organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Bis(3-methyl­imidazolium-1-ylmeth­yl)toluene bis­­(hexa­fluoro­phosphate)

aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 21 January 2010; accepted 30 January 2010; online 6 February 2010)

The asymmetric unit of the title N-heterocyclic carbene compound, C17H22N42+·2PF6, consists of one N-heterocyclic carbene dication and two hexa­fluoro­phosphate anions. The two imidazole rings are twisted away from but to the same side of the central toluene ring, making dihedral angles of 76.69 (7) and 78.03 (7)° with the central ring. In the crystal, the components are linked by C—H⋯F interactions, generating a three-dimensional network.

Related literature

For background to N-heterocyclic carbenes, see: Wanzlick & Schönherr (1968[Wanzlick, H.-W. & Schönherr, H.-J. (1968). Angew. Chem. Int. Ed. Engl. 7, 141-142.]); Öfele (1968[Öfele, K. (1968). J. Organomet. Chem. 12, P42-P43.]); Arduengo et al. (1991[Arduengo, A. J. III, Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]). For applications of N-heterocyclic carbene derivatives, see: Meyer et al. (2009[Meyer, D., Taige, M. A., Zeller, A., Hohlfeld, K., Ahrens, S. & Strassner, T. (2009). Organometallics, 28, 2142-2149.]); Ray et al. (2007[Ray, S., Mohan, R., Singh, J. K., Samantaray, M. K., Shaikh, M. M., Panda, D. & Ghosh, P. (2007). J. Am. Chem. Soc. 129, 15042-15053.]); Medvetz et al. (2008[Medvetz, D. A., Hindi, K. M., Panzner, M. J., Ditto, A. J., Yun, Y. H. & Young, W. J. (2008). Met. Based Drugs, Article ID 384010.]). For a related structure, see: Jiang (2009[Jiang, P. (2009). Acta Cryst. E65, o2177.]). For the synthesis, see; Dias & Jin (1994[Dias, H. V. R. & Jin, W. (1994). Tetrahedron Lett. 35, 1365-1366.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H22N42+·2PF6

  • Mr = 572.33

  • Monoclinic, P 21 /c

  • a = 6.1289 (1) Å

  • b = 19.0139 (4) Å

  • c = 20.1770 (4) Å

  • β = 97.390 (1)°

  • V = 2331.78 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.53 × 0.28 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.858, Tmax = 0.942

  • 42881 measured reflections

  • 11275 independent reflections

  • 7988 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.149

  • S = 1.03

  • 11275 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F2i 0.93 2.47 3.3431 (16) 157
C5—H5A⋯F8ii 0.93 2.39 3.2686 (16) 157
C8—H8A⋯F12ii 0.93 2.40 3.2808 (16) 158
C9—H9A⋯F4i 0.93 2.41 3.2513 (19) 151
C10—H10A⋯F4iii 0.93 2.38 3.2967 (17) 169
C12—H12B⋯F5iv 0.97 2.42 3.3040 (18) 150
C14—H14A⋯F8iii 0.93 2.55 3.283 (2) 136
C14—H14A⋯F10iii 0.93 2.53 3.3050 (19) 141
C15—H15A⋯F7v 0.93 2.50 3.2568 (19) 139
C16—H16B⋯F9vi 0.96 2.48 3.135 (2) 125
C16—H16C⋯F2 0.96 2.48 3.314 (2) 146
C17—H17C⋯F11 0.96 2.42 3.3563 (18) 166
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-Heterocyclic carbenes (NHCs) were first pioneered by Wanzlick and Öfele in 1968 (Wanzlick & Schönherr, 1968; Öfele, 1968). After the isolation of the first stable crystalline carbene by Arduengo in 1991, the research area of NHCs has continued to grow (Arduengo et al., 1991). NHCs are an important class of ligands and their metal complexes are important in homogeneous catalysis for a wide range of reactions including C–C coupling reactions, olefin metathesis, hydroformylation, and polymerization reactions (Meyer et al., 2009). The biological activities of many of these complexes were confirmed (Ray et al., 2007) and the silver complexes derived from 4,5-dichloro-1H-imidazole were found to be active against human cancer cell lines (Medvetz et al., 2008).

The asymmetric unit of the title compound consists of one N-heterocyclic carbene dication and two hexafluorophosphate anions (Fig. 1). The geometric parameters are comparable to those of a related structure (Jiang, 2009). Each of the imidazole rings (N1–C8–N2–C10–C9 and N3–C13–N4–C15–C14) is planar with a maximum deviation of 0.003 (1) Å (for N1) and 0.002 (2) Å (for C14 & C15), respectively. The two imidazole rings are twisted away from the central toluene ring but are orientated to the same side of the ring, making dihedral angles of 76.69 (7) and 78.03 (7)° with the central ring, respectively. The two hexafluorophosphate anions link the ions into a three-dimensional network via intermolecular C—H···F hydrogen bonds (Fig. 2, Table 1).

Related literature top

For background to N-heterocyclic carbenes, see: Wanzlick & Schönherr (1968); Öfele (1968); Arduengo et al. (1991). For applications of N-heterocyclic carbene derivatives, see: Meyer et al. (2009); Ray et al. (2007); Medvetz et al. (2008). For a related structure, see: Jiang (2009). For the synthesis, see; Dias & Jin (1994). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was prepared following the procedure of Dias & Jin (1994). To a stirred solution of 3,5-bis(bromomethyl)toluene (1.0 g, 3.6 mmol) in 1,4-dioxane (20 ml), 1-methylimidazole (0.9 g, 7.2 mmol) was added. The mixture was refluxed at 373 K for 24 h. The sticky product was isolated by decantation, then washed with diethyl ether (2x3 ml). KPF6 (1.3 g, 7.2 mmol) in methanol (20 ml) was added with stirring for 1 h. Then the mixture left standing overnight. The beige precipitate was collected and washed with distilled water and recrystallised from hot methanol. The yield was 1.5 g (72.88 %), m.pt.: 467-469 K. Crystals were obtained by slow evaporation of the salt solution in acetonitrile at low temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). The rotating group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the molecules are linked a 3-D network. Intermolecular hydrogen bonds are shown as dashed lines.
3,5-Bis(3-methylimidazolium-1-ylmethyl)toluene bis(hexafluorophosphate) top
Crystal data top
C17H22N42+·2PF6F(000) = 1160
Mr = 572.33Dx = 1.630 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9980 reflections
a = 6.1289 (1) Åθ = 2.3–33.1°
b = 19.0139 (4) ŵ = 0.30 mm1
c = 20.1770 (4) ÅT = 100 K
β = 97.390 (1)°Block, colourless
V = 2331.78 (8) Å30.53 × 0.28 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11275 independent reflections
Radiation source: fine-focus sealed tube7988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 36.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 910
Tmin = 0.858, Tmax = 0.942k = 3131
42881 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.7107P]
where P = (Fo2 + 2Fc2)/3
11275 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C17H22N42+·2PF6V = 2331.78 (8) Å3
Mr = 572.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1289 (1) ŵ = 0.30 mm1
b = 19.0139 (4) ÅT = 100 K
c = 20.1770 (4) Å0.53 × 0.28 × 0.20 mm
β = 97.390 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11275 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7988 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 0.942Rint = 0.034
42881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.03Δρmax = 0.62 e Å3
11275 reflectionsΔρmin = 0.44 e Å3
319 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.09705 (19)0.13322 (5)0.47609 (5)0.02147 (19)
N21.01744 (18)0.14740 (6)0.57634 (5)0.02158 (19)
N31.07523 (19)0.45850 (6)0.36551 (5)0.0224 (2)
N40.89594 (19)0.55547 (6)0.34480 (6)0.0241 (2)
C10.8951 (2)0.20094 (7)0.33537 (6)0.0244 (2)
H1A0.82580.15740.32990.029*
C20.7957 (2)0.25985 (7)0.30300 (6)0.0229 (2)
C30.9031 (2)0.32451 (7)0.31150 (6)0.0220 (2)
H3A0.83880.36420.29040.026*
C41.1060 (2)0.33027 (7)0.35138 (6)0.0224 (2)
C51.2019 (2)0.27104 (7)0.38343 (6)0.0230 (2)
H5A1.33700.27470.41010.028*
C61.0960 (2)0.20638 (7)0.37567 (6)0.0229 (2)
C71.1966 (3)0.14348 (7)0.41401 (7)0.0284 (3)
H7A1.17360.10170.38640.034*
H7B1.35390.15060.42490.034*
C81.1522 (2)0.16744 (6)0.53334 (6)0.0216 (2)
H8A1.26590.19990.54180.026*
C90.9202 (3)0.09042 (7)0.48282 (7)0.0287 (3)
H9A0.84810.06100.45030.034*
C100.8715 (2)0.09935 (8)0.54570 (7)0.0293 (3)
H10A0.75960.07700.56470.035*
C111.0210 (3)0.17284 (9)0.64499 (7)0.0326 (3)
H11A1.14950.20130.65680.049*
H11B1.02430.13350.67490.049*
H11C0.89170.20040.64830.049*
C121.2268 (2)0.39980 (7)0.36005 (8)0.0286 (3)
H12A1.33320.39790.40000.034*
H12B1.30640.40760.32210.034*
C131.0490 (2)0.51400 (7)0.32521 (6)0.0215 (2)
H13A1.12570.52240.28910.026*
C140.9316 (3)0.46493 (8)0.41259 (7)0.0310 (3)
H14A0.91480.43330.44670.037*
C150.8204 (3)0.52554 (8)0.39983 (8)0.0316 (3)
H15A0.71310.54380.42360.038*
C160.8185 (3)0.62160 (8)0.31312 (8)0.0360 (3)
H16A0.92190.63760.28450.054*
H16B0.80500.65630.34690.054*
H16C0.67780.61430.28710.054*
C170.5767 (2)0.25388 (8)0.26001 (7)0.0307 (3)
H17A0.50860.29940.25530.046*
H17B0.48360.22220.28060.046*
H17C0.59820.23620.21680.046*
P10.48424 (5)0.488905 (18)0.175041 (16)0.02100 (7)
F10.74701 (13)0.49029 (5)0.18064 (5)0.03038 (18)
F20.48256 (17)0.57311 (5)0.17898 (5)0.0381 (2)
F30.22094 (15)0.48912 (6)0.16927 (6)0.0434 (2)
F40.46926 (17)0.49406 (6)0.09530 (4)0.0407 (2)
F50.50201 (18)0.48512 (7)0.25471 (5)0.0442 (3)
F60.48927 (19)0.40533 (5)0.16983 (6)0.0488 (3)
P20.66006 (5)0.168232 (18)0.043019 (17)0.02251 (8)
F70.39775 (14)0.15921 (5)0.03209 (5)0.0366 (2)
F80.66196 (17)0.16954 (6)0.03614 (5)0.0412 (2)
F90.92024 (15)0.17795 (6)0.05369 (6)0.0421 (2)
F100.69001 (18)0.08453 (5)0.04230 (6)0.0420 (2)
F110.6604 (2)0.16457 (8)0.12203 (5)0.0575 (4)
F120.62782 (18)0.25150 (5)0.04312 (7)0.0552 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0274 (5)0.0155 (4)0.0224 (4)0.0010 (4)0.0065 (4)0.0017 (4)
N20.0240 (5)0.0208 (5)0.0200 (4)0.0028 (4)0.0029 (4)0.0019 (4)
N30.0262 (5)0.0190 (5)0.0223 (4)0.0057 (4)0.0044 (4)0.0003 (4)
N40.0248 (5)0.0214 (5)0.0254 (5)0.0017 (4)0.0010 (4)0.0041 (4)
C10.0336 (7)0.0184 (5)0.0230 (5)0.0047 (5)0.0101 (5)0.0033 (4)
C20.0285 (6)0.0220 (5)0.0192 (5)0.0055 (4)0.0072 (4)0.0028 (4)
C30.0268 (6)0.0202 (5)0.0195 (5)0.0020 (4)0.0050 (4)0.0006 (4)
C40.0265 (6)0.0191 (5)0.0223 (5)0.0025 (4)0.0060 (4)0.0007 (4)
C50.0251 (6)0.0225 (5)0.0220 (5)0.0006 (4)0.0060 (4)0.0007 (4)
C60.0317 (6)0.0186 (5)0.0205 (5)0.0023 (4)0.0115 (4)0.0002 (4)
C70.0401 (7)0.0207 (6)0.0275 (6)0.0084 (5)0.0158 (5)0.0025 (5)
C80.0209 (5)0.0187 (5)0.0253 (5)0.0008 (4)0.0034 (4)0.0007 (4)
C90.0364 (7)0.0223 (6)0.0268 (6)0.0105 (5)0.0013 (5)0.0016 (5)
C100.0290 (6)0.0300 (7)0.0292 (6)0.0090 (5)0.0053 (5)0.0062 (5)
C110.0418 (8)0.0350 (7)0.0211 (5)0.0130 (6)0.0048 (5)0.0007 (5)
C120.0238 (6)0.0216 (6)0.0402 (7)0.0035 (4)0.0031 (5)0.0041 (5)
C130.0232 (5)0.0215 (5)0.0201 (5)0.0031 (4)0.0037 (4)0.0003 (4)
C140.0437 (8)0.0272 (6)0.0247 (6)0.0118 (6)0.0145 (5)0.0026 (5)
C150.0350 (7)0.0304 (7)0.0320 (6)0.0078 (5)0.0146 (6)0.0107 (5)
C160.0386 (8)0.0261 (7)0.0395 (8)0.0054 (6)0.0089 (6)0.0022 (6)
C170.0309 (7)0.0333 (7)0.0275 (6)0.0074 (5)0.0022 (5)0.0039 (5)
P10.01773 (14)0.02285 (15)0.02274 (14)0.00107 (10)0.00376 (11)0.00061 (11)
F10.0179 (3)0.0379 (5)0.0356 (4)0.0027 (3)0.0042 (3)0.0001 (4)
F20.0392 (5)0.0242 (4)0.0517 (6)0.0057 (4)0.0091 (4)0.0031 (4)
F30.0176 (4)0.0592 (7)0.0538 (6)0.0036 (4)0.0061 (4)0.0061 (5)
F40.0399 (5)0.0593 (6)0.0223 (4)0.0208 (5)0.0018 (4)0.0017 (4)
F50.0407 (5)0.0687 (8)0.0247 (4)0.0091 (5)0.0100 (4)0.0080 (4)
F60.0449 (6)0.0229 (4)0.0752 (8)0.0043 (4)0.0051 (5)0.0019 (5)
P20.01778 (14)0.02462 (16)0.02537 (15)0.00125 (11)0.00367 (11)0.00180 (12)
F70.0190 (4)0.0468 (5)0.0443 (5)0.0040 (4)0.0055 (3)0.0089 (4)
F80.0350 (5)0.0598 (7)0.0299 (4)0.0093 (4)0.0084 (4)0.0100 (4)
F90.0178 (4)0.0478 (6)0.0593 (6)0.0006 (4)0.0010 (4)0.0095 (5)
F100.0447 (6)0.0269 (4)0.0538 (6)0.0047 (4)0.0039 (5)0.0042 (4)
F110.0468 (6)0.1009 (11)0.0251 (4)0.0206 (6)0.0064 (4)0.0085 (5)
F120.0356 (5)0.0249 (5)0.1015 (10)0.0045 (4)0.0052 (6)0.0120 (5)
Geometric parameters (Å, º) top
N1—C81.3310 (16)C10—H10A0.9300
N1—C91.3759 (18)C11—H11A0.9600
N1—C71.4752 (17)C11—H11B0.9600
N2—C81.3284 (17)C11—H11C0.9600
N2—C101.3691 (18)C12—H12A0.9700
N2—C111.4647 (17)C12—H12B0.9700
N3—C131.3294 (16)C13—H13A0.9300
N3—C141.3810 (18)C14—C151.347 (2)
N3—C121.4652 (18)C14—H14A0.9300
N4—C131.3242 (17)C15—H15A0.9300
N4—C151.3795 (19)C16—H16A0.9600
N4—C161.4618 (19)C16—H16B0.9600
C1—C61.389 (2)C16—H16C0.9600
C1—C21.3965 (19)C17—H17A0.9600
C1—H1A0.9300C17—H17B0.9600
C2—C31.3945 (17)C17—H17C0.9600
C2—C171.5059 (19)P1—F61.5932 (10)
C3—C41.3959 (18)P1—F51.5988 (10)
C3—H3A0.9300P1—F11.6001 (9)
C4—C51.3907 (18)P1—F41.6027 (9)
C4—C121.5143 (18)P1—F31.6029 (10)
C5—C61.3897 (18)P1—F21.6031 (10)
C5—H5A0.9300P2—F91.5921 (10)
C6—C71.5123 (18)P2—F111.5955 (11)
C7—H7A0.9700P2—F121.5957 (11)
C7—H7B0.9700P2—F81.5989 (10)
C8—H8A0.9300P2—F101.6024 (10)
C9—C101.351 (2)P2—F71.6036 (9)
C9—H9A0.9300
C8—N1—C9108.59 (11)N3—C12—H12B109.3
C8—N1—C7125.85 (12)C4—C12—H12B109.3
C9—N1—C7125.40 (12)H12A—C12—H12B108.0
C8—N2—C10108.76 (11)N4—C13—N3108.95 (11)
C8—N2—C11126.01 (12)N4—C13—H13A125.5
C10—N2—C11125.23 (12)N3—C13—H13A125.5
C13—N3—C14108.23 (12)C15—C14—N3107.21 (12)
C13—N3—C12125.92 (12)C15—C14—H14A126.4
C14—N3—C12125.84 (12)N3—C14—H14A126.4
C13—N4—C15108.57 (12)C14—C15—N4107.04 (13)
C13—N4—C16125.75 (13)C14—C15—H15A126.5
C15—N4—C16125.68 (13)N4—C15—H15A126.5
C6—C1—C2120.95 (12)N4—C16—H16A109.5
C6—C1—H1A119.5N4—C16—H16B109.5
C2—C1—H1A119.5H16A—C16—H16B109.5
C3—C2—C1118.63 (12)N4—C16—H16C109.5
C3—C2—C17120.59 (12)H16A—C16—H16C109.5
C1—C2—C17120.78 (12)H16B—C16—H16C109.5
C2—C3—C4120.75 (12)C2—C17—H17A109.5
C2—C3—H3A119.6C2—C17—H17B109.5
C4—C3—H3A119.6H17A—C17—H17B109.5
C5—C4—C3119.76 (12)C2—C17—H17C109.5
C5—C4—C12118.82 (12)H17A—C17—H17C109.5
C3—C4—C12121.41 (12)H17B—C17—H17C109.5
C6—C5—C4120.04 (12)F6—P1—F591.26 (7)
C6—C5—H5A120.0F6—P1—F189.61 (6)
C4—C5—H5A120.0F5—P1—F189.54 (5)
C1—C6—C5119.86 (12)F6—P1—F489.65 (6)
C1—C6—C7120.87 (12)F5—P1—F4178.89 (7)
C5—C6—C7119.21 (13)F1—P1—F489.83 (5)
N1—C7—C6110.66 (10)F6—P1—F391.47 (6)
N1—C7—H7A109.5F5—P1—F390.62 (6)
C6—C7—H7A109.5F1—P1—F3178.90 (6)
N1—C7—H7B109.5F4—P1—F389.99 (6)
C6—C7—H7B109.5F6—P1—F2178.73 (7)
H7A—C7—H7B108.1F5—P1—F289.72 (6)
N2—C8—N1108.46 (11)F1—P1—F289.59 (5)
N2—C8—H8A125.8F4—P1—F289.36 (6)
N1—C8—H8A125.8F3—P1—F289.32 (6)
C10—C9—N1106.89 (12)F9—P2—F1189.85 (6)
C10—C9—H9A126.6F9—P2—F1290.39 (6)
N1—C9—H9A126.6F11—P2—F1291.50 (8)
C9—C10—N2107.30 (12)F9—P2—F889.86 (6)
C9—C10—H10A126.4F11—P2—F8178.32 (7)
N2—C10—H10A126.4F12—P2—F890.15 (7)
N2—C11—H11A109.5F9—P2—F1090.15 (6)
N2—C11—H11B109.5F11—P2—F1088.87 (7)
H11A—C11—H11B109.5F12—P2—F10179.35 (7)
N2—C11—H11C109.5F8—P2—F1089.47 (6)
H11A—C11—H11C109.5F9—P2—F7179.46 (6)
H11B—C11—H11C109.5F11—P2—F790.30 (6)
N3—C12—C4111.62 (11)F12—P2—F789.09 (6)
N3—C12—H12A109.3F8—P2—F790.02 (6)
C4—C12—H12A109.3F10—P2—F790.37 (6)
C6—C1—C2—C30.45 (19)C7—N1—C8—N2175.98 (11)
C6—C1—C2—C17179.27 (12)C8—N1—C9—C100.46 (16)
C1—C2—C3—C40.19 (19)C7—N1—C9—C10175.99 (12)
C17—C2—C3—C4179.91 (12)N1—C9—C10—N20.27 (17)
C2—C3—C4—C50.45 (19)C8—N2—C10—C90.01 (16)
C2—C3—C4—C12178.79 (12)C11—N2—C10—C9179.28 (13)
C3—C4—C5—C60.08 (19)C13—N3—C12—C4120.97 (14)
C12—C4—C5—C6179.19 (12)C14—N3—C12—C457.56 (18)
C2—C1—C6—C50.83 (19)C5—C4—C12—N3141.60 (12)
C2—C1—C6—C7176.25 (11)C3—C4—C12—N339.15 (18)
C4—C5—C6—C10.56 (19)C15—N4—C13—N30.04 (15)
C4—C5—C6—C7176.57 (11)C16—N4—C13—N3179.56 (12)
C8—N1—C7—C681.82 (17)C14—N3—C13—N40.27 (14)
C9—N1—C7—C692.95 (16)C12—N3—C13—N4179.02 (11)
C1—C6—C7—N180.96 (15)C13—N3—C14—C150.40 (16)
C5—C6—C7—N196.14 (15)C12—N3—C14—C15179.15 (12)
C10—N2—C8—N10.30 (15)N3—C14—C15—N40.37 (16)
C11—N2—C8—N1179.56 (12)C13—N4—C15—C140.21 (16)
C9—N1—C8—N20.47 (15)C16—N4—C15—C14179.31 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F2i0.932.473.3431 (16)157
C5—H5A···F8ii0.932.393.2686 (16)157
C8—H8A···F12ii0.932.403.2808 (16)158
C9—H9A···F4i0.932.413.2513 (19)151
C10—H10A···F4iii0.932.383.2967 (17)169
C12—H12B···F5iv0.972.423.3040 (18)150
C14—H14A···F8iii0.932.553.283 (2)136
C14—H14A···F10iii0.932.533.3050 (19)141
C15—H15A···F7v0.932.503.2568 (19)139
C16—H16B···F9vi0.962.483.135 (2)125
C16—H16C···F20.962.483.314 (2)146
C17—H17C···F110.962.423.3563 (18)166
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y+1/2, z+1/2; (vi) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H22N42+·2PF6
Mr572.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.1289 (1), 19.0139 (4), 20.1770 (4)
β (°) 97.390 (1)
V3)2331.78 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.53 × 0.28 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.858, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
42881, 11275, 7988
Rint0.034
(sin θ/λ)max1)0.834
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.149, 1.03
No. of reflections11275
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F2i0.93002.47003.3431 (16)157.00
C5—H5A···F8ii0.93002.39003.2686 (16)157.00
C8—H8A···F12ii0.93002.40003.2808 (16)158.00
C9—H9A···F4i0.93002.41003.2513 (19)151.00
C10—H10A···F4iii0.93002.38003.2967 (17)169.00
C12—H12B···F5iv0.97002.42003.3040 (18)150.00
C14—H14A···F8iii0.93002.55003.283 (2)136.00
C14—H14A···F10iii0.93002.53003.3050 (19)141.00
C15—H15A···F7v0.93002.50003.2568 (19)139.00
C16—H16B···F9vi0.96002.48003.135 (2)125.00
C16—H16C···F20.96002.48003.314 (2)146.00
C17—H17C···F110.96002.42003.3563 (18)166.00
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y+1/2, z+1/2; (vi) x+2, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AW, RAH and SGT thank Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115). HKF and CSY thank USM for the Research University Golden Goose grant (1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship.

References

First citationArduengo, A. J. III, Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDias, H. V. R. & Jin, W. (1994). Tetrahedron Lett. 35, 1365–1366.  CrossRef CAS Web of Science Google Scholar
First citationJiang, P. (2009). Acta Cryst. E65, o2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMedvetz, D. A., Hindi, K. M., Panzner, M. J., Ditto, A. J., Yun, Y. H. & Young, W. J. (2008). Met. Based Drugs, Article ID 384010.  Google Scholar
First citationMeyer, D., Taige, M. A., Zeller, A., Hohlfeld, K., Ahrens, S. & Strassner, T. (2009). Organometallics, 28, 2142–2149.  Web of Science CSD CrossRef CAS Google Scholar
First citationÖfele, K. (1968). J. Organomet. Chem. 12, P42–P43.  Google Scholar
First citationRay, S., Mohan, R., Singh, J. K., Samantaray, M. K., Shaikh, M. M., Panda, D. & Ghosh, P. (2007). J. Am. Chem. Soc. 129, 15042–15053.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWanzlick, H.-W. & Schönherr, H.-J. (1968). Angew. Chem. Int. Ed. Engl. 7, 141–142.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds