organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o630-o631

(2E,6E)-2,6-Bis(2,4,5-tri­meth­oxy­benzyl­­idene)cyclo­hexa­none

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore-632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 27 January 2010; accepted 9 February 2010; online 13 February 2010)

In the title compound, C26H30O7, one atom in the cyclo­hexa­none ring is disordered over two positions with a site-occupancy ratio of 0.871 (6):0.129 (6). The dihedral angles formed between the mean plane through the six C atoms of the major component of the cyclo­hexa­none ring and two benzene rings are 35.09 (10) and 34.21 (10)°; the corresponding angles for the minor component are 20.1 (2) and 19.5 (2)°. Both the major and minor disordered components of the cyclo­hexa­none ring adopt half-boat conformations. In the crystal packing, inter­molecular C—H⋯O hydrogen bonds connect the mol­ecules into a three-dimensional network.

Related literature

For natural biocides, see: Geiger & Conn (1945[Geiger, W. B. & Conn, J. E. (1945). J. Am. Chem. Soc. 67, 112-116.]); Marian et al. (1947[Marian, D. H., Russel, P. B. & Todd, A. R. (1947). J. Chem. Soc. pp. 1419-1423.]). For the biological activity and biological properties of chalcones, see: Srivastava et al. (1997[Srivastava, Y. K., Sukhwal, S., Ashawa, A. & Verma, B. L. (1997). J. Indian Chem. Soc. 74, 573-574.]); Kuhn & Hensel (1953[Kuhn, R. & Hensel, H. R. (1953). Chem. Ber. 86, 1333-1341.]); Hosni & Saad (1995[Hosni, G. & Saad, S. F. (1995). Acta Chim. Acad. Sci. Hung. 86, 263-268.]); Ishida et al. (1960[Ishida, S., Mastuda, A. & Kawamura, A. (1960). Chemotherapy, 8, 146-151.]); Mehata & Parikh (1978[Mehata, P. V. S. & Parikh, A. R. (1978). J. Indian Chem. Soc. 50, 241-244.]); Mudaliar & Joshi (1995[Mudaliar, V. & Joshi, V. (1995). Indian J. Chem. Sect. B, 34, 456-457.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H30O7

  • Mr = 454.50

  • Monoclinic, P 21 /n

  • a = 9.0943 (1) Å

  • b = 13.4947 (1) Å

  • c = 18.8293 (2) Å

  • β = 100.449 (1)°

  • V = 2272.50 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.37 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]) Tmin = 0.965, Tmax = 0.983

  • 29097 measured reflections

  • 6691 independent reflections

  • 4027 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.155

  • S = 1.06

  • 6691 reflections

  • 317 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12A—H12B⋯O1i 0.97 2.43 3.364 (3) 160
C25—H25B⋯O1ii 0.96 2.55 3.450 (3) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The chemistry of chalcones has generated intensive scientific interest due to their biological and industrial applications. Chalcones are natural biocides (Geiger & Conn, 1945; Marian et al., 1947) and are well known intermediates in the synthesis of heterocyclic compounds exhibiting various biological activities (Srivastava et al., 1997; Kuhn & Hensel, 1953). Chalcones and their derivatives possess some interesting biological properties such as antibacterial (Ishida et al., 1960), antifungal (Mehata et al., 1978), insecticidal (Mudaliar & Joshi, 1995), anesthetic (Hosni & Saad, 1995), anti inflammatory, analgesic and ulcerogenic activities.

In the title compound (Fig. 1), the C12 atom is disordered over two positions with a site-occupancy ratio of 0.871 (6):0.129 (6). The dihedral angles formed between major component (C8–C11/C12A/C13) and two benzene rings (C1—C6 and C15—C20) are 35.09 (10) and 34.21 (10)°, and between the minor component (C8–C11/C12B/C13) and two benzene rings are 20.1 (2) and 19.5 (2)°. The major and minor disordered components adopt half-boat conformations (Cremer & Pople, 1975) with puckering of Q = 0.487 (2) Å, Θ = 128.3 (2) ° & ϕ = 57.8 (3)° and Q = 0.387 (9) Å, Θ = 58.5 (9)° & ϕ = 242.6 (9)° respectively. In the crystal packing (Fig. 2), intermolecular C12A —H12B···O1 & C25— H25B···O1 hydrogen bonds link the molecules into a 3D network.

Related literature top

For natural biocides, see: Geiger & Conn (1945); Marian et al. (1947). For the biological activity and biological properties of chalcones, see: Srivastava et al. (1997); Kuhn & Hensel (1953); Hosni & Saad (1995); Ishida et al. (1960); Mehata & Parikh (1978); Mudaliar & Joshi (1995). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of cyclohexanone (0.5 mmol), 2,4,5-trimethoxybenzaldehyde (4 g) and dry ammonium acetate (0.78 g) was taken in 1:4:2 molar ratio in methanol and heated on water bath till the colour changes to reddish orange, then diethyl ether (50 mmol) was added. The mixture was allowed to stand for 24 h resulting in the formation of needle-shaped crystals. Yield: 60%. Mp: 170 °C.

Refinement top

The H atoms bound to C11 and C13 were located in a difference map and then constrained to ride with the parent atoms with Uiso(H) = 1.2Uiso(C). The other H atoms were positioned geometrically. [C—H = 0.9300 to 0.9700 Å]. The C11–C12A, C11–C12B, C13–C12A & C13–C12B distances were restrained with to be equal. The distance between H1A and H13D, H20A and H11C were restrainted to be 2.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. Open bonds indicate the minor disordered component.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing the three-dimensional network. Only the major disordered component is shown.
(2E,6E)-2,6-Bis(2,4,5-trimethoxybenzylidene)cyclohexanone top
Crystal data top
C26H30O7F(000) = 968
Mr = 454.50Dx = 1.328 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7467 reflections
a = 9.0943 (1) Åθ = 2.7–30.2°
b = 13.4947 (1) ŵ = 0.10 mm1
c = 18.8293 (2) ÅT = 296 K
β = 100.449 (1)°Block, yellow
V = 2272.50 (4) Å30.37 × 0.21 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6691 independent reflections
Radiation source: fine-focus sealed tube4027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.965, Tmax = 0.983k = 1619
29097 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0429P)2 + 1.1706P]
where P = (Fo2 + 2Fc2)/3
6691 reflections(Δ/σ)max < 0.001
317 parametersΔρmax = 0.24 e Å3
4 restraintsΔρmin = 0.24 e Å3
Crystal data top
C26H30O7V = 2272.50 (4) Å3
Mr = 454.50Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0943 (1) ŵ = 0.10 mm1
b = 13.4947 (1) ÅT = 296 K
c = 18.8293 (2) Å0.37 × 0.21 × 0.18 mm
β = 100.449 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6691 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4027 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.983Rint = 0.036
29097 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0704 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
6691 reflectionsΔρmin = 0.24 e Å3
317 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.26290 (19)0.81506 (13)0.25518 (8)0.0701 (5)
O20.46504 (19)0.94889 (13)0.21805 (8)0.0677 (5)
O30.57350 (17)0.81575 (11)0.02537 (8)0.0560 (4)
O40.2953 (2)0.57310 (12)0.10823 (8)0.0769 (6)
O50.29543 (19)0.29369 (11)0.23732 (8)0.0618 (4)
O60.0235 (2)0.00816 (12)0.17156 (9)0.0732 (5)
O70.11209 (18)0.08047 (12)0.04346 (8)0.0627 (4)
C10.3099 (2)0.74316 (15)0.13474 (11)0.0458 (5)
H1A0.23550.69600.14830.055*
C20.3373 (2)0.81086 (16)0.18504 (11)0.0481 (5)
C30.4469 (2)0.88311 (16)0.16507 (11)0.0483 (5)
C40.5267 (2)0.88492 (15)0.09551 (11)0.0456 (5)
H4A0.60010.93280.08230.055*
C50.4985 (2)0.81575 (14)0.04479 (10)0.0418 (4)
C60.3896 (2)0.74210 (14)0.06348 (10)0.0405 (4)
C70.3571 (2)0.67221 (14)0.00909 (10)0.0414 (4)
H7A0.38530.69310.03850.050*
C80.2925 (2)0.58240 (14)0.01745 (10)0.0413 (4)
C90.2669 (2)0.53078 (14)0.04976 (10)0.0441 (5)
C100.2049 (2)0.42752 (14)0.04458 (10)0.0390 (4)
C110.1613 (3)0.38201 (15)0.02935 (10)0.0502 (5)
H11A0.16990.31050.02530.060*0.871 (6)
H11B0.05770.39790.04850.060*0.871 (6)
H11C0.03640.35800.04550.060*0.129 (6)
H11D0.23830.31510.00820.060*0.129 (6)
C12A0.2580 (3)0.41870 (14)0.08081 (12)0.0498 (8)0.871 (6)
H12A0.36100.39970.06320.060*0.871 (6)
H12B0.22610.38810.12770.060*0.871 (6)
C12B0.1315 (14)0.4496 (10)0.0939 (6)0.082 (8)0.129 (6)
H12C0.13110.41130.13750.098*0.129 (6)
H12D0.03370.47970.09700.098*0.129 (6)
C130.2482 (3)0.52947 (15)0.08856 (11)0.0575 (6)
H13A0.14660.54770.10980.069*0.871 (6)
H13B0.31300.55100.12120.069*0.871 (6)
H13C0.33570.49160.06690.069*0.129 (6)
H13D0.25190.54690.13440.069*0.129 (6)
C140.1980 (2)0.38183 (14)0.10713 (11)0.0437 (5)
H14A0.23380.41930.14810.052*
C150.1438 (2)0.28305 (14)0.12215 (10)0.0395 (4)
C160.1928 (2)0.24048 (14)0.19020 (10)0.0423 (4)
C170.1381 (2)0.14907 (15)0.20811 (11)0.0469 (5)
H17A0.17070.12240.25380.056*
C180.0359 (2)0.09808 (14)0.15832 (11)0.0464 (5)
C190.0115 (2)0.13695 (15)0.08948 (11)0.0439 (5)
C200.0398 (2)0.22886 (14)0.07311 (11)0.0433 (5)
H20A0.00410.25590.02780.052*
C210.1569 (3)0.74047 (18)0.27866 (12)0.0603 (6)
H21A0.11410.75110.32850.090*
H21B0.07940.74260.25020.090*
H21C0.20490.67690.27320.090*
C220.5693 (3)1.02662 (17)0.20014 (14)0.0640 (7)
H22A0.57031.06720.24190.096*
H22B0.66710.99930.18400.096*
H22C0.54141.06620.16230.096*
C230.6873 (3)0.88797 (17)0.04552 (12)0.0570 (6)
H23A0.73430.87760.09490.086*
H23B0.64390.95300.04040.086*
H23C0.76060.88200.01490.086*
C240.3591 (3)0.2507 (2)0.30446 (12)0.0772 (8)
H24A0.43240.29500.33040.116*
H24B0.40600.18910.29630.116*
H24C0.28210.23890.33220.116*
C250.0341 (3)0.01589 (18)0.24289 (13)0.0663 (7)
H25A0.07790.08050.24410.099*
H25B0.09550.03220.26120.099*
H25C0.06400.01590.27220.099*
C260.1422 (3)0.10874 (19)0.02995 (12)0.0634 (7)
H26A0.20490.05980.05750.095*
H26B0.05000.11390.04770.095*
H26C0.19230.17170.03460.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0786 (11)0.0790 (12)0.0460 (9)0.0247 (9)0.0067 (8)0.0191 (8)
O20.0777 (11)0.0669 (11)0.0557 (10)0.0219 (9)0.0045 (8)0.0270 (8)
O30.0667 (10)0.0512 (9)0.0453 (8)0.0205 (7)0.0026 (7)0.0099 (7)
O40.1479 (17)0.0475 (9)0.0382 (9)0.0341 (10)0.0246 (9)0.0076 (7)
O50.0905 (12)0.0490 (9)0.0402 (8)0.0184 (8)0.0030 (8)0.0028 (7)
O60.1228 (15)0.0437 (9)0.0548 (10)0.0316 (9)0.0207 (10)0.0047 (7)
O70.0733 (10)0.0562 (10)0.0541 (9)0.0266 (8)0.0009 (8)0.0056 (7)
C10.0488 (11)0.0429 (11)0.0450 (11)0.0095 (9)0.0067 (9)0.0055 (9)
C20.0509 (12)0.0528 (13)0.0392 (11)0.0045 (10)0.0044 (9)0.0088 (9)
C30.0524 (12)0.0465 (12)0.0470 (12)0.0039 (10)0.0117 (9)0.0142 (9)
C40.0463 (11)0.0394 (11)0.0506 (12)0.0083 (9)0.0077 (9)0.0085 (9)
C50.0467 (11)0.0365 (10)0.0415 (11)0.0021 (8)0.0064 (8)0.0047 (8)
C60.0470 (10)0.0355 (10)0.0398 (10)0.0018 (8)0.0098 (8)0.0056 (8)
C70.0506 (11)0.0367 (10)0.0367 (10)0.0028 (9)0.0071 (8)0.0029 (8)
C80.0546 (11)0.0352 (10)0.0358 (10)0.0046 (9)0.0129 (8)0.0015 (8)
C90.0636 (13)0.0346 (10)0.0358 (10)0.0067 (9)0.0133 (9)0.0000 (8)
C100.0484 (11)0.0318 (10)0.0381 (10)0.0015 (8)0.0111 (8)0.0002 (8)
C110.0741 (14)0.0354 (11)0.0415 (11)0.0105 (10)0.0110 (10)0.0025 (9)
C12A0.0751 (19)0.0390 (14)0.0384 (13)0.0028 (12)0.0182 (12)0.0078 (10)
C12B0.11 (2)0.081 (16)0.062 (13)0.035 (14)0.026 (12)0.000 (11)
C130.0890 (17)0.0492 (13)0.0369 (11)0.0140 (12)0.0186 (11)0.0012 (9)
C140.0568 (12)0.0356 (10)0.0392 (10)0.0073 (9)0.0098 (9)0.0004 (8)
C150.0485 (11)0.0328 (10)0.0391 (10)0.0014 (8)0.0133 (8)0.0027 (8)
C160.0551 (12)0.0354 (10)0.0380 (10)0.0029 (9)0.0129 (8)0.0020 (8)
C170.0694 (14)0.0356 (11)0.0367 (10)0.0006 (10)0.0126 (9)0.0051 (8)
C180.0645 (13)0.0316 (10)0.0461 (11)0.0049 (9)0.0179 (10)0.0032 (8)
C190.0488 (11)0.0376 (11)0.0456 (11)0.0069 (9)0.0093 (9)0.0002 (9)
C200.0484 (11)0.0404 (11)0.0410 (11)0.0026 (9)0.0074 (8)0.0075 (8)
C210.0647 (14)0.0613 (15)0.0513 (13)0.0012 (12)0.0007 (11)0.0027 (11)
C220.0683 (15)0.0491 (14)0.0767 (17)0.0051 (12)0.0186 (13)0.0241 (12)
C230.0634 (14)0.0538 (13)0.0512 (13)0.0166 (11)0.0030 (10)0.0013 (10)
C240.113 (2)0.0700 (17)0.0398 (13)0.0172 (16)0.0096 (13)0.0031 (12)
C250.0842 (17)0.0513 (14)0.0646 (15)0.0113 (13)0.0168 (13)0.0208 (12)
C260.0717 (16)0.0591 (15)0.0535 (14)0.0157 (12)0.0048 (11)0.0007 (11)
Geometric parameters (Å, º) top
O1—C21.372 (2)C12A—H12B0.9700
O1—C211.408 (3)C12A—H13C1.2119
O2—C31.367 (2)C12B—C131.504 (2)
O2—C221.413 (3)C12B—H12C0.9700
O3—C51.372 (2)C12B—H12D0.9700
O3—C231.422 (2)C13—H13A0.9700
O4—C91.225 (2)C13—H13B0.9700
O5—C161.369 (2)C13—H13C0.9715
O5—C241.416 (3)C13—H13D0.9016
O6—C181.369 (2)C14—C151.467 (3)
O6—C251.402 (3)C14—H14A0.9300
O7—C191.372 (2)C15—C161.401 (3)
O7—C261.412 (3)C15—C201.402 (3)
C1—C21.371 (3)C16—C171.394 (3)
C1—C61.405 (3)C17—C181.379 (3)
C1—H1A0.9300C17—H17A0.9300
C2—C31.396 (3)C18—C191.392 (3)
C3—C41.378 (3)C19—C201.380 (3)
C4—C51.392 (3)C20—H20A0.9300
C4—H4A0.9300C21—H21A0.9600
C5—C61.402 (3)C21—H21B0.9600
C6—C71.462 (3)C21—H21C0.9600
C7—C81.344 (3)C22—H22A0.9600
C7—H7A0.9300C22—H22B0.9600
C8—C91.499 (3)C22—H22C0.9600
C8—C131.506 (3)C23—H23A0.9600
C9—C101.500 (3)C23—H23B0.9600
C10—C141.341 (3)C23—H23C0.9600
C10—C111.507 (3)C24—H24A0.9600
C11—C12B1.504 (2)C24—H24B0.9600
C11—C12A1.505 (2)C24—H24C0.9600
C11—H11A0.9700C25—H25A0.9600
C11—H11B0.9700C25—H25B0.9600
C11—H11C1.1673C25—H25C0.9600
C11—H11D1.1672C26—H26A0.9600
C12A—C131.503 (2)C26—H26B0.9600
C12A—H12A0.9700C26—H26C0.9600
C2—O1—C21117.58 (17)C12B—C13—H13A62.9
C3—O2—C22118.17 (17)C8—C13—H13A109.1
C5—O3—C23117.86 (16)C12A—C13—H13B109.1
C16—O5—C24118.96 (17)C12B—C13—H13B132.5
C18—O6—C25118.51 (18)C8—C13—H13B109.1
C19—O7—C26117.20 (16)H13A—C13—H13B107.8
C2—C1—C6122.64 (19)C12A—C13—H13C53.6
C2—C1—H1A118.7C12B—C13—H13C99.5
C6—C1—H1A118.7C8—C13—H13C79.0
C1—C2—O1124.94 (19)H13A—C13—H13C162.5
C1—C2—C3119.33 (18)H13B—C13—H13C83.0
O1—C2—C3115.72 (18)C12A—C13—H13D109.9
O2—C3—C4124.73 (19)C12B—C13—H13D105.8
O2—C3—C2115.56 (18)C8—C13—H13D132.7
C4—C3—C2119.71 (18)H13A—C13—H13D74.8
C3—C4—C5120.64 (19)H13C—C13—H13D111.7
C3—C4—H4A119.7C10—C14—C15131.17 (18)
C5—C4—H4A119.7C10—C14—H14A114.4
O3—C5—C4122.63 (17)C15—C14—H14A114.4
O3—C5—C6116.53 (16)C16—C15—C20116.95 (17)
C4—C5—C6120.84 (18)C16—C15—C14119.13 (17)
C5—C6—C1116.83 (17)C20—C15—C14123.87 (17)
C5—C6—C7120.34 (17)O5—C16—C17122.59 (18)
C1—C6—C7122.73 (17)O5—C16—C15116.35 (17)
C8—C7—C6129.79 (18)C17—C16—C15121.05 (18)
C8—C7—H7A115.1C18—C17—C16120.22 (18)
C6—C7—H7A115.1C18—C17—H17A119.9
C7—C8—C9116.86 (17)C16—C17—H17A119.9
C7—C8—C13124.92 (17)O6—C18—C17123.93 (19)
C9—C8—C13118.21 (16)O6—C18—C19115.96 (18)
O4—C9—C8120.15 (17)C17—C18—C19120.11 (18)
O4—C9—C10120.45 (17)O7—C19—C20124.91 (18)
C8—C9—C10119.39 (16)O7—C19—C18115.92 (17)
C14—C10—C9116.54 (17)C20—C19—C18119.12 (18)
C14—C10—C11125.28 (17)C19—C20—C15122.47 (18)
C9—C10—C11118.13 (16)C19—C20—H20A118.8
C12B—C11—C12A47.3 (6)C15—C20—H20A118.8
C12B—C11—C10118.5 (6)O1—C21—H21A109.5
C12A—C11—C10111.96 (17)O1—C21—H21B109.5
C12B—C11—H11A131.8H21A—C21—H21B109.5
C12A—C11—H11A109.2O1—C21—H21C109.5
C10—C11—H11A109.2H21A—C21—H21C109.5
C12B—C11—H11B62.9H21B—C21—H21C109.5
C12A—C11—H11B109.2O2—C22—H22A109.5
C10—C11—H11B109.2O2—C22—H22B109.5
H11A—C11—H11B107.9H22A—C22—H22B109.5
C12B—C11—H11C86.2O2—C22—H22C109.5
C12A—C11—H11C125.3H22A—C22—H22C109.5
C10—C11—H11C115.7H22B—C22—H22C109.5
H11A—C11—H11C78.7O3—C23—H23A109.5
C12B—C11—H11D138.9O3—C23—H23B109.5
C12A—C11—H11D95.1H23A—C23—H23B109.5
C10—C11—H11D87.6O3—C23—H23C109.5
H11B—C11—H11D141.2H23A—C23—H23C109.5
H11C—C11—H11D111.6H23B—C23—H23C109.5
C13—C12A—C11111.0 (2)O5—C24—H24A109.5
C13—C12A—H12A109.4O5—C24—H24B109.5
C11—C12A—H12A109.4H24A—C24—H24B109.5
C13—C12A—H12B109.4O5—C24—H24C109.5
C11—C12A—H12B109.4H24A—C24—H24C109.5
H12A—C12A—H12B108.0H24B—C24—H24C109.5
C11—C12A—H13C120.9O6—C25—H25A109.5
H12A—C12A—H13C69.6O6—C25—H25B109.5
H12B—C12A—H13C127.5H25A—C25—H25B109.5
C13—C12B—C11111.1 (2)O6—C25—H25C109.5
C13—C12B—H12C109.4H25A—C25—H25C109.5
C11—C12B—H12C109.4H25B—C25—H25C109.5
C13—C12B—H12D109.4O7—C26—H26A109.5
C11—C12B—H12D109.4O7—C26—H26B109.5
H12C—C12B—H12D108.0H26A—C26—H26B109.5
C12A—C13—C12B47.3 (6)O7—C26—H26C109.5
C12A—C13—C8112.57 (17)H26A—C26—H26C109.5
C12B—C13—C8118.1 (6)H26B—C26—H26C109.5
C12A—C13—H13A109.1
C6—C1—C2—O1180.0 (2)C12B—C11—C12A—C1350.4 (7)
C6—C1—C2—C31.1 (3)C10—C11—C12A—C1358.8 (3)
C21—O1—C2—C14.3 (3)C12A—C11—C12B—C1350.4 (7)
C21—O1—C2—C3176.8 (2)C10—C11—C12B—C1344.1 (15)
C22—O2—C3—C42.2 (3)C11—C12A—C13—C12B50.4 (7)
C22—O2—C3—C2177.0 (2)C11—C12A—C13—C857.7 (3)
C1—C2—C3—O2178.7 (2)C11—C12B—C13—C12A50.4 (7)
O1—C2—C3—O20.3 (3)C11—C12B—C13—C845.3 (15)
C1—C2—C3—C40.6 (3)C7—C8—C13—C12A149.0 (2)
O1—C2—C3—C4179.6 (2)C9—C8—C13—C12A29.3 (3)
O2—C3—C4—C5178.8 (2)C7—C8—C13—C12B158.6 (7)
C2—C3—C4—C50.4 (3)C9—C8—C13—C12B23.1 (7)
C23—O3—C5—C41.9 (3)C9—C10—C14—C15179.5 (2)
C23—O3—C5—C6178.41 (19)C11—C10—C14—C153.1 (4)
C3—C4—C5—O3178.9 (2)C10—C14—C15—C16158.9 (2)
C3—C4—C5—C60.7 (3)C10—C14—C15—C2023.7 (3)
O3—C5—C6—C1178.49 (18)C24—O5—C16—C175.9 (3)
C4—C5—C6—C11.2 (3)C24—O5—C16—C15174.4 (2)
O3—C5—C6—C72.0 (3)C20—C15—C16—O5179.37 (18)
C4—C5—C6—C7177.69 (19)C14—C15—C16—O53.1 (3)
C2—C1—C6—C51.4 (3)C20—C15—C16—C170.9 (3)
C2—C1—C6—C7177.8 (2)C14—C15—C16—C17176.60 (19)
C5—C6—C7—C8159.1 (2)O5—C16—C17—C18179.4 (2)
C1—C6—C7—C824.6 (3)C15—C16—C17—C181.0 (3)
C6—C7—C8—C9176.7 (2)C25—O6—C18—C1727.4 (3)
C6—C7—C8—C135.0 (4)C25—O6—C18—C19153.5 (2)
C7—C8—C9—O44.8 (3)C16—C17—C18—O6179.9 (2)
C13—C8—C9—O4176.8 (2)C16—C17—C18—C191.0 (3)
C7—C8—C9—C10175.86 (18)C26—O7—C19—C2013.3 (3)
C13—C8—C9—C102.6 (3)C26—O7—C19—C18169.2 (2)
O4—C9—C10—C146.9 (3)O6—C18—C19—O70.2 (3)
C8—C9—C10—C14173.78 (19)C17—C18—C19—O7179.32 (19)
O4—C9—C10—C11175.5 (2)O6—C18—C19—C20177.82 (19)
C8—C9—C10—C113.9 (3)C17—C18—C19—C203.0 (3)
C14—C10—C11—C12B162.0 (7)O7—C19—C20—C15179.5 (2)
C9—C10—C11—C12B20.6 (7)C18—C19—C20—C153.1 (3)
C14—C10—C11—C12A145.8 (2)C16—C15—C20—C191.1 (3)
C9—C10—C11—C12A31.6 (3)C14—C15—C20—C19178.53 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12A—H12B···O1i0.972.433.364 (3)160
C25—H25B···O1ii0.962.553.450 (3)156
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H30O7
Mr454.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.0943 (1), 13.4947 (1), 18.8293 (2)
β (°) 100.449 (1)
V3)2272.50 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.37 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.965, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
29097, 6691, 4027
Rint0.036
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.155, 1.06
No. of reflections6691
No. of parameters317
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12A—H12B···O1i0.97002.43003.364 (3)160.00
C25—H25B···O1ii0.96002.55003.450 (3)156.00
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSH thank Universiti Sains Malaysia for the Research University Golden Goose Grant (1001/PFIZIK/811012). TSH thanks Universiti Sains Malaysia for a research assistantship. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGeiger, W. B. & Conn, J. E. (1945). J. Am. Chem. Soc. 67, 112–116.  CrossRef CAS Web of Science Google Scholar
First citationHosni, G. & Saad, S. F. (1995). Acta Chim. Acad. Sci. Hung. 86, 263–268.  Google Scholar
First citationIshida, S., Mastuda, A. & Kawamura, A. (1960). Chemotherapy, 8, 146–151.  CAS Google Scholar
First citationKuhn, R. & Hensel, H. R. (1953). Chem. Ber. 86, 1333–1341.  CrossRef CAS Web of Science Google Scholar
First citationMarian, D. H., Russel, P. B. & Todd, A. R. (1947). J. Chem. Soc. pp. 1419–1423.  Google Scholar
First citationMehata, P. V. S. & Parikh, A. R. (1978). J. Indian Chem. Soc. 50, 241–244.  Google Scholar
First citationMudaliar, V. & Joshi, V. (1995). Indian J. Chem. Sect. B, 34, 456–457.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, Y. K., Sukhwal, S., Ashawa, A. & Verma, B. L. (1997). J. Indian Chem. Soc. 74, 573–574.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o630-o631
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds