organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o580-o581

4-[(2,4-Di­hydroxy­benzyl­­idene)ammonio]benzene­sulfonate trihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 27 January 2010; accepted 4 February 2010; online 10 February 2010)

The title Schiff base compound, C13H11NO5S·3H2O, formed from sulfanilic acid and 2,4-dihydroxy­benzaldehyde, crystallized out as a zwitterion with the N atom protonated. The asymmetric unit consists of one 4-[(2,4-dihydroxy­benzyl­idene)ammonio]benzene­sulfonate and three water mol­ecules. The zwitterion exists in an E configuration with respect to the central C=N double bond. The two benzene rings of the mol­ecule are oriented at a dihedral angle of 27.33 (8)°. An intra­molecular N–H⋯O hydrogen bond stabilizes the mol­ecular structure. In the crystal, the zwitterions are linked into chains along [101] by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds. The three water mol­ecules link these chains into a three-dimensional framework by additional inter­molecular O—H⋯O hydrogen bonds. A ππ inter­action [3.5485 (9) Å] further stabilizes the crystal structure.

Related literature

For Schiff bases and their applications, see: Singh et al. (1975[Singh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958-959.]); Elmali et al. (1999[Elmali, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229-234.]); Patel et al. (1999[Patel, P. R., Thaker, B. T. & Zele, S. (1999). Indian J. Chem. A38, 563-566.]). For details of sulfanilic acid, see: Rae & Maslen (1962[Rae, A. I. M. & Maslen, E. N. (1962). Acta Cryst. 15, 1285-1291.]); Banu & Golzar Hossain (2006[Banu, A. & Golzar Hossain, G. M. (2006). Acta Cryst. E62, o2252-o2253.]); Hempel et al. (1999[Hempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (1999). Acta Cryst. C55, 697-698.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO5S·3H2O

  • Mr = 347.34

  • Triclinic, [P \overline 1]

  • a = 7.7855 (1) Å

  • b = 9.0820 (1) Å

  • c = 11.8526 (2) Å

  • α = 70.022 (1)°

  • β = 79.271 (1)°

  • γ = 76.141 (1)°

  • V = 759.70 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.36 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.980

  • 19799 measured reflections

  • 5420 independent reflections

  • 4177 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.147

  • S = 1.05

  • 5420 reflections

  • 220 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O3i 0.89 2.17 3.020 (3) 161
O1W—H1W1⋯O4i 0.89 2.39 3.083 (3) 135
O1W—H2W1⋯O2W 0.84 2.02 2.817 (4) 158
O2W—H2W2⋯O2 0.95 1.89 2.812 (3) 161
O3W—H1W3⋯O5ii 0.96 1.83 2.756 (2) 161
O3W—H2W3⋯O1W 0.86 1.86 2.701 (3) 166
N1—H1N1⋯O1 0.86 (3) 2.07 (2) 2.6601 (18) 126 (2)
N1—H1N1⋯O5iii 0.86 (3) 2.19 (3) 2.948 (2) 148 (2)
O1—H1O1⋯O3W 0.90 (3) 1.64 (4) 2.543 (2) 173 (4)
O2—H1O2⋯O3iv 0.80 (3) 1.85 (3) 2.627 (2) 164 (2)
Symmetry codes: (i) x-1, y, z-1; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+2; (iv) x-1, y+1, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases derived from aromatic amines and aromatic aldehydes have a wide variety of applications in many fields, e.g., biological, inorganic and analytical chemistry (Singh et al., 1975; Elmali et al., 1999; Patel et al., 1999). Schiff base compounds have been of great interest for many years. p-aminobenzenesulfonic acid is known as sulfanilic acid, which contains NH3+ and SO3- groups. Sulfanilic acid is a salt, but of a rather special kind, called a zwitterion. It is the product of the reaction between an acidic group and a basic group that are part of the same molecule. The hydrogen is attached to nitrogen rather than oxygen simply because the NH2 group is a stronger base than the SO3- substituent. A zwitterionic structure was also observed in the crystal structure of sulfanilic acid monohydrate (Rae & Maslen, 1962; Banu & Golzar, 2006). The crystal structure of the Schiff base formed from sulfanilic acid and dimethylformamide has also been reported in the literature (Hempel et al., 1999). The present work is part of a structural study of compounds of Schiff base systems and we report here the structure of the title compound, (I).

The 4-[(2,4-dihydroxybenzylidene)-amino]benzenesulfonic acid molecule crystallized out as a zwitterion, 4-[(2,4-dihydroxybenzylidene)-ammonio]benzenesulfonate. The asymmetric unit consists of one 4-[(2,4-dihydroxybenzylidene)-ammonio]benzenesulfonate and three water molecules (Fig. 1). The zwitterion exists in an E configuration with respect to the central C=N double bond. The two benzene rings [C1–C6 and C8–C13] are oriented at 27.33 (8)°. An intramolecular N1–H1N1···O1 hydrogen bond forms a six-membered ring, generating S(6) ring motif (Bernstein et al., 1995). The zwitterions are linked into chains along [101] by intermolecular O2–H1O2···O3 and N1–H1N1···O5 hydrogen bonds. The three water molecules linked these chains into a three-dimensional framework by intermolecular O–H···O hydrogen bonds (Fig. 2, Table 2). An unusually short H2W1···H1W2 distance is also observed. A Cg1···Cg1 interaction of 3.5485 (9) Å; -x, 2-y, 1-z, further stabilizes the crystal structure [Cg1 is the centroid of the C1–C6 benzene ring].

Related literature top

For Schiff bases and their applications, see: Singh et al. (1975); Elmali et al. (1999); Patel et al. (1999). For details of sulfanilic acid, see: Rae & Maslen (1962); Banu & Golzar (2006); Hempel et al. (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

2,4-Dihydroxybenzaldehyde (0.069 g) and sulfanilic acid (0.861 g) in ethanol/water (40 ml) were heated under reflux for 2 h with stirring. The colour of the solution gradually changed from colourless to lemon yellow. The solution was then cooled to room temperature. After few days, slow evaporation of the solvent yielded yellow crystals of compound (I).

Refinement top

The O and N bound H-atoms were located from difference Fourier map and refined freely. The H-atoms of the water molecules were located from a difference Fourier map and constrained to refine with the parent atom with Uiso(H) = 1.5 Ueq(O). The C-bound H-atoms were positioned geometrically with a riding model with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b axis, showing the molecules linked into a 3-dimensional framework. Intermolecular hydrogen bonds are shown as dashed lines.
4-[(2,4-Dihydroxybenzylidene)ammonio]benzenesulfonate trihydrate top
Crystal data top
C13H11NO5S·3H2OZ = 2
Mr = 347.34F(000) = 364
Triclinic, P1Dx = 1.518 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7855 (1) ÅCell parameters from 7701 reflections
b = 9.0820 (1) Åθ = 2.6–32.1°
c = 11.8526 (2) ŵ = 0.26 mm1
α = 70.022 (1)°T = 100 K
β = 79.271 (1)°Block, yellow
γ = 76.141 (1)°0.36 × 0.16 × 0.08 mm
V = 759.70 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5420 independent reflections
Radiation source: fine-focus sealed tube4177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 32.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.914, Tmax = 0.980k = 1313
19799 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.070P)2 + 0.4045P]
where P = (Fo2 + 2Fc2)/3
5420 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C13H11NO5S·3H2Oγ = 76.141 (1)°
Mr = 347.34V = 759.70 (2) Å3
Triclinic, P1Z = 2
a = 7.7855 (1) ÅMo Kα radiation
b = 9.0820 (1) ŵ = 0.26 mm1
c = 11.8526 (2) ÅT = 100 K
α = 70.022 (1)°0.36 × 0.16 × 0.08 mm
β = 79.271 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5420 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4177 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.980Rint = 0.027
19799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.61 e Å3
5420 reflectionsΔρmin = 0.60 e Å3
220 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.71640 (6)0.60676 (5)1.18660 (4)0.02504 (12)
O10.33982 (17)0.77778 (14)0.52286 (11)0.0226 (2)
O20.00861 (17)1.21132 (17)0.24684 (11)0.0256 (3)
O30.89905 (19)0.52191 (18)1.16735 (13)0.0371 (3)
O40.7119 (3)0.75067 (16)1.21434 (16)0.0530 (5)
O50.60457 (18)0.50241 (15)1.27306 (10)0.0267 (3)
N10.41704 (17)0.82152 (16)0.71713 (11)0.0170 (2)
C10.2641 (2)0.93133 (18)0.48282 (13)0.0170 (3)
C20.1775 (2)0.99664 (19)0.37933 (13)0.0190 (3)
H2A0.17280.93310.33330.023*
C30.0980 (2)1.15723 (19)0.34488 (13)0.0195 (3)
C40.1103 (2)1.25788 (19)0.40959 (14)0.0207 (3)
H4A0.05931.36580.38430.025*
C50.1987 (2)1.19458 (18)0.51051 (14)0.0188 (3)
H5A0.20901.26090.55280.023*
C60.2748 (2)1.02971 (17)0.55143 (13)0.0162 (3)
C70.3521 (2)0.97063 (18)0.66134 (13)0.0171 (3)
H7A0.35721.04540.69750.021*
C80.4854 (2)0.76888 (17)0.83072 (13)0.0169 (3)
C90.4177 (2)0.85045 (19)0.91434 (14)0.0212 (3)
H9A0.32460.93790.89790.025*
C100.4905 (2)0.79988 (19)1.02271 (14)0.0219 (3)
H10A0.44660.85371.07930.026*
C110.6291 (2)0.66864 (18)1.04650 (14)0.0197 (3)
C120.6933 (2)0.58417 (18)0.96441 (14)0.0203 (3)
H12A0.78470.49540.98170.024*
C130.6196 (2)0.63345 (18)0.85627 (14)0.0188 (3)
H13A0.65950.57650.80140.023*
O1W0.1128 (3)0.7226 (3)0.22066 (18)0.0639 (6)
H1W10.02990.68320.20440.096*
H2W10.07540.81890.18360.096*
O2W0.0858 (3)1.0446 (3)0.0769 (2)0.0815 (7)
H1W20.19290.99940.06280.122*
H2W20.04241.11700.12240.122*
O3W0.3001 (2)0.59375 (18)0.41308 (14)0.0368 (3)
H1W30.41800.55580.37960.055*
H2W30.22540.63480.36040.055*
H1N10.415 (3)0.747 (3)0.689 (2)0.041 (7)*
H1O10.327 (4)0.719 (4)0.478 (3)0.057 (8)*
H1O20.027 (3)1.305 (3)0.236 (2)0.036 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0369 (2)0.01588 (18)0.0241 (2)0.00608 (15)0.01801 (17)0.00021 (14)
O10.0310 (6)0.0164 (5)0.0212 (5)0.0008 (4)0.0084 (5)0.0063 (4)
O20.0257 (6)0.0297 (7)0.0188 (5)0.0058 (5)0.0101 (5)0.0001 (5)
O30.0291 (7)0.0386 (8)0.0338 (7)0.0045 (6)0.0170 (6)0.0066 (6)
O40.0943 (14)0.0183 (6)0.0590 (10)0.0066 (7)0.0542 (10)0.0072 (6)
O50.0367 (7)0.0239 (6)0.0173 (5)0.0029 (5)0.0064 (5)0.0037 (4)
N10.0192 (6)0.0167 (6)0.0146 (5)0.0028 (5)0.0048 (4)0.0031 (5)
C10.0172 (6)0.0175 (6)0.0165 (6)0.0047 (5)0.0019 (5)0.0047 (5)
C20.0198 (7)0.0228 (7)0.0158 (6)0.0070 (5)0.0033 (5)0.0051 (5)
C30.0176 (7)0.0241 (7)0.0145 (6)0.0066 (5)0.0037 (5)0.0004 (5)
C40.0208 (7)0.0186 (7)0.0195 (7)0.0035 (5)0.0043 (6)0.0008 (5)
C50.0219 (7)0.0161 (6)0.0175 (6)0.0034 (5)0.0042 (5)0.0033 (5)
C60.0177 (6)0.0159 (6)0.0145 (6)0.0032 (5)0.0035 (5)0.0031 (5)
C70.0193 (7)0.0165 (6)0.0152 (6)0.0035 (5)0.0047 (5)0.0031 (5)
C80.0174 (6)0.0165 (6)0.0150 (6)0.0039 (5)0.0044 (5)0.0012 (5)
C90.0247 (7)0.0184 (7)0.0182 (7)0.0005 (6)0.0065 (6)0.0039 (5)
C100.0288 (8)0.0176 (7)0.0183 (7)0.0018 (6)0.0067 (6)0.0038 (5)
C110.0234 (7)0.0158 (6)0.0194 (7)0.0068 (5)0.0082 (6)0.0004 (5)
C120.0192 (7)0.0170 (7)0.0211 (7)0.0025 (5)0.0063 (5)0.0002 (5)
C130.0195 (7)0.0176 (6)0.0178 (6)0.0031 (5)0.0025 (5)0.0038 (5)
O1W0.0496 (11)0.1022 (17)0.0610 (12)0.0363 (11)0.0095 (9)0.0358 (12)
O2W0.0746 (15)0.120 (2)0.0831 (16)0.0358 (15)0.0051 (12)0.0697 (16)
O3W0.0402 (8)0.0364 (7)0.0420 (8)0.0097 (6)0.0007 (6)0.0238 (6)
Geometric parameters (Å, º) top
S1—O41.4441 (14)C5—H5A0.9300
S1—O51.4512 (14)C6—C71.417 (2)
S1—O31.4636 (15)C7—H7A0.9300
S1—C111.7706 (16)C8—C91.389 (2)
O1—C11.3325 (18)C8—C131.394 (2)
O1—H1O10.90 (3)C9—C101.388 (2)
O2—C31.3500 (18)C9—H9A0.9300
O2—H1O20.80 (3)C10—C111.390 (2)
N1—C71.3083 (19)C10—H10A0.9300
N1—C81.4247 (19)C11—C121.389 (2)
N1—H1N10.85 (3)C12—C131.390 (2)
C1—C21.389 (2)C12—H12A0.9300
C1—C61.422 (2)C13—H13A0.9300
C2—C31.390 (2)O1W—H1W10.8863
C2—H2A0.9300O1W—H2W10.8403
C3—C41.408 (2)O2W—H1W20.8500
C4—C51.372 (2)O2W—H2W20.9519
C4—H4A0.9300O3W—H1W30.9617
C5—C61.419 (2)O3W—H2W30.8594
O4—S1—O5113.78 (10)C7—C6—C1123.35 (13)
O4—S1—O3111.65 (11)C5—C6—C1118.67 (13)
O5—S1—O3111.87 (8)N1—C7—C6126.60 (14)
O4—S1—C11106.23 (8)N1—C7—H7A116.7
O5—S1—C11106.54 (8)C6—C7—H7A116.7
O3—S1—C11106.16 (8)C9—C8—C13121.03 (14)
C1—O1—H1O1114.3 (19)C9—C8—N1120.33 (13)
C3—O2—H1O2106.3 (18)C13—C8—N1118.64 (13)
C7—N1—C8123.83 (13)C10—C9—C8119.21 (14)
C7—N1—H1N1121.2 (17)C10—C9—H9A120.4
C8—N1—H1N1114.9 (17)C8—C9—H9A120.4
O1—C1—C2123.11 (14)C9—C10—C11119.89 (15)
O1—C1—C6116.94 (13)C9—C10—H10A120.1
C2—C1—C6119.94 (14)C11—C10—H10A120.1
C1—C2—C3119.77 (14)C12—C11—C10120.89 (14)
C1—C2—H2A120.1C12—C11—S1120.66 (12)
C3—C2—H2A120.1C10—C11—S1118.41 (12)
O2—C3—C2116.77 (15)C11—C12—C13119.41 (14)
O2—C3—C4121.90 (15)C11—C12—H12A120.3
C2—C3—C4121.33 (14)C13—C12—H12A120.3
C5—C4—C3119.07 (14)C12—C13—C8119.48 (14)
C5—C4—H4A120.5C12—C13—H13A120.3
C3—C4—H4A120.5C8—C13—H13A120.3
C4—C5—C6121.14 (14)H1W1—O1W—H2W197.0
C4—C5—H5A119.4H1W2—O2W—H2W2127.8
C6—C5—H5A119.4H1W3—O3W—H2W3113.2
C7—C6—C5117.94 (13)
O1—C1—C2—C3178.43 (14)C7—N1—C8—C13150.63 (15)
C6—C1—C2—C31.5 (2)C13—C8—C9—C102.8 (2)
C1—C2—C3—O2176.86 (14)N1—C8—C9—C10177.92 (15)
C1—C2—C3—C43.1 (2)C8—C9—C10—C110.2 (2)
O2—C3—C4—C5178.14 (14)C9—C10—C11—C121.7 (3)
C2—C3—C4—C51.8 (2)C9—C10—C11—S1179.29 (13)
C3—C4—C5—C61.1 (2)O4—S1—C11—C12146.08 (15)
C4—C5—C6—C7175.27 (15)O5—S1—C11—C1292.28 (15)
C4—C5—C6—C12.5 (2)O3—S1—C11—C1227.10 (16)
O1—C1—C6—C73.5 (2)O4—S1—C11—C1036.33 (17)
C2—C1—C6—C7176.45 (14)O5—S1—C11—C1085.31 (14)
O1—C1—C6—C5178.82 (14)O3—S1—C11—C10155.30 (14)
C2—C1—C6—C51.2 (2)C10—C11—C12—C131.1 (2)
C8—N1—C7—C6176.86 (14)S1—C11—C12—C13178.61 (12)
C5—C6—C7—N1174.98 (15)C11—C12—C13—C81.5 (2)
C1—C6—C7—N12.7 (3)C9—C8—C13—C123.4 (2)
C7—N1—C8—C930.1 (2)N1—C8—C13—C12177.29 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3i0.892.173.020 (3)161
O1W—H1W1···O4i0.892.393.083 (3)135
O1W—H2W1···O2W0.842.022.817 (4)158
O2W—H2W2···O20.951.892.812 (3)161
O3W—H1W3···O5ii0.961.832.756 (2)161
O3W—H2W3···O1W0.861.862.701 (3)166
N1—H1N1···O10.86 (3)2.07 (2)2.6601 (18)126 (2)
N1—H1N1···O5iii0.86 (3)2.19 (3)2.948 (2)148 (2)
O1—H1O1···O3W0.90 (3)1.64 (4)2.543 (2)173 (4)
O2—H1O2···O3iv0.80 (3)1.85 (3)2.627 (2)164 (2)
Symmetry codes: (i) x1, y, z1; (ii) x, y, z1; (iii) x+1, y+1, z+2; (iv) x1, y+1, z1.

Experimental details

Crystal data
Chemical formulaC13H11NO5S·3H2O
Mr347.34
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.7855 (1), 9.0820 (1), 11.8526 (2)
α, β, γ (°)70.022 (1), 79.271 (1), 76.141 (1)
V3)759.70 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.36 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.914, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
19799, 5420, 4177
Rint0.027
(sin θ/λ)max1)0.754
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.147, 1.05
No. of reflections5420
No. of parameters220
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.60

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3i0.89002.17003.020 (3)161.00
O1W—H1W1···O4i0.89002.39003.083 (3)135.00
O1W—H2W1···O2W0.84002.02002.817 (4)158.00
O2W—H2W2···O20.95001.89002.812 (3)161.00
O3W—H1W3···O5ii0.96001.83002.756 (2)161.00
O3W—H2W3···O1W0.86001.86002.701 (3)166.00
N1—H1N1···O10.86 (3)2.07 (2)2.6601 (18)126 (2)
N1—H1N1···O5iii0.86 (3)2.19 (3)2.948 (2)148 (2)
O1—H1O1···O3W0.90 (3)1.64 (4)2.543 (2)173 (4)
O2—H1O2···O3iv0.80 (3)1.85 (3)2.627 (2)164 (2)
Symmetry codes: (i) x1, y, z1; (ii) x, y, z1; (iii) x+1, y+1, z+2; (iv) x1, y+1, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks USM for a post-doctoral research fellowship and CSY thanks USM for the award of a USM Fellowship.

References

First citationBanu, A. & Golzar Hossain, G. M. (2006). Acta Cryst. E62, o2252–o2253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationElmali, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229–234.  Web of Science CSD CrossRef CAS Google Scholar
First citationHempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (1999). Acta Cryst. C55, 697–698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPatel, P. R., Thaker, B. T. & Zele, S. (1999). Indian J. Chem. A38, 563–566.  Google Scholar
First citationRae, A. I. M. & Maslen, E. N. (1962). Acta Cryst. 15, 1285–1291.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958–959.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o580-o581
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds