organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Methyl-5-nitro-1H-imidazol-1-yl)ethyl 2-nitro­benzoate

aDepartment of Chemical Engineering, Yonsei University, 134, Shincheon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea, bDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, cDepartment of Chemistry, University of Leicester, George Porter Building, University Road, Leicester LE1 7RH, England, and dH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: raza_shahm@yahoo.com

(Received 20 January 2010; accepted 2 February 2010; online 6 February 2010)

In the title compound, C13H12N4O6, the mean plane through the nitro­benzene forms a dihedral angle of 37.38 (15)° with the plane through the imidazole ring. The crystal packing is stabilized by weak inter­molecular C—H⋯O and C—H⋯N inter­actions together with ππ stacking inter­actions between nitro­benzene rings [centroid–centroid distance = 3.788 (3) Å] and between imidazole rings [centroid–centroid distance = 3.590 (2) Å].

Related literature

For the pharmacological uses of metronidazole, see: Mao et al. (2009[Mao, W.-J., Lv, P.-C., Shi, L., Li, H.-Q. & Zhu, H.-L. (2009). Bioorg. Med. Chem. 17, 7531-7536.]); Cosar et al. (1966[Cosar, C., Crisan, C., Horclois, R., Jacob, R. M., Robert, J., Tchetitcheff, S. & Vaupr, R. (1966). Arzneim. Forsch 16, 23-29.]); Bowden & Izadi (1997[Bowden, K. & Izadi, J. (1997). Eur. J. Med. Chem. 32, 995-1000.]). For a related structure, see: Bahadur et al. (2009[Bahadur, S., Anis, I., Shah, M. R. & Singh, K. (2009). Acta Cryst. E65, o1176.]). For additional structural analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N4O6

  • Mr = 320.27

  • Monoclinic, P 21 /c

  • a = 15.392 (8) Å

  • b = 8.605 (4) Å

  • c = 10.968 (5) Å

  • β = 106.576 (9)°

  • V = 1392.3 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.27 × 0.24 × 0.08 mm

Data collection
  • Bruker APEX 2000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.573, Tmax = 0.969

  • 9743 measured reflections

  • 2444 independent reflections

  • 1700 reflections with I > \2s(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.129

  • S = 1.00

  • 2444 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O5i 0.95 2.58 3.474 (4) 157
C9—H9B⋯O6ii 0.99 2.45 3.166 (3) 129
C9—H9B⋯O5 0.99 2.39 2.838 (3) 107
C9—H9A⋯N2iii 0.99 2.57 3.513 (4) 159
C7—H7⋯O3iv 0.95 2.43 3.190 (4) 137
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metronidazole,1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole, is an antibiotic which is effective against anaerobic bacteria and certain parasites (Mao et al., 2009). However, there are problems related to its low aqueous solubility, toxicity and poor absorption characteristics (Bowden & Izadi 1997). In order to improve the water-solubility of metronidazole, certain esters and hemi-esters of metronidazole have been prepared (Cosar et al., 1966) which have shown better solubility in aqueous medium compared to the parent metronidazole. Here, we are reporting the synthesis and crystal structure of an ester derivative of metronidazole, (I).

The molecule of (I), Fig. 1, is non-planar with a dihedral angle of 37.38 (15) ° formed between the mean planes through the nitrobenzene and imidazole rings (Spek, 2009). The nitro group is co-planar with the imidazole ring to which it is connected [dihedral angle 0.90 (3) °] , while the phenyl-nitro group is slightly twisted out of the plane of the benzene ring, forming a dihedral angle of 8.13 (3) °. The key CO and C—N bond distances are in agreement with those observed in the related structure of 2-(2-methyl-5-nitro-1 H-imidazol-1-yl) ethyl 3-bromobenzoate (Bahadur et al., 2009). The crystal packing is stabilized by weak intermolecular C—H···O and C—H···N interactions, Table 1 , together with π-π stacking interactions with the shortest of these occuring between symmetry related imidazole rings [ring centroid (N1–C12)··· ring centroid (N1–C12)i =3.590 (2) Å for ii: 1-x, -y, 1-z]. In addition, π···π contacts are noted between symmetry related nitrobenzene rings [ring centroid (C2–C7)···ring centroid (C2–C7)ii = 3.788 (3) Å for ii : 1-x, 2-y, 1-z].

Related literature top

For the pharmacological uses of metronidazole, see: Mao et al. (2009); Cosar et al. (1966); Bowden & Izadi (1997). For a related structure, see: Bahadur et al. (2009). For additional structural analysis, see: Spek (2009).

Experimental top

Metronidazole (5 g, 29.23 mmol) was added to 4-nitrobenzoic acid (9.38 g, 56.11 mmol) dissolved in anhydrous CH2Cl2 (10 ml). Then, 4-dimethylaminopyridine (0.15 equiv.) and dicyclohexylcarbodiimide (1.25 equiv) were added, and the resulting solution stirred. After 12 h, the solvent was evaporated under reduced pressure. The crude reaction mixture was subjected to flash column chromatography over silica gel, successively eluting with n-hexane–ethyl acetate (2.8: 7.2) which afforded (I) in 73 % yield. Colorless crystals were obtained from the slow evaporation of a CH2Cl2 solution of (I).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular Structure of (I) with atom labelling scheme and 30% probability displacement ellipsoids.
2-(2-Methyl-5-nitro-1H-imidazol-1-yl)ethyl 2-nitrobenzoate top
Crystal data top
C13H12N4O6F(000) = 664
Mr = 320.27Dx = 1.528 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 721 reflections
a = 15.392 (8) Åθ = 2.8–23.3°
b = 8.605 (4) ŵ = 0.12 mm1
c = 10.968 (5) ÅT = 150 K
β = 106.576 (9)°Plate, yellow
V = 1392.3 (12) Å30.27 × 0.24 × 0.08 mm
Z = 4
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
2444 independent reflections
Radiation source: fine-focus sealed tube1700 reflections with I > \2s(I)
Graphite monochromatorRint = 0.099
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1818
Tmin = 0.573, Tmax = 0.969k = 1010
9743 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0572P)2]
where P = (Fo2 + 2Fc2)/3
2444 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H12N4O6V = 1392.3 (12) Å3
Mr = 320.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.392 (8) ŵ = 0.12 mm1
b = 8.605 (4) ÅT = 150 K
c = 10.968 (5) Å0.27 × 0.24 × 0.08 mm
β = 106.576 (9)°
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
2444 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1700 reflections with I > \2s(I)
Tmin = 0.573, Tmax = 0.969Rint = 0.099
9743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
2444 reflectionsΔρmin = 0.23 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23596 (12)0.70542 (19)0.54231 (16)0.0328 (5)
O20.09150 (14)0.6281 (2)0.5020 (2)0.0531 (6)
O30.17653 (15)0.8476 (3)0.73301 (19)0.0554 (6)
O40.17995 (15)1.0918 (3)0.7714 (2)0.0678 (7)
O50.33567 (14)0.2348 (2)0.51061 (18)0.0456 (6)
O60.35085 (16)0.1756 (2)0.3260 (2)0.0535 (6)
N10.38462 (14)0.5437 (2)0.47700 (18)0.0274 (5)
N20.42041 (15)0.6345 (3)0.3073 (2)0.0349 (6)
N30.16552 (16)0.9819 (3)0.6976 (2)0.0429 (6)
N40.35352 (16)0.2691 (3)0.4118 (2)0.0359 (6)
C10.14715 (19)0.7286 (3)0.5095 (2)0.0335 (6)
C20.12371 (17)0.8940 (3)0.4747 (3)0.0336 (7)
C30.13293 (17)1.0152 (3)0.5613 (3)0.0342 (7)
C40.10931 (18)1.1655 (3)0.5259 (3)0.0419 (8)
H40.11701.24490.58820.050*
C50.0745 (2)1.1999 (4)0.3993 (3)0.0490 (8)
H50.05761.30350.37320.059*
C60.0642 (2)1.0840 (4)0.3104 (3)0.0500 (8)
H60.03951.10760.22270.060*
C70.08938 (19)0.9331 (4)0.3477 (3)0.0434 (7)
H70.08300.85460.28480.052*
C80.26654 (18)0.5514 (3)0.5882 (2)0.0327 (6)
H8A0.23390.47170.52720.039*
H8B0.25520.53230.67130.039*
C90.36572 (17)0.5446 (3)0.6016 (2)0.0287 (6)
H9A0.39590.63540.65140.034*
H9B0.39150.44950.64920.034*
C100.40945 (17)0.6699 (3)0.4201 (2)0.0306 (6)
C110.40087 (18)0.4813 (3)0.2895 (2)0.0351 (7)
H110.40190.42310.21630.042*
C120.37939 (18)0.4234 (3)0.3933 (2)0.0299 (6)
C130.4210 (2)0.8282 (3)0.4750 (3)0.0405 (7)
H13A0.45100.89420.42640.061*
H13B0.45820.82320.56380.061*
H13C0.36150.87180.47120.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0350 (11)0.0268 (10)0.0376 (11)0.0009 (8)0.0123 (9)0.0037 (8)
O20.0401 (12)0.0407 (13)0.0799 (16)0.0053 (10)0.0196 (11)0.0035 (11)
O30.0745 (16)0.0549 (16)0.0435 (14)0.0126 (12)0.0276 (12)0.0088 (11)
O40.0684 (17)0.0673 (17)0.0586 (15)0.0159 (13)0.0036 (13)0.0246 (13)
O50.0764 (16)0.0276 (11)0.0378 (12)0.0041 (10)0.0242 (11)0.0047 (9)
O60.0910 (18)0.0274 (11)0.0468 (13)0.0035 (11)0.0272 (12)0.0119 (10)
N10.0364 (13)0.0205 (12)0.0267 (12)0.0006 (9)0.0109 (10)0.0008 (9)
N20.0456 (14)0.0312 (14)0.0310 (13)0.0002 (11)0.0159 (11)0.0028 (10)
N30.0360 (14)0.0465 (17)0.0478 (17)0.0069 (12)0.0143 (12)0.0085 (14)
N40.0512 (15)0.0251 (13)0.0329 (14)0.0018 (11)0.0144 (12)0.0017 (11)
C10.0320 (16)0.0359 (17)0.0340 (16)0.0031 (13)0.0115 (13)0.0009 (13)
C20.0281 (15)0.0340 (16)0.0417 (17)0.0003 (12)0.0147 (13)0.0030 (13)
C30.0250 (14)0.0397 (18)0.0394 (17)0.0017 (12)0.0115 (12)0.0014 (13)
C40.0341 (17)0.0337 (17)0.061 (2)0.0015 (13)0.0191 (15)0.0012 (15)
C50.0392 (18)0.0387 (19)0.072 (2)0.0058 (14)0.0208 (17)0.0174 (18)
C60.0432 (19)0.059 (2)0.0473 (19)0.0058 (16)0.0127 (15)0.0210 (18)
C70.0394 (18)0.0483 (19)0.0446 (19)0.0006 (15)0.0155 (15)0.0031 (15)
C80.0459 (17)0.0227 (14)0.0334 (15)0.0011 (12)0.0177 (13)0.0017 (11)
C90.0422 (16)0.0215 (14)0.0247 (14)0.0032 (12)0.0134 (12)0.0015 (11)
C100.0365 (16)0.0220 (15)0.0345 (16)0.0023 (12)0.0122 (12)0.0060 (12)
C110.0459 (18)0.0310 (17)0.0311 (16)0.0018 (13)0.0151 (13)0.0024 (12)
C120.0425 (17)0.0200 (14)0.0285 (14)0.0023 (12)0.0120 (12)0.0020 (11)
C130.0504 (19)0.0251 (16)0.0480 (18)0.0049 (13)0.0172 (15)0.0009 (13)
Geometric parameters (Å, º) top
O1—C11.326 (3)C4—C51.370 (4)
O1—C81.448 (3)C4—H40.9500
O2—C11.204 (3)C5—C61.371 (4)
O3—N31.216 (3)C5—H50.9500
O4—N31.223 (3)C6—C71.384 (4)
O5—N41.227 (3)C6—H60.9500
O6—N41.230 (3)C7—H70.9500
N1—C101.360 (3)C8—C91.492 (4)
N1—C121.371 (3)C8—H8A0.9900
N1—C91.476 (3)C8—H8B0.9900
N2—C101.331 (3)C9—H9A0.9900
N2—C111.354 (3)C9—H9B0.9900
N3—C31.462 (4)C10—C131.479 (4)
N4—C121.417 (3)C11—C121.367 (3)
C1—C21.491 (4)C11—H110.9500
C2—C71.383 (4)C13—H13A0.9800
C2—C31.390 (4)C13—H13B0.9800
C3—C41.369 (4)C13—H13C0.9800
C1—O1—C8116.1 (2)C2—C7—H7119.3
C10—N1—C12105.4 (2)C6—C7—H7119.3
C10—N1—C9125.2 (2)O1—C8—C9107.0 (2)
C12—N1—C9129.4 (2)O1—C8—H8A110.3
C10—N2—C11106.0 (2)C9—C8—H8A110.3
O3—N3—O4122.8 (3)O1—C8—H8B110.3
O3—N3—C3119.2 (2)C9—C8—H8B110.3
O4—N3—C3118.0 (3)H8A—C8—H8B108.6
O5—N4—O6123.5 (2)N1—C9—C8112.0 (2)
O5—N4—C12119.6 (2)N1—C9—H9A109.2
O6—N4—C12116.9 (2)C8—C9—H9A109.2
O2—C1—O1124.7 (3)N1—C9—H9B109.2
O2—C1—C2123.6 (3)C8—C9—H9B109.2
O1—C1—C2111.6 (2)H9A—C9—H9B107.9
C7—C2—C3116.2 (3)N2—C10—N1111.7 (2)
C7—C2—C1119.0 (3)N2—C10—C13123.8 (2)
C3—C2—C1124.8 (3)N1—C10—C13124.4 (2)
C4—C3—C2123.2 (3)N2—C11—C12109.3 (2)
C4—C3—N3117.5 (3)N2—C11—H11125.3
C2—C3—N3119.3 (2)C12—C11—H11125.3
C3—C4—C5119.2 (3)C11—C12—N1107.5 (2)
C3—C4—H4120.4C11—C12—N4127.2 (2)
C5—C4—H4120.4N1—C12—N4125.2 (2)
C4—C5—C6119.7 (3)C10—C13—H13A109.5
C4—C5—H5120.1C10—C13—H13B109.5
C6—C5—H5120.1H13A—C13—H13B109.5
C5—C6—C7120.4 (3)C10—C13—H13C109.5
C5—C6—H6119.8H13A—C13—H13C109.5
C7—C6—H6119.8H13B—C13—H13C109.5
C2—C7—C6121.3 (3)
C8—O1—C1—O28.7 (4)C1—O1—C8—C9172.1 (2)
C8—O1—C1—C2175.0 (2)C10—N1—C9—C899.1 (3)
O2—C1—C2—C772.3 (4)C12—N1—C9—C879.0 (3)
O1—C1—C2—C7104.2 (3)O1—C8—C9—N170.4 (3)
O2—C1—C2—C3107.2 (3)C11—N2—C10—N10.9 (3)
O1—C1—C2—C376.4 (3)C11—N2—C10—C13177.9 (3)
C7—C2—C3—C40.5 (4)C12—N1—C10—N20.4 (3)
C1—C2—C3—C4178.9 (3)C9—N1—C10—N2178.9 (2)
C7—C2—C3—N3177.7 (2)C12—N1—C10—C13178.3 (3)
C1—C2—C3—N31.7 (4)C9—N1—C10—C130.2 (4)
O3—N3—C3—C4171.1 (3)C10—N2—C11—C121.0 (3)
O4—N3—C3—C48.4 (4)N2—C11—C12—N10.7 (3)
O3—N3—C3—C26.3 (4)N2—C11—C12—N4178.9 (3)
O4—N3—C3—C2174.2 (3)C10—N1—C12—C110.2 (3)
C2—C3—C4—C50.3 (4)C9—N1—C12—C11178.2 (2)
N3—C3—C4—C5177.0 (2)C10—N1—C12—N4178.4 (2)
C3—C4—C5—C60.2 (4)C9—N1—C12—N40.0 (4)
C4—C5—C6—C70.5 (4)O5—N4—C12—C11179.6 (3)
C3—C2—C7—C61.3 (4)O6—N4—C12—C110.8 (4)
C1—C2—C7—C6178.2 (3)O5—N4—C12—N11.7 (4)
C5—C6—C7—C21.4 (4)O6—N4—C12—N1178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O5i0.952.583.474 (4)157
C9—H9B···O6ii0.992.453.166 (3)129
C9—H9B···O50.992.392.838 (3)107
C9—H9A···N2iii0.992.573.513 (4)159
C7—H7···O3iv0.952.433.190 (4)137
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H12N4O6
Mr320.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)15.392 (8), 8.605 (4), 10.968 (5)
β (°) 106.576 (9)
V3)1392.3 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.27 × 0.24 × 0.08
Data collection
DiffractometerBruker APEX 2000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.573, 0.969
No. of measured, independent and
observed [I > \2s(I)] reflections
9743, 2444, 1700
Rint0.099
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.129, 1.00
No. of reflections2444
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O5i0.952.583.474 (4)156.6
C9—H9B···O6ii0.992.453.166 (3)128.8
C9—H9B···O50.992.392.838 (3)106.6
C9—H9A···N2iii0.992.573.513 (4)158.6
C7—H7···O3iv0.952.433.190 (4)137.2
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Pakistan Science Foundation for financial support.

References

First citationBahadur, S., Anis, I., Shah, M. R. & Singh, K. (2009). Acta Cryst. E65, o1176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBowden, K. & Izadi, J. (1997). Eur. J. Med. Chem. 32, 995–1000.  CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosar, C., Crisan, C., Horclois, R., Jacob, R. M., Robert, J., Tchetitcheff, S. & Vaupr, R. (1966). Arzneim. Forsch 16, 23–29.  CAS Google Scholar
First citationMao, W.-J., Lv, P.-C., Shi, L., Li, H.-Q. & Zhu, H.-L. (2009). Bioorg. Med. Chem. 17, 7531–7536.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds