organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o589-o590

α-Costic anhydride

aLaboratoire de Chimie Bioorganique et Analytique, Faculté des Sciences et Techniques, 20800 Mohammedia, Morocco, bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Avenue Ibn Battouta BP 1014 Rabat, Morocco, and cLaboratoire de Chimie des Substances Naturelles, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 19 January 2010; accepted 8 February 2010; online 13 February 2010)

The title compound [systematic name: 2-(4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octa­hydro­naphthalen-2-yl)acrylic acid anhydride], C30H42O3, is a new isocostic anhydride which was synthesized from the aerial part of Inula Viscosa­ (L) Aiton [or Dittrichia Viscosa­ (L) Greuter]. The mol­ecule adopts an essentially linear shape with two terminal fused-rings bridged by the anhydride group. The external rings have the same conformation (half-chair) while each of the two inner rings has an almost ideal chair conformation. In the crystal, inter­molecular C—H⋯O inter­actions link the mol­ecules into a two-dimensional array in the bc plane.

Related literature

For background to the medicinal inter­est in Inula Viscosa­ (L) Aiton [or Dittrichia Viscosa­ (L) Greuter], see: Shtacher & Kasshman (1970[Shtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221-1223.]); Bohlman & Gupta (1982[Bohlman, F. & Gupta, R. K. (1982). Phytochemistry, 21, 1443-1445.]); Azoulay et al. (1986[Azoulay, P., Reynier, J. P., Balansard, G. & Gasquet, M. (1986). Pharm. Acta Helv. 61, 345-352.]); Bohlmann et al. (1977[Bohlmann, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330-1334.]); Ceccherelli et al. (1988[Ceccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006-1009.]); Grande et al. (1985[Grande, M., Pierra, F., Cuenca, A., Torres, P. & Bellido, I. S. (1985). Planta Med. 51, 414-419.]); Chiappini et al. (1982[Chiappini, I., Fardella, G., Menghini, A. & Rossi, C. (1982). Planta Med. 44, 159-161.]). For background to the phytochemical study of Moroccan plants, see: Tebaa et al. (2009[Tebaa, M., Mazoir, N., Maya, C. M., Nouzha, B., Benharref, A. & Berraho, M. (2009). Acta Cryst. E65, o267-o268.]); Zeroual et al. (2007[Zeroual, A., Mazoir, N., Maya, C. M., Berraho, M., Auhmani, A. & Benharref, A. (2007). Acta Cryst. E63, o2915.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C30H42O3

  • Mr = 450.64

  • Monoclinic, P 21

  • a = 6.6699 (2) Å

  • b = 6.6335 (2) Å

  • c = 30.2948 (8) Å

  • β = 92.799 (1)°

  • V = 1338.79 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.28 × 0.17 × 0.12 mm

Data collection
  • Bruker X8 APEX CCD area-detector diffractometer

  • 15300 measured reflections

  • 2914 independent reflections

  • 2604 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.05

  • 2914 reflections

  • 304 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O2i 0.93 2.47 3.378 (4) 166
C18—H18B⋯O3ii 0.93 2.51 3.419 (3) 168
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Inula Viscosa (L) Aiton or Dittrichia Viscosa (L) Greuter is widespread in Mediterranean area and extends to the Atlantic cost of Morocco. It is a well known medicinal plant (Shtacher & Kasshman, 1970 ; Bohlman & Gupta, 1982) and has some pharmacological activities (Azoulay et al., 1986). This plant has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlmann et al., 1977), sesquiterpene acids (Ceccherelli et al.,1988) and flavonoids (Grande et al., 1985; Chiappini et al., 1982).

The work of our research group has focused upon the phytochemical study of Moroccan plants (Tebaa et al., 2009 ; Zeroual et al., 2007) with the aim to discover new compounds which could be used as precursors or intermediates for the synthesis of novel molecules. In this way, we have investigated Inula Viscosa (L) which is rich in sesquiterpene derivatives. The title compound C30H42O3, (I), was obtained through a chemical modification of 2-(4a,8-dimethyl-1,2,3,4,4a,,5,6,8a-octahdro-naphtaen-2-yl)- acrylic acid,which was isolated in high yield from Inula viscosa (L). The dimerisation of the above compound was obtained by the treatment of iscostic acid by the ethyl chloroformate in the presence of triethylamine.

The molecular structure of (I), Fig. 1, shows each of the external rings (labelled A and D in the Scheme) to adopt a half-chair conformation, as indicated by the total puckering amplitude QT = 0.504 (3) Å and spherical polar angle θ = 131.4 (3) ° with ϕ = 286.2 (4) ° for ring (A), and QT = 0.504 (2) Å and θ =131.1 (3) ° with ϕ = 168.5 (4) ° for ring (D). By contrast, the inners rings (B and C) have a chair conformation with QT = 0.57 (2) Å, θ =1.3 (2) °,ϕ = 67 (5) ° for ring (B), and QT = 0.57 (2) Å, θ =2.0 (2) °, ϕ = 168.5 (4) ° for ring (C) (Cremer & Pople, 1975). In the crystal structure, there are two intermolecular C–H···O contacts, involving the carbonyl-O2 and -O3 atoms (Fig. 2; Table 1), which cooperate to form a 2-D array in the bc plane.

Related literature top

For background to the medicinal interest in Inula Viscosa (L) Aiton [or Dittrichia Viscosa (L) Greuter], see: Shtacher & Kasshman (1970); Bohlman & Gupta (1982); Azoulay et al. (1986); Bohlmann et al. (1977); Ceccherelli et al. (1988); Grande et al. (1985); Chiappini et al. (1982). For background to the phytochemical study of Moroccan plants, see: Tebaa et al. (2009); Zeroual et al. (2007). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

A solution containing equimolar quantities of isocostic acid (500 mg) and triethyl amine (0.5 mL) was stirred at 263 K for 10 mins. To this was added a 0.5 equivalent of ethyl chloroformate (0.3 mL) and the reaction mixture was stirred for 1 h. The residue obtained was purified on a silica gel column using hexane-ethyl acetate (99:1) as an eluent which yielded compound (I) in 70% yield.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93–0.98 Å with Uiso(H) = 1.2–1.5Ueq(C). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 2403 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : A partial packing digram of (I), showing intermolecular C–H···O contacts (dashed lines). [Symmetry code: (i) x, -1+y, z; (ii) -1+x, y, z]
2-(4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-yl)acrylic acid anhydride top
Crystal data top
C30H42O3F(000) = 492
Mr = 450.64Dx = 1.118 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 15300 reflections
a = 6.6699 (2) Åθ = 0.7–26.1°
b = 6.6335 (2) ŵ = 0.07 mm1
c = 30.2948 (8) ÅT = 298 K
β = 92.799 (1)°Prism, colourless
V = 1338.79 (7) Å30.28 × 0.17 × 0.12 mm
Z = 2
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
2604 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 26.1°, θmin = 0.7°
ϕ and ω scansh = 88
15300 measured reflectionsk = 88
2914 independent reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.3687P]
where P = (Fo2 + 2Fc2)/3
2914 reflections(Δ/σ)max < 0.001
304 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C30H42O3V = 1338.79 (7) Å3
Mr = 450.64Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.6699 (2) ŵ = 0.07 mm1
b = 6.6335 (2) ÅT = 298 K
c = 30.2948 (8) Å0.28 × 0.17 × 0.12 mm
β = 92.799 (1)°
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
2604 reflections with I > 2σ(I)
15300 measured reflectionsRint = 0.030
2914 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.109H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
2914 reflectionsΔρmin = 0.12 e Å3
304 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4278 (5)0.3168 (6)0.92476 (10)0.0684 (9)
H10.50860.20290.92630.087 (11)*
C20.3866 (6)0.4312 (7)0.96587 (11)0.0807 (12)
H2A0.30270.35010.98600.097*
H2B0.51230.45570.97980.097*
C30.2841 (5)0.6299 (7)0.95871 (9)0.0705 (9)
H3A0.22020.67480.98640.085*
H3B0.38400.72950.94950.085*
C40.1256 (4)0.6164 (5)0.92373 (8)0.0494 (6)
C50.0308 (5)0.8240 (5)0.91750 (9)0.0623 (8)
H5A0.04490.86110.94440.075*
H5B0.13660.92290.91250.075*
C60.1087 (5)0.8304 (5)0.87881 (9)0.0598 (8)
H6A0.15710.96700.87510.072*
H6B0.22380.74420.88530.072*
C70.0003 (4)0.7606 (4)0.83602 (8)0.0423 (6)
H70.11000.85540.82960.051*
C80.0936 (4)0.5527 (4)0.84179 (8)0.0450 (6)
H8A0.01150.45370.84750.054*
H8B0.16820.51460.81480.054*
C90.2345 (4)0.5549 (4)0.88021 (8)0.0424 (6)
H90.33180.66240.87330.051*
C100.3577 (4)0.3643 (5)0.88525 (9)0.0502 (7)
C110.4056 (6)0.2386 (6)0.84572 (12)0.0796 (10)
H11A0.48340.12400.85400.119*
H11B0.28330.19340.83350.119*
H11C0.48120.31680.82410.119*
C120.0350 (5)0.4630 (7)0.93871 (11)0.0737 (10)
H12A0.14110.46370.91840.111*
H12B0.02360.33090.93940.111*
H12C0.08850.49800.96770.111*
C130.1364 (4)0.7703 (4)0.79758 (9)0.0449 (6)
C140.2112 (6)0.6149 (5)0.77756 (12)0.0845 (12)
H14A0.29010.63420.75340.101*
H14B0.18550.48510.78740.101*
C150.1767 (4)0.9763 (4)0.78202 (8)0.0426 (6)
C160.3228 (3)1.1350 (4)0.72013 (8)0.0415 (6)
C170.5257 (3)1.1794 (4)0.70471 (8)0.0436 (6)
C180.6835 (4)1.0992 (7)0.72518 (11)0.0753 (11)
H18A0.66811.01470.74930.090*
H18B0.81101.12660.71560.090*
C190.5274 (3)1.3227 (4)0.66603 (7)0.0417 (6)
H190.43491.43300.67210.050*
C200.4477 (4)1.2199 (6)0.62350 (8)0.0591 (8)
H20A0.53051.10360.61760.071*
H20B0.31191.17280.62730.071*
C210.4484 (4)1.3633 (6)0.58433 (8)0.0630 (9)
H21A0.35141.46960.58860.076*
H21B0.40581.29030.55780.076*
C220.6533 (4)1.4587 (5)0.57758 (8)0.0508 (7)
C230.7253 (4)1.5623 (4)0.62083 (8)0.0415 (6)
H230.62031.66000.62720.050*
C240.7336 (4)1.4171 (4)0.65969 (8)0.0447 (6)
H24A0.77771.48860.68640.054*
H24B0.83031.31150.65460.054*
C250.9128 (4)1.6862 (5)0.61507 (9)0.0529 (7)
C260.9537 (5)1.7582 (5)0.57536 (11)0.0681 (9)
H261.06741.83840.57360.074 (10)*
C270.8326 (6)1.7205 (7)0.53396 (11)0.0801 (11)
H27A0.90851.63540.51480.096*
H27B0.80801.84770.51890.096*
C280.6343 (5)1.6208 (7)0.54171 (10)0.0717 (9)
H28A0.58241.56010.51440.086*
H28B0.53911.72230.55030.086*
C291.0455 (5)1.7295 (6)0.65482 (12)0.0789 (10)
H29A1.15751.80940.64650.118*
H29B1.09341.60500.66760.118*
H29C0.97121.80200.67610.118*
C300.8016 (6)1.2973 (6)0.56362 (11)0.0736 (10)
H30A0.93301.35540.56240.110*
H30B0.75961.24600.53500.110*
H30C0.80521.18930.58470.110*
O10.3244 (3)0.9824 (3)0.75129 (6)0.0519 (5)
O20.0998 (3)1.1250 (3)0.79450 (7)0.0590 (5)
O30.1723 (3)1.2153 (4)0.70730 (6)0.0600 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0541 (16)0.078 (2)0.074 (2)0.0201 (17)0.0141 (14)0.0170 (19)
C20.077 (2)0.105 (3)0.0628 (19)0.015 (2)0.0278 (16)0.017 (2)
C30.084 (2)0.084 (2)0.0460 (15)0.007 (2)0.0241 (15)0.0028 (18)
C40.0552 (15)0.0556 (16)0.0378 (12)0.0088 (14)0.0081 (10)0.0062 (13)
C50.084 (2)0.061 (2)0.0425 (14)0.0198 (18)0.0090 (13)0.0091 (14)
C60.0707 (18)0.0589 (19)0.0502 (15)0.0273 (16)0.0081 (12)0.0005 (15)
C70.0535 (14)0.0331 (13)0.0411 (12)0.0028 (11)0.0101 (10)0.0045 (11)
C80.0552 (14)0.0405 (14)0.0399 (12)0.0079 (12)0.0086 (10)0.0021 (11)
C90.0423 (12)0.0421 (14)0.0433 (13)0.0021 (11)0.0086 (10)0.0071 (11)
C100.0407 (13)0.0517 (17)0.0583 (15)0.0056 (12)0.0031 (11)0.0072 (14)
C110.079 (2)0.072 (2)0.089 (2)0.035 (2)0.0108 (17)0.003 (2)
C120.0582 (17)0.095 (3)0.0669 (18)0.0035 (18)0.0069 (14)0.032 (2)
C130.0557 (14)0.0345 (13)0.0458 (13)0.0037 (11)0.0147 (11)0.0045 (11)
C140.128 (3)0.0383 (17)0.093 (2)0.002 (2)0.067 (2)0.0088 (19)
C150.0462 (13)0.0386 (14)0.0435 (13)0.0029 (12)0.0084 (10)0.0055 (12)
C160.0401 (13)0.0424 (14)0.0428 (12)0.0048 (12)0.0091 (10)0.0047 (12)
C170.0383 (12)0.0520 (16)0.0411 (12)0.0035 (11)0.0082 (9)0.0067 (12)
C180.0452 (15)0.105 (3)0.0771 (19)0.0025 (18)0.0132 (13)0.042 (2)
C190.0386 (11)0.0476 (16)0.0396 (12)0.0052 (12)0.0074 (9)0.0040 (12)
C200.0589 (16)0.072 (2)0.0471 (14)0.0277 (16)0.0050 (12)0.0014 (16)
C210.0638 (17)0.086 (2)0.0390 (13)0.0177 (18)0.0034 (11)0.0025 (16)
C220.0540 (14)0.0620 (18)0.0371 (12)0.0056 (14)0.0090 (10)0.0056 (14)
C230.0428 (12)0.0409 (14)0.0418 (12)0.0014 (11)0.0114 (10)0.0023 (11)
C240.0423 (12)0.0508 (17)0.0411 (12)0.0091 (12)0.0025 (9)0.0049 (12)
C250.0507 (14)0.0443 (16)0.0647 (16)0.0053 (13)0.0124 (12)0.0059 (14)
C260.0652 (18)0.061 (2)0.079 (2)0.0125 (17)0.0203 (15)0.0178 (18)
C270.095 (2)0.083 (3)0.0640 (19)0.007 (2)0.0216 (17)0.032 (2)
C280.078 (2)0.087 (3)0.0501 (16)0.004 (2)0.0049 (14)0.0217 (18)
C290.070 (2)0.075 (3)0.091 (2)0.032 (2)0.0022 (17)0.008 (2)
C300.094 (2)0.066 (2)0.0630 (19)0.001 (2)0.0318 (17)0.0088 (18)
O10.0483 (9)0.0472 (11)0.0620 (10)0.0037 (9)0.0215 (8)0.0176 (10)
O20.0766 (13)0.0362 (10)0.0664 (12)0.0011 (10)0.0270 (10)0.0048 (10)
O30.0373 (9)0.0784 (15)0.0652 (11)0.0008 (10)0.0099 (8)0.0263 (12)
Geometric parameters (Å, º) top
C1—C101.344 (4)C16—O31.185 (3)
C1—C21.473 (5)C16—O11.384 (3)
C1—H10.9300C16—C171.482 (3)
C2—C31.506 (6)C17—C181.308 (4)
C2—H2A0.9700C17—C191.509 (3)
C2—H2B0.9700C18—H18A0.9300
C3—C41.535 (3)C18—H18B0.9300
C3—H3A0.9700C19—C201.530 (4)
C3—H3B0.9700C19—C241.532 (3)
C4—C91.529 (4)C19—H190.9800
C4—C121.531 (5)C20—C211.521 (4)
C4—C51.531 (4)C20—H20A0.9700
C5—C61.532 (4)C20—H20B0.9700
C5—H5A0.9700C21—C221.529 (4)
C5—H5B0.9700C21—H21A0.9700
C6—C71.525 (4)C21—H21B0.9700
C6—H6A0.9700C22—C281.530 (4)
C6—H6B0.9700C22—C301.531 (4)
C7—C131.512 (3)C22—C231.536 (4)
C7—C81.528 (4)C23—C251.514 (4)
C7—H70.9800C23—C241.520 (3)
C8—C91.531 (3)C23—H230.9800
C8—H8A0.9700C24—H24A0.9700
C8—H8B0.9700C24—H24B0.9700
C9—C101.520 (4)C25—C261.335 (4)
C9—H90.9800C25—C291.487 (4)
C10—C111.481 (5)C26—C271.479 (5)
C11—H11A0.9600C26—H260.9300
C11—H11B0.9600C27—C281.507 (5)
C11—H11C0.9600C27—H27A0.9700
C12—H12A0.9600C27—H27B0.9700
C12—H12B0.9600C28—H28A0.9700
C12—H12C0.9600C28—H28B0.9700
C13—C141.307 (4)C29—H29A0.9600
C13—C151.475 (4)C29—H29B0.9600
C14—H14A0.9300C29—H29C0.9600
C14—H14B0.9300C30—H30A0.9600
C15—O21.182 (3)C30—H30B0.9600
C15—O11.389 (3)C30—H30C0.9600
C10—C1—C2125.0 (3)O3—C16—C17125.3 (2)
C10—C1—H1117.5O1—C16—C17112.6 (2)
C2—C1—H1117.5C18—C17—C16119.7 (2)
C1—C2—C3113.4 (3)C18—C17—C19126.0 (2)
C1—C2—H2A108.9C16—C17—C19114.3 (2)
C3—C2—H2A108.9C17—C18—H18A120.0
C1—C2—H2B108.9C17—C18—H18B120.0
C3—C2—H2B108.9H18A—C18—H18B120.0
H2A—C2—H2B107.7C17—C19—C20111.0 (2)
C2—C3—C4112.4 (3)C17—C19—C24113.3 (2)
C2—C3—H3A109.1C20—C19—C24110.71 (19)
C4—C3—H3A109.1C17—C19—H19107.2
C2—C3—H3B109.1C20—C19—H19107.2
C4—C3—H3B109.1C24—C19—H19107.2
H3A—C3—H3B107.9C21—C20—C19111.3 (3)
C9—C4—C12112.0 (3)C21—C20—H20A109.4
C9—C4—C5108.4 (2)C19—C20—H20A109.4
C12—C4—C5110.3 (3)C21—C20—H20B109.4
C9—C4—C3107.3 (2)C19—C20—H20B109.4
C12—C4—C3109.2 (3)H20A—C20—H20B108.0
C5—C4—C3109.6 (3)C20—C21—C22113.6 (2)
C4—C5—C6112.9 (3)C20—C21—H21A108.9
C4—C5—H5A109.0C22—C21—H21A108.9
C6—C5—H5A109.0C20—C21—H21B108.9
C4—C5—H5B109.0C22—C21—H21B108.9
C6—C5—H5B109.0H21A—C21—H21B107.7
H5A—C5—H5B107.8C21—C22—C28110.0 (2)
C7—C6—C5111.2 (2)C21—C22—C30109.9 (3)
C7—C6—H6A109.4C28—C22—C30109.1 (2)
C5—C6—H6A109.4C21—C22—C23108.4 (2)
C7—C6—H6B109.4C28—C22—C23107.7 (3)
C5—C6—H6B109.4C30—C22—C23111.7 (2)
H6A—C6—H6B108.0C25—C23—C24115.7 (2)
C13—C7—C6111.4 (2)C25—C23—C22111.7 (2)
C13—C7—C8113.0 (2)C24—C23—C22112.0 (2)
C6—C7—C8110.9 (2)C25—C23—H23105.4
C13—C7—H7107.1C24—C23—H23105.4
C6—C7—H7107.1C22—C23—H23105.4
C8—C7—H7107.1C23—C24—C19110.9 (2)
C7—C8—C9110.4 (2)C23—C24—H24A109.5
C7—C8—H8A109.6C19—C24—H24A109.5
C9—C8—H8A109.6C23—C24—H24B109.5
C7—C8—H8B109.6C19—C24—H24B109.5
C9—C8—H8B109.6H24A—C24—H24B108.0
H8A—C8—H8B108.1C26—C25—C29121.4 (3)
C10—C9—C4111.8 (2)C26—C25—C23120.3 (3)
C10—C9—C8115.1 (2)C29—C25—C23118.3 (2)
C4—C9—C8112.0 (2)C25—C26—C27125.2 (3)
C10—C9—H9105.7C25—C26—H26117.4
C4—C9—H9105.7C27—C26—H26117.4
C8—C9—H9105.7C26—C27—C28112.9 (3)
C1—C10—C11121.2 (3)C26—C27—H27A109.0
C1—C10—C9119.9 (3)C28—C27—H27A109.0
C11—C10—C9118.9 (2)C26—C27—H27B109.0
C10—C11—H11A109.5C28—C27—H27B109.0
C10—C11—H11B109.5H27A—C27—H27B107.8
H11A—C11—H11B109.5C27—C28—C22112.1 (3)
C10—C11—H11C109.5C27—C28—H28A109.2
H11A—C11—H11C109.5C22—C28—H28A109.2
H11B—C11—H11C109.5C27—C28—H28B109.2
C4—C12—H12A109.5C22—C28—H28B109.2
C4—C12—H12B109.5H28A—C28—H28B107.9
H12A—C12—H12B109.5C25—C29—H29A109.5
C4—C12—H12C109.5C25—C29—H29B109.5
H12A—C12—H12C109.5H29A—C29—H29B109.5
H12B—C12—H12C109.5C25—C29—H29C109.5
C14—C13—C15120.2 (2)H29A—C29—H29C109.5
C14—C13—C7125.5 (3)H29B—C29—H29C109.5
C15—C13—C7114.3 (2)C22—C30—H30A109.5
C13—C14—H14A120.0C22—C30—H30B109.5
C13—C14—H14B120.0H30A—C30—H30B109.5
H14A—C14—H14B120.0C22—C30—H30C109.5
O2—C15—O1121.6 (2)H30A—C30—H30C109.5
O2—C15—C13125.6 (2)H30B—C30—H30C109.5
O1—C15—C13112.8 (2)C16—O1—C15119.8 (2)
O3—C16—O1122.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.932.473.378 (4)166
C18—H18B···O3ii0.932.513.419 (3)168
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC30H42O3
Mr450.64
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)6.6699 (2), 6.6335 (2), 30.2948 (8)
β (°) 92.799 (1)
V3)1338.79 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.28 × 0.17 × 0.12
Data collection
DiffractometerBruker X8 APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15300, 2914, 2604
Rint0.030
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.05
No. of reflections2914
No. of parameters304
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.12

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.932.473.378 (4)166
C18—H18B···O3ii0.932.513.419 (3)168
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the CNRST and RéPAM for financial support and the Unit of Support for Technical and Scientific Research (UATRS, CNRST: URAC 16 and URAC 26) for making possible the present work. They also thank H. Zouihri for his helpful technical assistance during the X-ray measurements.

References

First citationAzoulay, P., Reynier, J. P., Balansard, G. & Gasquet, M. (1986). Pharm. Acta Helv. 61, 345–352.  CAS PubMed Web of Science Google Scholar
First citationBohlman, F. & Gupta, R. K. (1982). Phytochemistry, 21, 1443–1445.  CrossRef Web of Science Google Scholar
First citationBohlmann, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330–1334.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCeccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006–1009.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChiappini, I., Fardella, G., Menghini, A. & Rossi, C. (1982). Planta Med. 44, 159–161.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrande, M., Pierra, F., Cuenca, A., Torres, P. & Bellido, I. S. (1985). Planta Med. 51, 414–419.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221–1223.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTebaa, M., Mazoir, N., Maya, C. M., Nouzha, B., Benharref, A. & Berraho, M. (2009). Acta Cryst. E65, o267–o268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeroual, A., Mazoir, N., Maya, C. M., Berraho, M., Auhmani, A. & Benharref, A. (2007). Acta Cryst. E63, o2915.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o589-o590
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds