metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetato-κO)(2,2′-bi­pyridine-κ2N,N′)tri­methyl­platinum(IV) monohydrate

aAnorganische Chemie, Institut für Chemie, Martin-Luther-Universität, Kurt-Mothes-Strasse 2, Halle-Wittenberg, D-06120 Halle, Germany
*Correspondence e-mail: dirk.steinborn@chemie.uni-halle.de

(Received 25 January 2010; accepted 8 February 2010; online 13 February 2010)

In the title hydrate, [Pt(CH3)3(CH3COO)(C10H8N2)]·H2O, the PtIV atom exhibits a distorted octa­hedral coordination geometry built up by three methyl ligands in a facial arrangement, a bipyridine ligand and a monodentately bound acetate ligand. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds are observed between the water mol­ecule and the platinum complex, which link the mol­ecules into chains along the c axis.

Related literature

For ligand-substitution reactions of platinum complexes, see: Vetter et al. (2006[Vetter, C., Wagner, C., Schmidt, J. & Steinborn, D. (2006). Inorg. Chim. Acta, 359, 4326-4334.]); Clegg et al. (1972[Clegg, D. E., Hall, J. R. & Swile, G. A. (1972). J. Organomet. Chem. 38, 403-420.]); Lindner et al. (2008[Lindner, R., Kaluđerović, G. N., Paschke, R., Wagner, C. & Steinborn, D. (2008). Polyhedron, 27, 914-922.]); Steinborn & Junicke (2000[Steinborn, D. & Junicke, H. (2000). Chem. Rev. 100, 4283-4317.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(CH3)3(C2H3O2)(C10H8N2)]·H2O

  • Mr = 473.44

  • Monoclinic, P 21 /c

  • a = 10.972 (3) Å

  • b = 13.455 (3) Å

  • c = 13.768 (3) Å

  • β = 125.05 (3)°

  • V = 1663.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.44 mm−1

  • T = 293 K

  • 0.48 × 0.34 × 0.24 mm

Data collection
  • Stoe STADI-IV diffractometer

  • Absorption correction: ψ scan (X-RED32; Stoe & Cie, 1996[Stoe & Cie (1996). STADI4 and X-RED32. Stoe & Cie GmbH. Darmstadt, Germany.]) Tmin = 0.031, Tmax = 0.089

  • 4494 measured reflections

  • 2931 independent reflections

  • 2455 reflections with I > 2σ(I)

  • Rint = 0.031

  • 2 standard reflections every 60 min intensity decay: random, +−5%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.06

  • 2931 reflections

  • 199 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.61 e Å−3

  • Δρmin = −1.79 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—Pt1 2.036 (10)
C2—Pt1 2.041 (11)
C3—Pt1 2.032 (9)
N1—Pt1 2.161 (7)
N2—Pt1 2.152 (7)
O1—Pt1 2.168 (6)
C1—Pt1—C2 85.1 (5)
C1—Pt1—N2 99.9 (4)
C2—Pt1—N2 174.8 (5)
C1—Pt1—N1 176.5 (4)
C2—Pt1—N1 98.2 (4)
N2—Pt1—N1 76.7 (3)
C3—Pt1—O1 176.2 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H22⋯O1 0.88 (11) 1.96 (11) 2.836 (12) 172 (15)
O3—H21⋯O2i 0.85 (9) 1.96 (10) 2.810 (14) 177 (11)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: STADI4 (Stoe & Cie, 1996[Stoe & Cie (1996). STADI4 and X-RED32. Stoe & Cie GmbH. Darmstadt, Germany.]); cell refinement: STADI4; data reduction: STADI4; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR. Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Due to the low-spin d6 electron configuration of platinum(IV), ligand substitution reactions of their complexes may be hampered. Starting from complexes having a PtMe3 unit (Vetter et al., 2006; Clegg et al., 1972; Lindner et al., 2008), substitution reactions were found to proceed smoothly even with weak donors (Steinborn & Junicke, 2000) because the leaving ligand is additionally activated by the high trans effect exerted by the methyl ligand.

The asymmetric unit of the title hydrate comprises a neutral platinum complex, [PtMe3(OAc-κO)(bpy)], and a water molecule. The primary coordination sphere of the platinum atom is built up by three methyl ligands in facial binding fashion, a bipyridine ligand and a monodentately bound acetato ligand. As expected for Pt(IV) complexes, an octahedral coordination geometry was found, which is distorted due to the restricted bite of the 2,2'-bipyridine ligand [N1—Pt1—N2 76.7 (3)°]; the other angles between cis arranged ligands are between 85.1 (5) and 99.9 (4)°. Due to the high trans influence of the methyl ligands the Pt1—O1 bond was found to be relatively long (2.168 (6) Å) compared to those of other carboxylato platinum(IV) [median: 2.013, lower/upper quartile: 2.001/2.044 Å, 496 observations taken from the CSD, version 5.30 (Allen, 2002)]. In the crystal structure quite strong intermolecular O—H···O hydrogen bonds were found in which the water molecules act as hydrogen donors and the oxygen atoms of acetato ligand as hydrogen acceptors (Table 1). Due to these hydrogen bonds the molecules are linked in infinite chains along the c axis.

Related literature top

For ligand-substitution reactions of platinum complexes, see: Vetter et al. (2006); Clegg et al.(1972); Lindner et al. (2008); Steinborn & Junicke (2000). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Under anaerobic conditions [(PtMe3I)4] (50 mg, 0.03 mmol) and AgOAc (23 mg, 0.14 mmol) were stirred in acetone (10 ml) for 15 h in the absence of light. The precipitated AgI was filtered off and the solvent was reduced in vacuo to 3 ml. Then n-pentane was added and the white precipitate was collected by filtration, washed with n-pentane (2 × 1 ml) and recrystallized from chloroform.

Refinement top

The water-H atoms were found in a difference map and refined with each O—H distance restrained to 0.85 (1) Å. All other H atoms were positioned geometrically and allowed to ride on the respective parent atoms with C—H = 0.93–0.96 Å [Uiso(H) = 1.2 Ueq(C)]. The maximum and minimum residual electron density peaks of 1.61 and -1.79 e Å-3, respectively, were located 1.19 Å and 1.21 Å from the Pt1 atom.

Computing details top

Data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4 (Stoe & Cie, 1996); data reduction: STADI4 (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the asymmetric unit of the title hydrate [PtMe3(OAc-κO)(bpy)].H2O. Displacement ellipsoids are drawn at the 30% probability level and the H atoms are shown as small spheres of arbitrary radii.
(Acetato-κO)(2,2'-bipyridine-κ2N,N')trimethylplatinum(IV) monohydrate top
Crystal data top
[Pt(CH3)3(C2H3O2)(C10H8N2)]·H2OF(000) = 912
Mr = 473.44Dx = 1.890 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 26 reflections
a = 10.972 (3) Åθ = 15.1–25.2°
b = 13.455 (3) ŵ = 8.44 mm1
c = 13.768 (3) ÅT = 293 K
β = 125.05 (3)°Block, orange
V = 1663.9 (8) Å30.48 × 0.34 × 0.24 mm
Z = 4
Data collection top
Stoe STADI-IV
diffractometer
2455 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω/2θ scansh = 1313
Absorption correction: ψ scan
(X-RED32; Stoe & Cie, 1996)
k = 160
Tmin = 0.031, Tmax = 0.089l = 1316
4494 measured reflections2 standard reflections every 60 min
2931 independent reflections intensity decay: random, +5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0676P)2 + 4.3682P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2931 reflectionsΔρmax = 1.61 e Å3
199 parametersΔρmin = 1.79 e Å3
2 restraintsExtinction correction: SHELXL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0018 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Pt(CH3)3(C2H3O2)(C10H8N2)]·H2OV = 1663.9 (8) Å3
Mr = 473.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.972 (3) ŵ = 8.44 mm1
b = 13.455 (3) ÅT = 293 K
c = 13.768 (3) Å0.48 × 0.34 × 0.24 mm
β = 125.05 (3)°
Data collection top
Stoe STADI-IV
diffractometer
2455 reflections with I > 2σ(I)
Absorption correction: ψ scan
(X-RED32; Stoe & Cie, 1996)
Rint = 0.031
Tmin = 0.031, Tmax = 0.0892 standard reflections every 60 min
4494 measured reflections intensity decay: random, +5%
2931 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.61 e Å3
2931 reflectionsΔρmin = 1.79 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0620 (12)0.7592 (8)0.1850 (9)0.072 (3)
H10.05350.76730.11980.087*
H30.16290.77140.15840.087*
H20.03450.69260.21500.087*
C20.0048 (12)0.7967 (10)0.4045 (11)0.081 (3)
H60.04120.82840.48040.097*
H50.01700.72690.41580.097*
H40.11060.80630.35910.097*
C30.0935 (11)0.9574 (8)0.2409 (10)0.069 (3)
H90.06031.01750.28690.083*
H80.17600.93040.23870.083*
H70.12410.97180.16160.083*
C40.3091 (10)0.7018 (7)0.3608 (9)0.058 (2)
C50.4295 (13)0.6271 (9)0.4412 (12)0.081 (4)
H110.46360.59500.39860.098*
H100.38990.57820.46670.098*
H120.51130.66080.50910.098*
C60.2491 (12)0.9787 (10)0.5540 (9)0.077 (3)
H130.20510.93580.57840.093*
C70.3426 (14)1.0548 (11)0.6304 (10)0.092 (4)
H140.35831.06380.70380.110*
C80.4096 (15)1.1153 (11)0.5953 (15)0.098 (5)
H150.47381.16520.64540.117*
C90.3823 (12)1.1025 (9)0.4859 (13)0.085 (4)
H160.42761.14370.46110.102*
C100.2869 (9)1.0279 (7)0.4123 (9)0.058 (2)
C110.2542 (10)1.0116 (7)0.2937 (9)0.057 (2)
C120.3080 (12)1.0709 (9)0.2434 (14)0.085 (4)
H170.36481.12710.28290.102*
C130.2752 (16)1.0446 (13)0.1327 (15)0.098 (5)
H180.31031.08320.09750.117*
C140.1935 (17)0.9642 (12)0.0776 (12)0.091 (4)
H190.17190.94590.00410.109*
C150.1410 (13)0.9078 (9)0.1301 (9)0.069 (3)
H200.08460.85140.09110.083*
N10.2221 (8)0.9665 (5)0.4471 (6)0.0486 (16)
N20.1687 (8)0.9318 (6)0.2344 (6)0.0525 (17)
O10.2551 (7)0.7497 (5)0.4062 (6)0.0615 (17)
O20.2727 (10)0.7105 (7)0.2563 (8)0.089 (2)
O30.4338 (10)0.7587 (8)0.6577 (9)0.088 (3)
H210.382 (12)0.767 (9)0.685 (10)0.07 (4)*
H220.379 (15)0.763 (12)0.580 (10)0.12 (6)*
Pt10.07572 (3)0.85719 (3)0.31606 (3)0.04758 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.077 (7)0.052 (6)0.069 (7)0.020 (5)0.031 (6)0.003 (5)
C20.070 (6)0.095 (9)0.094 (8)0.007 (6)0.057 (6)0.031 (7)
C30.057 (5)0.067 (7)0.075 (7)0.015 (5)0.033 (5)0.015 (5)
C40.058 (5)0.050 (5)0.066 (6)0.001 (4)0.036 (5)0.008 (5)
C50.071 (7)0.076 (8)0.100 (9)0.017 (6)0.050 (7)0.004 (6)
C60.075 (7)0.102 (9)0.054 (6)0.018 (6)0.036 (5)0.005 (6)
C70.079 (8)0.108 (11)0.054 (6)0.023 (8)0.018 (6)0.027 (7)
C80.069 (8)0.082 (9)0.107 (12)0.003 (6)0.030 (8)0.035 (8)
C90.055 (6)0.068 (7)0.103 (10)0.002 (5)0.029 (6)0.020 (7)
C100.043 (4)0.049 (5)0.073 (6)0.009 (4)0.027 (4)0.003 (4)
C110.055 (5)0.055 (6)0.072 (6)0.018 (4)0.042 (5)0.017 (5)
C120.066 (6)0.070 (7)0.134 (12)0.007 (6)0.067 (7)0.031 (8)
C130.095 (9)0.120 (13)0.116 (12)0.016 (8)0.083 (9)0.047 (10)
C140.106 (9)0.121 (12)0.079 (8)0.039 (9)0.072 (8)0.037 (8)
C150.088 (7)0.078 (7)0.058 (6)0.014 (6)0.051 (6)0.003 (5)
N10.048 (4)0.051 (4)0.048 (4)0.009 (3)0.029 (3)0.006 (3)
N20.056 (4)0.058 (4)0.052 (4)0.008 (4)0.036 (3)0.009 (4)
O10.063 (4)0.062 (4)0.055 (4)0.014 (3)0.032 (3)0.006 (3)
O20.108 (6)0.095 (6)0.084 (6)0.025 (5)0.067 (5)0.014 (5)
O30.070 (5)0.118 (8)0.068 (5)0.001 (5)0.035 (5)0.014 (5)
Pt10.0491 (2)0.0487 (3)0.0473 (3)0.00074 (14)0.02902 (18)0.00514 (14)
Geometric parameters (Å, º) top
C1—Pt12.036 (10)C7—H140.9300
C1—H10.9600C8—C91.37 (2)
C1—H30.9600C8—H150.9300
C1—H20.9600C9—C101.382 (15)
C2—Pt12.041 (11)C9—H160.9300
C2—H60.9600C10—N11.345 (13)
C2—H50.9600C10—C111.474 (15)
C2—H40.9600C11—N21.349 (13)
C3—Pt12.032 (9)C11—C121.391 (15)
C3—H90.9600C12—C131.40 (2)
C3—H80.9600C12—H170.9300
C3—H70.9600C13—C141.33 (2)
C4—O21.258 (13)C13—H180.9300
C4—O11.259 (12)C14—C151.381 (17)
C4—C51.518 (14)C14—H190.9300
C5—H110.9600C15—N21.326 (12)
C5—H100.9600C15—H200.9300
C5—H120.9600N1—Pt12.161 (7)
C6—N11.335 (13)N2—Pt12.152 (7)
C6—C71.403 (18)O1—Pt12.168 (6)
C6—H130.9300O3—H210.85 (9)
C7—C81.36 (2)O3—H220.88 (11)
Pt1—C1—H1109.5N1—C10—C11117.4 (8)
Pt1—C1—H3109.5C9—C10—C11121.4 (11)
H1—C1—H3109.5N2—C11—C12120.2 (11)
Pt1—C1—H2109.5N2—C11—C10115.6 (8)
H1—C1—H2109.5C12—C11—C10124.2 (11)
H3—C1—H2109.5C11—C12—C13118.7 (13)
Pt1—C2—H6109.5C11—C12—H17120.6
Pt1—C2—H5109.5C13—C12—H17120.6
H6—C2—H5109.5C14—C13—C12119.7 (12)
Pt1—C2—H4109.5C14—C13—H18120.2
H6—C2—H4109.5C12—C13—H18120.2
H5—C2—H4109.5C13—C14—C15119.7 (13)
Pt1—C3—H9109.5C13—C14—H19120.1
Pt1—C3—H8109.5C15—C14—H19120.1
H9—C3—H8109.5N2—C15—C14121.9 (12)
Pt1—C3—H7109.5N2—C15—H20119.1
H9—C3—H7109.5C14—C15—H20119.1
H8—C3—H7109.5C6—N1—C10119.3 (9)
O2—C4—O1126.2 (9)C6—N1—Pt1126.3 (8)
O2—C4—C5117.9 (10)C10—N1—Pt1114.4 (6)
O1—C4—C5116.0 (10)C15—N2—C11119.8 (9)
C4—C5—H11109.5C15—N2—Pt1124.8 (8)
C4—C5—H10109.5C11—N2—Pt1115.4 (6)
H11—C5—H10109.5C4—O1—Pt1126.0 (6)
C4—C5—H12109.5H21—O3—H22112 (10)
H11—C5—H12109.5C3—Pt1—C189.0 (5)
H10—C5—H12109.5C3—Pt1—C289.2 (5)
N1—C6—C7121.4 (13)C1—Pt1—C285.1 (5)
N1—C6—H13119.3C3—Pt1—N289.6 (4)
C7—C6—H13119.3C1—Pt1—N299.9 (4)
C8—C7—C6118.8 (13)C2—Pt1—N2174.8 (5)
C8—C7—H14120.6C3—Pt1—N189.8 (4)
C6—C7—H14120.6C1—Pt1—N1176.5 (4)
C7—C8—C9119.7 (13)C2—Pt1—N198.2 (4)
C7—C8—H15120.1N2—Pt1—N176.7 (3)
C9—C8—H15120.1C3—Pt1—O1176.2 (4)
C8—C9—C10119.6 (14)C1—Pt1—O192.5 (4)
C8—C9—H16120.2C2—Pt1—O187.4 (4)
C10—C9—H16120.2N2—Pt1—O193.6 (3)
N1—C10—C9121.2 (11)N1—Pt1—O188.9 (3)
N1—C6—C7—C81.9 (18)C12—C11—N2—Pt1173.8 (7)
C6—C7—C8—C92 (2)C10—C11—N2—Pt17.6 (9)
C7—C8—C9—C100.1 (19)O2—C4—O1—Pt13.0 (15)
C8—C9—C10—N11.1 (16)C5—C4—O1—Pt1177.2 (7)
C8—C9—C10—C11179.9 (10)C15—N2—Pt1—C392.8 (8)
N1—C10—C11—N24.0 (12)C11—N2—Pt1—C383.5 (7)
C9—C10—C11—N2175.0 (9)C15—N2—Pt1—C13.8 (9)
N1—C10—C11—C12177.5 (9)C11—N2—Pt1—C1172.4 (6)
C9—C10—C11—C123.5 (14)C15—N2—Pt1—N1177.3 (8)
N2—C11—C12—C131.7 (15)C11—N2—Pt1—N16.4 (6)
C10—C11—C12—C13176.7 (10)C15—N2—Pt1—O189.3 (8)
C11—C12—C13—C140.2 (19)C11—N2—Pt1—O194.5 (6)
C12—C13—C14—C150 (2)C6—N1—Pt1—C393.0 (9)
C13—C14—C15—N20.5 (18)C10—N1—Pt1—C385.4 (7)
C7—C6—N1—C100.7 (15)C6—N1—Pt1—C23.8 (9)
C7—C6—N1—Pt1177.7 (8)C10—N1—Pt1—C2174.6 (6)
C9—C10—N1—C60.8 (13)C6—N1—Pt1—N2177.4 (8)
C11—C10—N1—C6179.8 (8)C10—N1—Pt1—N24.2 (6)
C9—C10—N1—Pt1179.3 (7)C6—N1—Pt1—O183.4 (8)
C11—C10—N1—Pt11.7 (10)C10—N1—Pt1—O198.2 (6)
C14—C15—N2—C112.0 (15)C4—O1—Pt1—C153.9 (8)
C14—C15—N2—Pt1174.0 (8)C4—O1—Pt1—C2138.9 (9)
C12—C11—N2—C152.6 (13)C4—O1—Pt1—N246.2 (8)
C10—C11—N2—C15176.0 (8)C4—O1—Pt1—N1122.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H22···O10.88 (11)1.96 (11)2.836 (12)172 (15)
O3—H21···O2i0.85 (9)1.96 (10)2.810 (14)177 (11)
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pt(CH3)3(C2H3O2)(C10H8N2)]·H2O
Mr473.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.972 (3), 13.455 (3), 13.768 (3)
β (°) 125.05 (3)
V3)1663.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)8.44
Crystal size (mm)0.48 × 0.34 × 0.24
Data collection
DiffractometerStoe STADI-IV
diffractometer
Absorption correctionψ scan
(X-RED32; Stoe & Cie, 1996)
Tmin, Tmax0.031, 0.089
No. of measured, independent and
observed [I > 2σ(I)] reflections
4494, 2931, 2455
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.06
No. of reflections2931
No. of parameters199
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.61, 1.79

Computer programs: STADI4 (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).

Selected geometric parameters (Å, º) top
C1—Pt12.036 (10)C4—O11.259 (12)
C2—Pt12.041 (11)N1—Pt12.161 (7)
C3—Pt12.032 (9)N2—Pt12.152 (7)
C4—O21.258 (13)O1—Pt12.168 (6)
O2—C4—O1126.2 (9)C1—Pt1—N1176.5 (4)
C1—Pt1—C285.1 (5)C2—Pt1—N198.2 (4)
C1—Pt1—N299.9 (4)N2—Pt1—N176.7 (3)
C2—Pt1—N2174.8 (5)C3—Pt1—O1176.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H22···O10.88 (11)1.96 (11)2.836 (12)172 (15)
O3—H21···O2i0.85 (9)1.96 (10)2.810 (14)177 (11)
Symmetry code: (i) x, y+3/2, z+1/2.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationClegg, D. E., Hall, J. R. & Swile, G. A. (1972). J. Organomet. Chem. 38, 403–420.  CrossRef CAS Web of Science Google Scholar
First citationLindner, R., Kaluđerović, G. N., Paschke, R., Wagner, C. & Steinborn, D. (2008). Polyhedron, 27, 914–922.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteinborn, D. & Junicke, H. (2000). Chem. Rev. 100, 4283–4317.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (1996). STADI4 and X-RED32. Stoe & Cie GmbH. Darmstadt, Germany.  Google Scholar
First citationVetter, C., Wagner, C., Schmidt, J. & Steinborn, D. (2006). Inorg. Chim. Acta, 359, 4326–4334.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds