metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(N-butyl-N-ethyl­di­thio­carbamato-κ2S,S′)nickel(II)

aSchool of Chemical Sciences, Universiti Kebangbaan Malaysia, 43600 Bangi, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 21 February 2010; accepted 22 February 2010; online 27 February 2010)

The dithio­carbamate anions in the title compound, [Ni(C7H14NS2)2], chelate to the NiII atom, which is four-coordinate in a square-planar geometry. The NiII atom lies on a center of inversion.

Related literature

For nickel bis­(diethyl­dithio­carbamate) and nickel bis­(di­butyl­dithio­carbamate), see: Bonamico et al. (1965[Bonamico, M., Dessy, G., Mariani, C., Vaciago, A. & Zambonelli, L. (1965). Acta Cryst. 19, 619-626.]); Khan et al. (1987[Khan, Md. N. I., Fackler, J. P., Murray, H. H., Heinrich, D. D. & Campana, C. (1987). Acta Cryst. C43, 1917-1919.]); Lokaj et al. (1984[Lokaj, J., Vrabel, V. & Kello, E. (1984). Chem. Zvesti, 38, 313-317.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H14NS2)2]

  • Mr = 411.33

  • Monoclinic, P 21 /n

  • a = 8.5641 (9) Å

  • b = 8.6316 (9) Å

  • c = 13.6047 (14) Å

  • β = 94.753 (2)°

  • V = 1002.23 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 293 K

  • 0.25 × 0.25 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.724, Tmax = 0.934

  • 9338 measured reflections

  • 2295 independent reflections

  • 1628 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.098

  • S = 1.03

  • 2295 reflections

  • 99 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For nickel bis(diethyldithiocarbamate) and nickel bis(dibutyldithiocarbamate), see: Bonamico et al. (1965); Khan et al. (1987); Lokaj et al. (1984).

Experimental top

Nickel(II) chloride (10 mmol), butylethylamine (10 mmol) and carbon disulfide (10 mmol) were reacted in ethanol (50 ml) at 277 K to produce a brown solid. The mixture was stirred for an hour. The solid was collected and recrystallized from ethanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.96 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Ni(C7H14NS2)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Bis(N-butyl-N-ethyldithiocarbamato- κ2S,S')nickel(II) top
Crystal data top
[Ni(C7H14NS2)2]F(000) = 436
Mr = 411.33Dx = 1.363 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2307 reflections
a = 8.5641 (9) Åθ = 2.4–24.6°
b = 8.6316 (9) ŵ = 1.38 mm1
c = 13.6047 (14) ÅT = 293 K
β = 94.753 (2)°Plate, brown
V = 1002.23 (18) Å30.25 × 0.25 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
2295 independent reflections
Radiation source: fine-focus sealed tube1628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.724, Tmax = 0.934k = 1111
9338 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.1755P]
where P = (Fo2 + 2Fc2)/3
2295 reflections(Δ/σ)max = 0.001
99 parametersΔρmax = 0.38 e Å3
6 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Ni(C7H14NS2)2]V = 1002.23 (18) Å3
Mr = 411.33Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.5641 (9) ŵ = 1.38 mm1
b = 8.6316 (9) ÅT = 293 K
c = 13.6047 (14) Å0.25 × 0.25 × 0.05 mm
β = 94.753 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2295 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1628 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 0.934Rint = 0.029
9338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
2295 reflectionsΔρmin = 0.21 e Å3
99 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.05331 (16)
S10.75597 (8)0.48176 (8)0.53089 (5)0.0629 (2)
S20.52687 (8)0.56847 (9)0.65651 (5)0.0631 (2)
N10.8339 (3)0.5601 (3)0.72015 (17)0.0647 (6)
C10.7236 (3)0.5403 (3)0.64766 (19)0.0564 (6)
C20.7964 (3)0.6124 (3)0.81795 (18)0.0658 (7)
H2A0.70080.67320.81110.079*
H2B0.87990.67910.84560.079*
C30.7752 (4)0.4796 (3)0.8887 (2)0.0746 (8)
H3A0.68750.41630.86300.090*
H3B0.86840.41540.89280.090*
C40.7460 (4)0.5353 (4)0.9904 (2)0.0836 (9)
H4A0.65540.60320.98560.100*
H4B0.83550.59551.01670.100*
C50.7180 (4)0.4044 (4)1.0615 (2)0.1014 (11)
H5A0.69620.44701.12410.152*
H5B0.80980.34031.06990.152*
H5C0.63050.34331.03560.152*
C61.0008 (4)0.5276 (4)0.7074 (2)0.0805 (9)
H6A1.00790.45590.65300.097*
H6B1.04900.47910.76670.097*
C71.0871 (4)0.6734 (4)0.6871 (2)0.0951 (10)
H7A1.19570.65000.68180.143*
H7B1.07800.74530.74010.143*
H7C1.04320.71830.62650.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0586 (3)0.0553 (3)0.0464 (3)0.0031 (2)0.0063 (2)0.00089 (19)
S10.0628 (4)0.0763 (4)0.0504 (4)0.0013 (3)0.0095 (3)0.0089 (3)
S20.0589 (4)0.0785 (5)0.0526 (4)0.0006 (3)0.0090 (3)0.0081 (3)
N10.0596 (13)0.0780 (14)0.0572 (13)0.0057 (11)0.0077 (11)0.0171 (12)
C10.0629 (16)0.0556 (14)0.0513 (15)0.0005 (11)0.0083 (12)0.0052 (11)
C20.0670 (17)0.0758 (17)0.0542 (16)0.0016 (13)0.0023 (13)0.0198 (13)
C30.080 (2)0.080 (2)0.0629 (18)0.0053 (14)0.0010 (15)0.0130 (15)
C40.093 (2)0.096 (2)0.0621 (19)0.0055 (17)0.0047 (17)0.0136 (17)
C50.118 (3)0.111 (3)0.074 (2)0.001 (2)0.002 (2)0.000 (2)
C60.0653 (18)0.109 (3)0.0660 (19)0.0082 (17)0.0034 (15)0.0236 (17)
C70.076 (2)0.125 (3)0.086 (2)0.008 (2)0.0171 (17)0.006 (2)
Geometric parameters (Å, º) top
Ni1—S1i2.2032 (8)C3—H3B0.9700
Ni1—S12.2032 (8)C4—C51.519 (4)
Ni1—S22.2034 (7)C4—H4A0.9700
Ni1—S2i2.2034 (7)C4—H4B0.9700
S1—C11.712 (3)C5—H5A0.9600
S2—C11.716 (3)C5—H5B0.9600
N1—C11.319 (3)C5—H5C0.9600
N1—C21.466 (3)C6—C71.497 (4)
N1—C61.481 (4)C6—H6A0.9700
C2—C31.517 (4)C6—H6B0.9700
C2—H2A0.9700C7—H7A0.9600
C2—H2B0.9700C7—H7B0.9600
C3—C41.505 (4)C7—H7C0.9600
C3—H3A0.9700
S1i—Ni1—S1180.0H3A—C3—H3B107.9
S1i—Ni1—S2100.82 (2)C3—C4—C5113.3 (3)
S1—Ni1—S279.18 (2)C3—C4—H4A108.9
S1i—Ni1—S2i79.18 (2)C5—C4—H4A108.9
S1—Ni1—S2i100.82 (2)C3—C4—H4B108.9
S2—Ni1—S2i180.0C5—C4—H4B108.9
C1—S1—Ni185.45 (10)H4A—C4—H4B107.7
C1—S2—Ni185.34 (9)C4—C5—H5A109.5
C1—N1—C2121.4 (2)C4—C5—H5B109.5
C1—N1—C6121.7 (2)H5A—C5—H5B109.5
C2—N1—C6116.8 (2)C4—C5—H5C109.5
N1—C1—S1124.8 (2)H5A—C5—H5C109.5
N1—C1—S2125.1 (2)H5B—C5—H5C109.5
S1—C1—S2110.04 (16)N1—C6—C7111.0 (3)
N1—C2—C3113.0 (2)N1—C6—H6A109.4
N1—C2—H2A109.0C7—C6—H6A109.4
C3—C2—H2A109.0N1—C6—H6B109.4
N1—C2—H2B109.0C7—C6—H6B109.4
C3—C2—H2B109.0H6A—C6—H6B108.0
H2A—C2—H2B107.8C6—C7—H7A109.5
C4—C3—C2112.3 (2)C6—C7—H7B109.5
C4—C3—H3A109.1H7A—C7—H7B109.5
C2—C3—H3A109.1C6—C7—H7C109.5
C4—C3—H3B109.1H7A—C7—H7C109.5
C2—C3—H3B109.1H7B—C7—H7C109.5
S2—Ni1—S1—C10.24 (9)Ni1—S1—C1—S20.32 (12)
S2i—Ni1—S1—C1179.76 (9)Ni1—S2—C1—N1180.0 (2)
S1i—Ni1—S2—C1179.76 (9)Ni1—S2—C1—S10.32 (12)
S1—Ni1—S2—C10.24 (9)C1—N1—C2—C394.2 (3)
C2—N1—C1—S1179.3 (2)C6—N1—C2—C384.6 (3)
C6—N1—C1—S12.0 (4)N1—C2—C3—C4176.7 (3)
C2—N1—C1—S21.0 (4)C2—C3—C4—C5177.8 (3)
C6—N1—C1—S2177.6 (2)C1—N1—C6—C798.5 (3)
Ni1—S1—C1—N1180.0 (2)C2—N1—C6—C782.8 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C7H14NS2)2]
Mr411.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.5641 (9), 8.6316 (9), 13.6047 (14)
β (°) 94.753 (2)
V3)1002.23 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.25 × 0.25 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.724, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
9338, 2295, 1628
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.03
No. of reflections2295
No. of parameters99
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08-27-111 and 06-01-02-SF0539) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBonamico, M., Dessy, G., Mariani, C., Vaciago, A. & Zambonelli, L. (1965). Acta Cryst. 19, 619–626.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhan, Md. N. I., Fackler, J. P., Murray, H. H., Heinrich, D. D. & Campana, C. (1987). Acta Cryst. C43, 1917–1919.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLokaj, J., Vrabel, V. & Kello, E. (1984). Chem. Zvesti, 38, 313–317.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds