (15)0.96739 (14)0.36821 (7)0.0377 (4)
O70.18270 (12)0.98052 (14)0.03537 (6)0.0315 (4)
O80.15366 (13)1.29630 (13)0.01486 (6)0.0295 (3)
C10.35201 (17)0.74704 (16)0.17059 (8)0.0217 (4)
H1A0.28950.69890.17480.026*
H1B0.40010.70710.14970.026*
C20.41655 (16)0.77930 (17)0.22520 (8)0.0213 (4)
H2A0.48580.81650.22090.026*
H2B0.43550.71300.24750.026*
C30.00598 (16)1.12040 (17)0.21359 (8)0.0217 (4)
H3A0.04801.06060.20340.026*
H3B0.02691.17510.23500.026*
C40.03478 (17)1.17450 (17)0.16345 (8)0.0222 (4)
H4A0.08011.24080.17340.027*
H4B0.03331.19670.13900.027*
C50.21964 (16)0.82790 (17)0.07278 (8)0.0214 (4)
H5A0.14700.80380.08000.026*
H5B0.20660.89160.04830.026*
C60.26683 (17)0.73570 (17)0.04360 (8)0.0245 (4)
H6A0.33980.75680.03580.029*
H6B0.27560.66850.06590.029*
C70.2245 (3)0.6320 (2)0.03610 (11)0.0463 (7)
H7A0.16920.62360.06870.069*
H7B0.23100.56320.01580.069*
H7C0.29570.65030.04590.069*
C80.43141 (16)0.92093 (18)0.11705 (8)0.0241 (4)
H8A0.48390.93620.15050.029*
H8B0.46150.85840.09930.029*
C90.43092 (18)1.01955 (19)0.08110 (9)0.0274 (5)
H9A0.37961.00810.04690.033*
H9B0.40811.08620.09870.033*
C100.5572 (2)1.1256 (2)0.04272 (10)0.0396 (6)
H10A0.63401.12880.03750.059*
H10B0.54051.19060.06250.059*
H10C0.50841.12340.00780.059*
C110.26345 (18)0.78176 (18)0.30135 (9)0.0267 (5)
H11A0.26830.81870.33650.032*
H11B0.18440.77740.28540.032*
C120.30510 (19)0.66529 (18)0.31191 (9)0.0305 (5)
H12A0.38650.66480.32070.037*
H12B0.27580.63360.34250.037*
C130.3024 (3)0.4922 (2)0.27114 (13)0.0592 (9)
H13A0.27570.45210.23790.089*
H13B0.27190.45900.30050.089*
H13C0.38300.48850.27930.089*
C140.43117 (18)0.94582 (18)0.30686 (9)0.0277 (5)
H14A0.47560.99270.28690.033*
H14B0.39000.99540.32720.033*
C150.5095 (2)0.8796 (2)0.34673 (10)0.0425 (6)
H15A0.46790.82780.36570.051*
H15B0.55940.83670.32810.051*
C160.6081 (3)0.9017 (3)0.43294 (12)0.0707 (10)
H16A0.65080.95510.45700.106*
H16B0.65490.83880.42800.106*
H16C0.54520.87670.44850.106*
C170.18716 (18)1.19478 (17)0.28572 (8)0.0245 (4)
H17A0.19771.24660.25700.029*
H17B0.12871.22590.30340.029*
C180.29249 (18)1.19403 (18)0.32654 (8)0.0263 (4)
H18A0.35331.16460.31000.032*
H18B0.31171.27000.33860.032*
C190.3712 (2)1.1381 (2)0.41344 (9)0.0408 (6)
H19A0.35961.09170.44350.061*
H19B0.37921.21470.42520.061*
H19C0.43801.11450.40070.061*
C200.08209 (18)0.98752 (17)0.30572 (8)0.0233 (4)
H20A0.05560.91530.29080.028*
H20B0.14470.97370.33520.028*
C210.00960 (18)1.04069 (18)0.32942 (9)0.0263 (5)
H21A0.01561.11150.34640.032*
H21B0.07401.05480.30100.032*
C220.1338 (2)1.0037 (2)0.38722 (10)0.0391 (6)
H22A0.15180.95150.41380.059*
H22B0.19561.00840.35720.059*
H22C0.11991.07610.40380.059*
C230.00492 (16)0.99868 (17)0.08353 (8)0.0228 (4)
H23A0.03120.99020.04910.027*
H23B0.00100.92410.09830.027*
C240.11012 (17)1.04770 (19)0.07170 (9)0.0262 (4)
H24A0.13911.05520.10550.031*
H24B0.10661.12180.05610.031*
C250.2284 (2)0.8934 (2)0.06156 (10)0.0376 (6)
H25A0.27760.84970.03500.056*
H25B0.27020.92370.08770.056*
H25C0.16910.84660.08000.056*
C260.17307 (17)1.16139 (17)0.08401 (8)0.0228 (4)
H26A0.22621.21180.10550.027*
H26B0.21501.11400.06310.027*
C270.09244 (18)1.22924 (18)0.04524 (9)0.0262 (5)
H27A0.04221.18050.02110.031*
H27B0.04771.27580.06520.031*
C280.0831 (2)1.3495 (2)0.02759 (10)0.0394 (6)
H28A0.12711.39480.04780.059*
H28B0.03101.39610.01290.059*
H28C0.04261.29430.05140.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01472 (14)0.01411 (14)0.01440 (14)0.00007 (10)0.00165 (10)0.00078 (10)
Cl10.0221 (2)0.0208 (2)0.0230 (2)0.00560 (18)0.00258 (18)0.00148 (18)
Cl20.0229 (2)0.0229 (2)0.0202 (2)0.00762 (18)0.00275 (18)0.00048 (18)
P10.0166 (2)0.0176 (2)0.0168 (2)0.00109 (18)0.00235 (18)0.00022 (18)
P20.0182 (2)0.0183 (2)0.0160 (2)0.00186 (19)0.00133 (19)0.00167 (18)
P30.0191 (2)0.0169 (2)0.0163 (2)0.00138 (19)0.00322 (19)0.00023 (18)
P40.0183 (2)0.0175 (2)0.0160 (2)0.00196 (19)0.00166 (18)0.00139 (18)
O10.0503 (11)0.0377 (10)0.0264 (8)0.0136 (8)0.0088 (8)0.0137 (7)
O20.0260 (8)0.0392 (9)0.0398 (9)0.0014 (7)0.0135 (7)0.0062 (7)
O30.0346 (9)0.0241 (8)0.0437 (10)0.0014 (7)0.0018 (7)0.0085 (7)
O40.0736 (15)0.0545 (13)0.0500 (13)0.0061 (11)0.0268 (11)0.0005 (10)
O50.0364 (9)0.0427 (10)0.0219 (8)0.0054 (7)0.0012 (7)0.0022 (7)
O60.0466 (10)0.0339 (9)0.0398 (10)0.0134 (8)0.0277 (8)0.0145 (7)
O70.0244 (8)0.0394 (9)0.0278 (8)0.0064 (7)0.0036 (6)0.0024 (7)
O80.0307 (8)0.0320 (8)0.0246 (8)0.0033 (7)0.0017 (6)0.0117 (6)
C10.0250 (10)0.0188 (10)0.0207 (10)0.0052 (8)0.0028 (8)0.0005 (8)
C20.0187 (10)0.0227 (10)0.0220 (10)0.0053 (8)0.0025 (8)0.0028 (8)
C30.0197 (10)0.0243 (10)0.0211 (10)0.0065 (8)0.0039 (8)0.0004 (8)
C40.0236 (10)0.0206 (10)0.0214 (10)0.0055 (8)0.0014 (8)0.0012 (8)
C50.0214 (10)0.0231 (10)0.0189 (10)0.0025 (8)0.0011 (8)0.0026 (8)
C60.0275 (11)0.0246 (11)0.0212 (10)0.0006 (9)0.0037 (8)0.0025 (8)
C70.0630 (18)0.0407 (15)0.0338 (14)0.0007 (13)0.0046 (13)0.0168 (11)
C80.0185 (10)0.0291 (11)0.0253 (11)0.0011 (8)0.0056 (8)0.0006 (9)
C90.0239 (11)0.0335 (12)0.0262 (11)0.0010 (9)0.0084 (9)0.0023 (9)
C100.0457 (15)0.0380 (14)0.0393 (14)0.0083 (11)0.0187 (12)0.0014 (11)
C110.0253 (11)0.0299 (12)0.0258 (11)0.0038 (9)0.0074 (9)0.0096 (9)
C120.0298 (12)0.0294 (12)0.0323 (12)0.0027 (9)0.0057 (9)0.0131 (9)
C130.081 (2)0.0315 (15)0.062 (2)0.0152 (15)0.0033 (17)0.0078 (14)
C140.0305 (12)0.0256 (11)0.0232 (11)0.0013 (9)0.0056 (9)0.0031 (9)
C150.0469 (15)0.0352 (14)0.0361 (14)0.0069 (11)0.0184 (11)0.0024 (11)
C160.084 (3)0.079 (2)0.0369 (16)0.004 (2)0.0216 (16)0.0008 (16)
C170.0288 (11)0.0191 (10)0.0256 (11)0.0014 (8)0.0049 (9)0.0036 (8)
C180.0327 (12)0.0220 (10)0.0239 (11)0.0015 (9)0.0036 (9)0.0031 (8)
C190.0482 (15)0.0464 (15)0.0239 (12)0.0013 (12)0.0041 (11)0.0022 (11)
C200.0289 (11)0.0212 (10)0.0207 (10)0.0035 (8)0.0075 (8)0.0027 (8)
C210.0296 (11)0.0262 (11)0.0251 (11)0.0060 (9)0.0102 (9)0.0056 (9)
C220.0386 (14)0.0470 (15)0.0361 (13)0.0066 (12)0.0183 (11)0.0061 (11)
C230.0222 (10)0.0234 (10)0.0206 (10)0.0021 (8)0.0026 (8)0.0019 (8)
C240.0214 (10)0.0299 (11)0.0256 (11)0.0013 (9)0.0008 (8)0.0009 (9)
C250.0300 (13)0.0387 (14)0.0448 (15)0.0063 (10)0.0083 (11)0.0005 (11)
C260.0230 (10)0.0253 (10)0.0201 (10)0.0031 (8)0.0033 (8)0.0070 (8)
C270.0263 (11)0.0274 (11)0.0245 (11)0.0011 (9)0.0030 (8)0.0080 (9)
C280.0464 (15)0.0368 (14)0.0329 (13)0.0002 (11)0.0009 (11)0.0169 (11)
Geometric parameters (Å, º) top
Fe1—P12.2581 (6)C8—H8B0.9900
Fe1—P22.2770 (5)C9—H9A0.9900
Fe1—P32.2792 (6)C9—H9B0.9900
Fe1—P42.2814 (5)C10—H10A0.9800
Fe1—Cl22.3491 (5)C10—H10B0.9800
Fe1—Cl12.3529 (5)C10—H10C0.9800
P1—C51.835 (2)C11—C121.517 (3)
P1—C81.843 (2)C11—H11A0.9900
P1—C11.843 (2)C11—H11B0.9900
P2—C141.827 (2)C12—H12A0.9900
P2—C21.843 (2)C12—H12B0.9900
P2—C111.857 (2)C13—H13A0.9800
P3—C201.836 (2)C13—H13B0.9800
P3—C31.842 (2)C13—H13C0.9800
P3—C171.854 (2)C14—C151.505 (3)
P4—C261.836 (2)C14—H14A0.9900
P4—C41.845 (2)C14—H14B0.9900
P4—C231.853 (2)C15—H15A0.9900
O1—C71.401 (3)C15—H15B0.9900
O1—C61.414 (2)C16—H16A0.9800
O2—C101.411 (3)C16—H16B0.9800
O2—C91.426 (3)C16—H16C0.9800
O3—C131.409 (3)C17—C181.513 (3)
O3—C121.417 (3)C17—H17A0.9900
O4—C151.391 (3)C17—H17B0.9900
O4—C161.402 (4)C18—H18A0.9900
O5—C181.418 (3)C18—H18B0.9900
O5—C191.421 (3)C19—H19A0.9800
O6—C221.417 (3)C19—H19B0.9800
O6—C211.420 (3)C19—H19C0.9800
O7—C251.421 (3)C20—C211.517 (3)
O7—C241.425 (3)C20—H20A0.9900
O8—C281.417 (3)C20—H20B0.9900
O8—C271.427 (2)C21—H21A0.9900
C1—C21.523 (3)C21—H21B0.9900
C1—H1A0.9900C22—H22A0.9800
C1—H1B0.9900C22—H22B0.9800
C2—H2A0.9900C22—H22C0.9800
C2—H2B0.9900C23—C241.521 (3)
C3—C41.529 (3)C23—H23A0.9900
C3—H3A0.9900C23—H23B0.9900
C3—H3B0.9900C24—H24A0.9900
C4—H4A0.9900C24—H24B0.9900
C4—H4B0.9900C25—H25A0.9800
C5—C61.517 (3)C25—H25B0.9800
C5—H5A0.9900C25—H25C0.9800
C5—H5B0.9900C26—C271.515 (3)
C6—H6A0.9900C26—H26A0.9900
C6—H6B0.9900C26—H26B0.9900
C7—H7A0.9800C27—H27A0.9900
C7—H7B0.9800C27—H27B0.9900
C7—H7C0.9800C28—H28A0.9800
C8—C91.508 (3)C28—H28B0.9800
C8—H8A0.9900C28—H28C0.9800
P1—Fe1—P284.29 (2)C12—C11—H11A107.5
P1—Fe1—P3175.71 (2)P2—C11—H11A107.5
P2—Fe1—P395.23 (2)C12—C11—H11B107.5
P1—Fe1—P495.17 (2)P2—C11—H11B107.5
P2—Fe1—P4178.82 (2)H11A—C11—H11B107.0
P3—Fe1—P485.23 (2)O3—C12—C11107.94 (18)
P1—Fe1—Cl292.85 (2)O3—C12—H12A110.1
P2—Fe1—Cl291.75 (2)C11—C12—H12A110.1
P3—Fe1—Cl291.43 (2)O3—C12—H12B110.1
P4—Fe1—Cl289.33 (2)C11—C12—H12B110.1
P1—Fe1—Cl187.59 (2)H12A—C12—H12B108.4
P2—Fe1—Cl189.07 (2)O3—C13—H13A109.5
P3—Fe1—Cl188.14 (2)O3—C13—H13B109.5
P4—Fe1—Cl189.85 (2)H13A—C13—H13B109.5
Cl2—Fe1—Cl1179.11 (2)O3—C13—H13C109.5
C5—P1—C8103.52 (10)H13A—C13—H13C109.5
C5—P1—C1103.72 (9)H13B—C13—H13C109.5
C8—P1—C198.16 (10)C15—C14—P2118.23 (16)
C5—P1—Fe1120.51 (7)C15—C14—H14A107.8
C8—P1—Fe1120.35 (7)P2—C14—H14A107.8
C1—P1—Fe1107.17 (7)C15—C14—H14B107.8
C14—P2—C2103.50 (10)P2—C14—H14B107.8
C14—P2—C11102.01 (11)H14A—C14—H14B107.1
C2—P2—C11104.70 (10)O4—C15—C14108.5 (2)
C14—P2—Fe1117.16 (7)O4—C15—H15A110.0
C2—P2—Fe1109.34 (6)C14—C15—H15A110.0
C11—P2—Fe1118.47 (7)O4—C15—H15B110.0
C20—P3—C3102.18 (10)C14—C15—H15B110.0
C20—P3—C17104.79 (10)H15A—C15—H15B108.4
C3—P3—C1797.55 (10)O4—C16—H16A109.5
C20—P3—Fe1119.80 (7)O4—C16—H16B109.5
C3—P3—Fe1106.55 (7)H16A—C16—H16B109.5
C17—P3—Fe1121.90 (7)O4—C16—H16C109.5
C26—P4—C4102.21 (9)H16A—C16—H16C109.5
C26—P4—C23102.07 (10)H16B—C16—H16C109.5
C4—P4—C23104.67 (9)C18—C17—P3119.71 (15)
C26—P4—Fe1120.08 (7)C18—C17—H17A107.4
C4—P4—Fe1108.37 (6)P3—C17—H17A107.4
C23—P4—Fe1117.48 (7)C18—C17—H17B107.4
C7—O1—C6114.15 (19)P3—C17—H17B107.4
C10—O2—C9112.74 (18)H17A—C17—H17B106.9
C13—O3—C12112.2 (2)O5—C18—C17110.17 (18)
C15—O4—C16112.6 (2)O5—C18—H18A109.6
C18—O5—C19111.58 (18)C17—C18—H18A109.6
C22—O6—C21111.39 (17)O5—C18—H18B109.6
C25—O7—C24112.52 (17)C17—C18—H18B109.6
C28—O8—C27111.06 (17)H18A—C18—H18B108.1
C2—C1—P1106.94 (14)O5—C19—H19A109.5
C2—C1—H1A110.3O5—C19—H19B109.5
P1—C1—H1A110.3H19A—C19—H19B109.5
C2—C1—H1B110.3O5—C19—H19C109.5
P1—C1—H1B110.3H19A—C19—H19C109.5
H1A—C1—H1B108.6H19B—C19—H19C109.5
C1—C2—P2108.53 (13)C21—C20—P3116.59 (14)
C1—C2—H2A110.0C21—C20—H20A108.1
P2—C2—H2A110.0P3—C20—H20A108.1
C1—C2—H2B110.0C21—C20—H20B108.1
P2—C2—H2B110.0P3—C20—H20B108.1
H2A—C2—H2B108.4H20A—C20—H20B107.3
C4—C3—P3108.03 (14)O6—C21—C20107.60 (17)
C4—C3—H3A110.1O6—C21—H21A110.2
P3—C3—H3A110.1C20—C21—H21A110.2
C4—C3—H3B110.1O6—C21—H21B110.2
P3—C3—H3B110.1C20—C21—H21B110.2
H3A—C3—H3B108.4H21A—C21—H21B108.5
C3—C4—P4108.11 (13)O6—C22—H22A109.5
C3—C4—H4A110.1O6—C22—H22B109.5
P4—C4—H4A110.1H22A—C22—H22B109.5
C3—C4—H4B110.1O6—C22—H22C109.5
P4—C4—H4B110.1H22A—C22—H22C109.5
H4A—C4—H4B108.4H22B—C22—H22C109.5
C6—C5—P1117.48 (14)C24—C23—P4117.85 (15)
C6—C5—H5A107.9C24—C23—H23A107.8
P1—C5—H5A107.9P4—C23—H23A107.8
C6—C5—H5B107.9C24—C23—H23B107.8
P1—C5—H5B107.9P4—C23—H23B107.8
H5A—C5—H5B107.2H23A—C23—H23B107.2
O1—C6—C5107.35 (16)O7—C24—C23111.16 (18)
O1—C6—H6A110.2O7—C24—H24A109.4
C5—C6—H6A110.2C23—C24—H24A109.4
O1—C6—H6B110.2O7—C24—H24B109.4
C5—C6—H6B110.2C23—C24—H24B109.4
H6A—C6—H6B108.5H24A—C24—H24B108.0
O1—C7—H7A109.5O7—C25—H25A109.5
O1—C7—H7B109.5O7—C25—H25B109.5
H7A—C7—H7B109.5H25A—C25—H25B109.5
O1—C7—H7C109.5O7—C25—H25C109.5
H7A—C7—H7C109.5H25A—C25—H25C109.5
H7B—C7—H7C109.5H25B—C25—H25C109.5
C9—C8—P1119.28 (15)C27—C26—P4115.60 (14)
C9—C8—H8A107.5C27—C26—H26A108.4
P1—C8—H8A107.5P4—C26—H26A108.4
C9—C8—H8B107.5C27—C26—H26B108.4
P1—C8—H8B107.5P4—C26—H26B108.4
H8A—C8—H8B107.0H26A—C26—H26B107.4
O2—C9—C8105.55 (17)O8—C27—C26108.24 (16)
O2—C9—H9A110.6O8—C27—H27A110.1
C8—C9—H9A110.6C26—C27—H27A110.1
O2—C9—H9B110.6O8—C27—H27B110.1
C8—C9—H9B110.6C26—C27—H27B110.1
H9A—C9—H9B108.8H27A—C27—H27B108.4
O2—C10—H10A109.5O8—C28—H28A109.5
O2—C10—H10B109.5O8—C28—H28B109.5
H10A—C10—H10B109.5H28A—C28—H28B109.5
O2—C10—H10C109.5O8—C28—H28C109.5
H10A—C10—H10C109.5H28A—C28—H28C109.5
H10B—C10—H10C109.5H28B—C28—H28C109.5
C12—C11—P2119.17 (15)
P2—Fe1—P1—C5140.63 (8)P1—C1—C2—P250.69 (16)
P4—Fe1—P1—C538.31 (8)C14—P2—C2—C1157.94 (14)
Cl2—Fe1—P1—C5127.90 (8)C11—P2—C2—C195.55 (15)
Cl1—Fe1—P1—C551.32 (8)Fe1—P2—C2—C132.36 (15)
P2—Fe1—P1—C888.10 (8)C20—P3—C3—C4172.46 (14)
P4—Fe1—P1—C892.96 (8)C17—P3—C3—C480.57 (15)
Cl2—Fe1—P1—C83.37 (8)Fe1—P3—C3—C445.98 (15)
Cl1—Fe1—P1—C8177.41 (8)P3—C3—C4—P452.38 (16)
P2—Fe1—P1—C122.58 (7)C26—P4—C4—C3164.32 (14)
P4—Fe1—P1—C1156.36 (7)C23—P4—C4—C389.55 (15)
Cl2—Fe1—P1—C1114.05 (7)Fe1—P4—C4—C336.56 (15)
Cl1—Fe1—P1—C166.73 (7)C8—P1—C5—C659.36 (18)
P1—Fe1—P2—C14119.39 (9)C1—P1—C5—C642.70 (18)
P3—Fe1—P2—C1464.89 (9)Fe1—P1—C5—C6162.48 (13)
Cl2—Fe1—P2—C1426.70 (9)C7—O1—C6—C5179.5 (2)
Cl1—Fe1—P2—C14152.94 (9)P1—C5—C6—O1177.78 (14)
P1—Fe1—P2—C22.12 (7)C5—P1—C8—C966.56 (18)
P3—Fe1—P2—C2177.84 (7)C1—P1—C8—C9172.87 (17)
Cl2—Fe1—P2—C290.57 (7)Fe1—P1—C8—C971.69 (18)
Cl1—Fe1—P2—C289.79 (7)C10—O2—C9—C8174.59 (18)
P1—Fe1—P2—C11117.64 (9)P1—C8—C9—O2177.44 (14)
P3—Fe1—P2—C1158.08 (9)C14—P2—C11—C1294.62 (19)
Cl2—Fe1—P2—C11149.67 (9)C2—P2—C11—C1213.0 (2)
Cl1—Fe1—P2—C1129.97 (9)Fe1—P2—C11—C12135.13 (16)
P2—Fe1—P3—C2045.62 (8)C13—O3—C12—C11179.2 (2)
P4—Fe1—P3—C20133.28 (8)P2—C11—C12—O374.6 (2)
Cl2—Fe1—P3—C20137.51 (8)C2—P2—C14—C1555.2 (2)
Cl1—Fe1—P3—C2043.27 (8)C11—P2—C14—C1553.4 (2)
P2—Fe1—P3—C3160.70 (7)Fe1—P2—C14—C15175.56 (17)
P4—Fe1—P3—C318.21 (7)C16—O4—C15—C14154.0 (3)
Cl2—Fe1—P3—C3107.42 (7)P2—C14—C15—O4174.0 (2)
Cl1—Fe1—P3—C371.80 (7)C20—P3—C17—C1871.91 (18)
P2—Fe1—P3—C1789.04 (8)C3—P3—C17—C18176.69 (17)
P4—Fe1—P3—C1792.06 (8)Fe1—P3—C17—C1868.42 (18)
Cl2—Fe1—P3—C172.85 (8)C19—O5—C18—C17171.85 (19)
Cl1—Fe1—P3—C17177.93 (8)P3—C17—C18—O562.4 (2)
P1—Fe1—P4—C2660.68 (8)C3—P3—C20—C2140.69 (19)
P3—Fe1—P4—C26123.61 (8)C17—P3—C20—C2160.61 (18)
Cl2—Fe1—P4—C2632.12 (8)Fe1—P3—C20—C21158.04 (14)
Cl1—Fe1—P4—C26148.24 (8)C22—O6—C21—C20172.0 (2)
P1—Fe1—P4—C4177.42 (7)P3—C20—C21—O6178.90 (15)
P3—Fe1—P4—C46.87 (7)C26—P4—C23—C2491.54 (18)
Cl2—Fe1—P4—C484.62 (7)C4—P4—C23—C2414.69 (19)
Cl1—Fe1—P4—C495.02 (7)Fe1—P4—C23—C24134.91 (14)
P1—Fe1—P4—C2364.33 (8)C25—O7—C24—C2384.0 (2)
P3—Fe1—P4—C23111.38 (8)P4—C23—C24—O7179.90 (14)
Cl2—Fe1—P4—C23157.13 (8)C4—P4—C26—C2756.39 (18)
Cl1—Fe1—P4—C2323.24 (8)C23—P4—C26—C2751.74 (18)
C5—P1—C1—C2177.30 (13)Fe1—P4—C26—C27176.26 (13)
C8—P1—C1—C276.56 (15)C28—O8—C27—C26171.15 (19)
Fe1—P1—C1—C248.80 (14)P4—C26—C27—O8176.70 (14)

Experimental details

Crystal data
Chemical formula[FeCl2(C14H32O4P2)2]
Mr779.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.3417 (7), 12.1825 (7), 25.3621 (15)
β (°) 100.124 (1)
V3)3753.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.32 × 0.19 × 0.09
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.794, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
41489, 8193, 7057
Rint0.033
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.03
No. of reflections8193
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.70, 0.52

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Fe1—P12.2581 (6)Fe1—P42.2814 (5)
Fe1—P22.2770 (5)Fe1—Cl22.3491 (5)
Fe1—P32.2792 (6)Fe1—Cl12.3529 (5)
P1—Fe1—P3175.71 (2)Cl2—Fe1—Cl1179.11 (2)
P2—Fe1—P4178.82 (2)
 

Acknowledgements

We thank the NSF for funding.

References

First citationBruker (2000). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGilbertson, J. D., Szymczak, N. K., Crossland, J. L., Miller, W. K., Lyon, D. K., Foxman, B. M., Davis, J. & Tyler, D. R. (2007). Inorg. Chem. 46, 1205–1214.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHerbowski, A. & Deutsch, E. A. (1993). J. Organomet. Chem. 460, 19–23.  CrossRef CAS Web of Science Google Scholar
First citationLyon, D. K. (1993). Fe Phosphine Complexes for N2 Removal from Natural Gas. US Patent No. 5 225 174.  Google Scholar
First citationMacKay, B. A. & Fryzuk, M. D. (2004). Chem. Rev. 104, 385–401.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453–5465.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1995). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds