organic compounds
2-Amino-5-methylpyridinium nicotinate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, C6H9N2+·C6H4NO2−, the 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.023 (2) Å. In the crystal, the cations and anions are linked via strong N—H⋯O hydrogen bonds, forming a two dimensional network parallel to (100). In addition, π⋯π interactions involving the pyridinium and pyridine rings, with centroid–centroid distances of 3.6383 (8) Å, are observed.
Related literature
For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For nicotinic acid, see: Athimoolam & Rajaram (2005); Lorenzen et al. (2001); Gielen et al. (1992); Kim et al. (2004). For a related structure, see: Nahringbauer & Kvick (1977). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810005970/sj2728sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810005970/sj2728Isup2.hkl
A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and nicotinic acid (62 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.
The methyl H atoms were positioned geometrically and were refined using a riding model, with Uiso(H) = 1.5Ueq(C). A rotating group model was used for the methyl group. The remaining H atoms were located in a difference map and refined freely [N–H = 0.883 (16)–0.988 (16)Å, C–H = 0.946 (13)–1.015 (17)Å].
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C6H9N2+·C6H4NO2− | F(000) = 488 |
Mr = 231.25 | Dx = 1.316 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4062 reflections |
a = 9.4877 (3) Å | θ = 2.6–26.7° |
b = 11.1403 (3) Å | µ = 0.09 mm−1 |
c = 11.7611 (3) Å | T = 296 K |
β = 110.113 (2)° | Needle, colourless |
V = 1167.29 (6) Å3 | 0.63 × 0.11 × 0.11 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 3870 independent reflections |
Radiation source: fine-focus sealed tube | 2240 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 31.6°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −13→13 |
Tmin = 0.944, Tmax = 0.990 | k = −15→16 |
14482 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.144 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0668P)2 + 0.0299P] where P = (Fo2 + 2Fc2)/3 |
3870 reflections | (Δ/σ)max < 0.001 |
195 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C6H9N2+·C6H4NO2− | V = 1167.29 (6) Å3 |
Mr = 231.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.4877 (3) Å | µ = 0.09 mm−1 |
b = 11.1403 (3) Å | T = 296 K |
c = 11.7611 (3) Å | 0.63 × 0.11 × 0.11 mm |
β = 110.113 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 3870 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2240 reflections with I > 2σ(I) |
Tmin = 0.944, Tmax = 0.990 | Rint = 0.026 |
14482 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.144 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.20 e Å−3 |
3870 reflections | Δρmin = −0.20 e Å−3 |
195 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.02188 (12) | 0.19316 (10) | 0.05859 (9) | 0.0442 (3) | |
N2 | −0.10328 (14) | 0.22434 (12) | 0.19337 (12) | 0.0585 (3) | |
C1 | −0.00012 (14) | 0.16474 (11) | 0.16305 (10) | 0.0442 (3) | |
C2 | 0.08966 (14) | 0.07300 (12) | 0.23423 (12) | 0.0491 (3) | |
C3 | 0.19225 (14) | 0.01646 (12) | 0.19651 (12) | 0.0503 (3) | |
C4 | 0.21339 (13) | 0.04715 (12) | 0.08710 (11) | 0.0478 (3) | |
C5 | 0.12592 (14) | 0.13727 (12) | 0.02171 (11) | 0.0459 (3) | |
C6 | 0.33142 (17) | −0.01226 (17) | 0.04856 (14) | 0.0688 (4) | |
H6A | 0.3313 | 0.0225 | −0.0262 | 0.103* | |
H6B | 0.3105 | −0.0966 | 0.0373 | 0.103* | |
H6C | 0.4280 | −0.0007 | 0.1098 | 0.103* | |
O1 | 0.72673 (12) | 0.39748 (10) | 1.02919 (8) | 0.0659 (3) | |
O2 | 0.86277 (12) | 0.36701 (9) | 0.91118 (8) | 0.0617 (3) | |
N3 | 0.68920 (14) | 0.67197 (11) | 0.70931 (11) | 0.0599 (3) | |
C7 | 0.58423 (16) | 0.73306 (14) | 0.73619 (15) | 0.0627 (4) | |
C8 | 0.53402 (17) | 0.70341 (14) | 0.82858 (16) | 0.0661 (4) | |
C9 | 0.59378 (16) | 0.60379 (13) | 0.89864 (14) | 0.0559 (4) | |
C10 | 0.70147 (13) | 0.53689 (11) | 0.87228 (11) | 0.0434 (3) | |
C11 | 0.74469 (15) | 0.57565 (12) | 0.77763 (12) | 0.0514 (3) | |
C12 | 0.76845 (14) | 0.42525 (11) | 0.94349 (11) | 0.0462 (3) | |
H2A | 0.0757 (14) | 0.0528 (11) | 0.3103 (13) | 0.053 (4)* | |
H3A | 0.2576 (15) | −0.0480 (13) | 0.2476 (13) | 0.059 (4)* | |
H5A | 0.1359 (14) | 0.1651 (11) | −0.0511 (12) | 0.047 (3)* | |
H7A | 0.5424 (18) | 0.8056 (15) | 0.6832 (15) | 0.076 (5)* | |
H8A | 0.458 (2) | 0.7512 (15) | 0.8436 (15) | 0.082 (5)* | |
H9A | 0.5651 (16) | 0.5825 (13) | 0.9650 (15) | 0.069 (5)* | |
H11A | 0.8211 (16) | 0.5323 (13) | 0.7567 (12) | 0.061 (4)* | |
H1N1 | −0.0397 (17) | 0.2561 (14) | 0.0051 (14) | 0.069 (4)* | |
H1N2 | −0.1231 (16) | 0.1988 (13) | 0.2573 (15) | 0.065 (4)* | |
H2N2 | −0.159 (2) | 0.2841 (16) | 0.1413 (16) | 0.081 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0485 (5) | 0.0474 (6) | 0.0391 (5) | 0.0001 (5) | 0.0180 (4) | 0.0027 (5) |
N2 | 0.0715 (8) | 0.0654 (8) | 0.0503 (6) | 0.0121 (6) | 0.0358 (6) | 0.0098 (6) |
C1 | 0.0494 (6) | 0.0474 (7) | 0.0389 (6) | −0.0066 (5) | 0.0191 (5) | −0.0013 (5) |
C2 | 0.0515 (7) | 0.0553 (8) | 0.0425 (6) | −0.0048 (6) | 0.0186 (5) | 0.0082 (6) |
C3 | 0.0462 (7) | 0.0532 (8) | 0.0502 (7) | −0.0018 (6) | 0.0150 (6) | 0.0085 (6) |
C4 | 0.0437 (6) | 0.0549 (8) | 0.0461 (7) | −0.0036 (6) | 0.0171 (5) | −0.0009 (6) |
C5 | 0.0468 (7) | 0.0558 (8) | 0.0380 (6) | −0.0039 (6) | 0.0183 (5) | 0.0002 (6) |
C6 | 0.0611 (8) | 0.0880 (11) | 0.0618 (9) | 0.0186 (8) | 0.0268 (7) | 0.0076 (8) |
O1 | 0.0818 (7) | 0.0743 (7) | 0.0557 (6) | 0.0160 (5) | 0.0417 (5) | 0.0135 (5) |
O2 | 0.0788 (6) | 0.0671 (6) | 0.0499 (5) | 0.0249 (5) | 0.0358 (5) | 0.0115 (4) |
N3 | 0.0668 (7) | 0.0543 (7) | 0.0576 (7) | 0.0011 (6) | 0.0199 (6) | 0.0071 (6) |
C7 | 0.0590 (8) | 0.0479 (8) | 0.0726 (10) | −0.0014 (7) | 0.0117 (7) | 0.0052 (7) |
C8 | 0.0556 (8) | 0.0504 (8) | 0.0954 (12) | 0.0041 (7) | 0.0299 (8) | −0.0050 (8) |
C9 | 0.0571 (8) | 0.0506 (8) | 0.0680 (9) | −0.0019 (6) | 0.0318 (7) | −0.0043 (7) |
C10 | 0.0427 (6) | 0.0455 (7) | 0.0425 (6) | −0.0028 (5) | 0.0154 (5) | −0.0048 (5) |
C11 | 0.0545 (7) | 0.0530 (8) | 0.0495 (7) | 0.0018 (6) | 0.0214 (6) | 0.0005 (6) |
C12 | 0.0519 (7) | 0.0514 (8) | 0.0376 (6) | 0.0001 (6) | 0.0185 (5) | −0.0050 (5) |
N1—C1 | 1.3526 (14) | C6—H6B | 0.9600 |
N1—C5 | 1.3582 (16) | C6—H6C | 0.9600 |
N1—H1N1 | 0.988 (16) | O1—C12 | 1.2420 (14) |
N2—C1 | 1.3289 (17) | O2—C12 | 1.2650 (15) |
N2—H1N2 | 0.883 (16) | N3—C7 | 1.331 (2) |
N2—H2N2 | 0.936 (19) | N3—C11 | 1.3354 (17) |
C1—C2 | 1.4073 (18) | C7—C8 | 1.368 (2) |
C2—C3 | 1.3558 (18) | C7—H7A | 1.015 (17) |
C2—H2A | 0.974 (14) | C8—C9 | 1.382 (2) |
C3—C4 | 1.4108 (18) | C8—H8A | 0.964 (18) |
C3—H3A | 1.002 (14) | C9—C10 | 1.3832 (18) |
C4—C5 | 1.3598 (18) | C9—H9A | 0.941 (16) |
C4—C6 | 1.4989 (19) | C10—C11 | 1.3812 (17) |
C5—H5A | 0.946 (13) | C10—C12 | 1.5121 (18) |
C6—H6A | 0.9600 | C11—H11A | 0.970 (15) |
C1—N1—C5 | 122.61 (11) | H6A—C6—H6B | 109.5 |
C1—N1—H1N1 | 120.1 (8) | C4—C6—H6C | 109.5 |
C5—N1—H1N1 | 117.3 (8) | H6A—C6—H6C | 109.5 |
C1—N2—H1N2 | 117.4 (10) | H6B—C6—H6C | 109.5 |
C1—N2—H2N2 | 119.0 (10) | C7—N3—C11 | 116.12 (13) |
H1N2—N2—H2N2 | 123.2 (14) | N3—C7—C8 | 123.94 (14) |
N2—C1—N1 | 118.99 (12) | N3—C7—H7A | 115.3 (9) |
N2—C1—C2 | 123.65 (11) | C8—C7—H7A | 120.7 (9) |
N1—C1—C2 | 117.35 (11) | C7—C8—C9 | 118.93 (14) |
C3—C2—C1 | 119.90 (12) | C7—C8—H8A | 120.1 (10) |
C3—C2—H2A | 122.2 (7) | C9—C8—H8A | 120.9 (10) |
C1—C2—H2A | 117.9 (7) | C8—C9—C10 | 118.82 (14) |
C2—C3—C4 | 121.95 (13) | C8—C9—H9A | 121.4 (9) |
C2—C3—H3A | 120.2 (8) | C10—C9—H9A | 119.8 (9) |
C4—C3—H3A | 117.9 (8) | C11—C10—C9 | 117.33 (13) |
C5—C4—C3 | 116.37 (12) | C11—C10—C12 | 121.26 (11) |
C5—C4—C6 | 121.94 (12) | C9—C10—C12 | 121.41 (12) |
C3—C4—C6 | 121.61 (12) | N3—C11—C10 | 124.84 (13) |
N1—C5—C4 | 121.81 (12) | N3—C11—H11A | 114.9 (8) |
N1—C5—H5A | 116.7 (8) | C10—C11—H11A | 120.2 (8) |
C4—C5—H5A | 121.5 (8) | O1—C12—O2 | 124.88 (12) |
C4—C6—H6A | 109.5 | O1—C12—C10 | 117.64 (11) |
C4—C6—H6B | 109.5 | O2—C12—C10 | 117.48 (10) |
C5—N1—C1—N2 | 179.41 (11) | N3—C7—C8—C9 | −0.5 (2) |
C5—N1—C1—C2 | −0.22 (18) | C7—C8—C9—C10 | −0.5 (2) |
N2—C1—C2—C3 | 179.87 (12) | C8—C9—C10—C11 | 1.1 (2) |
N1—C1—C2—C3 | −0.52 (18) | C8—C9—C10—C12 | −178.48 (12) |
C1—C2—C3—C4 | 0.4 (2) | C7—N3—C11—C10 | −0.3 (2) |
C2—C3—C4—C5 | 0.46 (19) | C9—C10—C11—N3 | −0.7 (2) |
C2—C3—C4—C6 | 177.42 (13) | C12—C10—C11—N3 | 178.87 (12) |
C1—N1—C5—C4 | 1.14 (19) | C11—C10—C12—O1 | 178.34 (12) |
C3—C4—C5—N1 | −1.21 (18) | C9—C10—C12—O1 | −2.15 (19) |
C6—C4—C5—N1 | −178.16 (12) | C11—C10—C12—O2 | −1.73 (19) |
C11—N3—C7—C8 | 0.9 (2) | C9—C10—C12—O2 | 177.79 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O2i | 0.988 (16) | 1.703 (16) | 2.6899 (15) | 176.8 (16) |
N2—H1N2···O2ii | 0.883 (16) | 1.999 (16) | 2.8756 (17) | 171.7 (15) |
N2—H2N2···O1i | 0.936 (18) | 1.878 (18) | 2.8122 (17) | 176.6 (17) |
Symmetry codes: (i) x−1, y, z−1; (ii) x−1, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H9N2+·C6H4NO2− |
Mr | 231.25 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 9.4877 (3), 11.1403 (3), 11.7611 (3) |
β (°) | 110.113 (2) |
V (Å3) | 1167.29 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.63 × 0.11 × 0.11 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.944, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14482, 3870, 2240 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.736 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.144, 1.05 |
No. of reflections | 3870 |
No. of parameters | 195 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.20 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O2i | 0.988 (16) | 1.703 (16) | 2.6899 (15) | 176.8 (16) |
N2—H1N2···O2ii | 0.883 (16) | 1.999 (16) | 2.8756 (17) | 171.7 (15) |
N2—H2N2···O1i | 0.936 (18) | 1.878 (18) | 2.8122 (17) | 176.6 (17) |
Symmetry codes: (i) x−1, y, z−1; (ii) x−1, −y+1/2, z−1/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2764–o2767. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gielen, M., Khloufi, A. E., Biesemans, M. & Willem, R. (1992). Polyhedron, 11, 1861–1868. CSD CrossRef CAS Web of Science Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Kim, H.-L., Yoon, H.-J., Ha, J. Y., Lee, B. I., Lee, H. H., Mikami, B. & Suh, S. W. (2004). Acta Cryst. D60, 948–949. CrossRef CAS IUCr Journals Google Scholar
Lorenzen, A., Stannek, C., Lang, H., Andrianov, V., Kalvinsh, I. & Schwabe, U. (2001). Mol. Pharmacol. 59, 349–357. Web of Science PubMed CAS Google Scholar
Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley. Google Scholar
Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine and its derivatives play important roles in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Nicotinic acid (vitamin B3), known as niacin, is a lipid lowering agent widely used to treat hypertriglyceridemia by the inhibition of lipolysis in adipose tissue (Athimoolam & Rajaram, 2005). The nicotinic acid complex 5-methylpyrazine-2-carboxylic acid-4-oxide is a commonly used drug for the treatment of hypercholesterolemia (Lorenzen et al., 2001). Coordination complexes of nicotinic acid with metals such as Sn possess antitumour activity greater than the well known cisplatin or doxorubicin (Gielen et al., 1992). The enzyme nicotinic acid mononucleotide adenyltransferase is essential for the synthesis of nicotinamide adenine dinucleotide in all living cells and is a potential target for antibiotics (Kim et al., 2004). Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.
The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one nicotinate anion. The proton transfer from the carboxyl group to atom N1 of 2-amino-5-methylpyridine resulted in the widening of C1—N1—C5 angle of the pyridinium ring to 122.61 (11)°, compared to the corresponding angle of 117.4° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.023 (2)Å for atom C6. The bond lengths are normal (Allen et al., 1987).
In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O2 and N2—H2N2···O1 hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). The intermolecular N2—H1N2···O2 hydrogen bonds connect these molecules into 2-dimensional networks parallel to the (100)-plane (see Table 1). The crystal structure is further stabilized by π···π interactions involving the pyridine (C7–C11/N3) and pyridinium (C1–C5/N1) rings, with centroid to centroid distance of 3.6383 (8)Å [symmetry code: 1-x, 1-y, 1-z].