metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(2,4,6-tri-2-pyridyl-1,3,5-triazine)manganese(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 30 January 2010; accepted 2 February 2010; online 6 February 2010)

In the title complex, [MnCl2(C18H12N6)], the MnII ion is five-coordinated in an approximately square-pyramidal geometry defined by three N atoms of the tridentate 2,4,6-tri-2-pyridyl-1,3,5-triazine ligand and two Cl atoms. In the crystal, the mol­ecules are stacked in columns along the c axis and display inter­molecular ππ inter­actions between the six-membered rings, the shortest centroid–centroid distance being 3.553 (3)Å. Inter­molecular C—H⋯Cl contacts are also noted.

Related literature

For the crystal structure of 2,4,6-tri-2-pyridyl-1,3,5-triazine (tptz), see: Drew et al. (1998[Drew, M. G. B., Hudson, M. J., Iveson, P. B., Russell, M. L. & Madic, C. (1998). Acta Cryst. C54, 985-987.]). For the crystal structures of some other Mn(II)–tptz complexes, see: Hsu et al. (2006[Hsu, G.-Y., Misra, P., Cheng, S.-C., Wei, H.-H. & Mohanta, S. (2006). Polyhedron, 25, 3393-3398.]); Majumder et al. (2006[Majumder, A., Pilet, G., Rodriguez, M. T. G. & Misra, P. (2006). Polyhedron, 25, 2550-2558.]); Sun et al. (2007[Sun, X.-P., Gu, W. & Liu, X. (2007). Acta Cryst. E63, m1027-m1028.]); Tyagi & Singh (2009[Tyagi, P. & Singh, U. P. (2009). J. Coord. Chem. 62, 1613-1622.]); Zhang et al. (2008[Zhang, M., Fang, R. & Zhao, Q. (2008). J. Chem. Crystallogr. 38, 601-604.]); Zhao et al. (2007[Zhao, H., Shatruk, M., Prosvirin, A. V. & Dunbar, K. R. (2007). Chem. Eur. J. 13, 6573-6589.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C18H12N6)]

  • Mr = 438.18

  • Triclinic, [P \overline 1]

  • a = 8.8247 (7) Å

  • b = 10.5538 (9) Å

  • c = 10.9635 (9) Å

  • α = 66.572 (2)°

  • β = 75.812 (2)°

  • γ = 82.867 (2)°

  • V = 907.91 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 200 K

  • 0.32 × 0.13 × 0.06 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.856, Tmax = 1.000

  • 6800 measured reflections

  • 4424 independent reflections

  • 2256 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.163

  • S = 1.05

  • 4424 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cl1i 0.95 2.77 3.594 (5) 145
C15—H15⋯Cl1ii 0.95 2.82 3.714 (5) 157
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Since the original structure determination of 2,4,6-tri-2-pyridyl-1,3,5-triazine ligand (Drew et al., 1998), triazine complexes, including Mn(II) derivatives, have attracted considerable interest over the years (Hsu et al., 2006; Majumder et al., 2006; Sun et al., 2007; Tyagi & Singh, 2009; Zhang et al., 2008; Zhao et al., 2007). In the title complex, [MnCl2(C18H12N6)], the MnII ion is five-coordinated in an approximately square-pyramidal geometry by three N atoms of the tridentate 2,4,6-tri-2-pyridyl-1,3,5-triazine ligand and two Cl atoms (Fig. 1). While the Mn—Cl bond lengths are almost equal [2.3345 (16) and 2.3494 (16) Å], the Mn—N bond lengths appear to be different (Table 1). The Mn—N(pyridyl) bonds [2.303 (4) and 2.324 (4) Å] tend to be slightly longer than the Mn—N(triazine) bond (2.197 (4) Å]. The N—Mn—N chelating angles are 70.05 (13)° and 70.68 (14)°, and the Cl—Mn—Cl bond angle is 112.22 (6) °. The molecules are stacked in columns along the c axis and display intermolecular π-π interactions between the six-membered rings, with a shortest centroid-centroid distance of 3.553 (3) Å, and weak intermolecular C—H···Cl contacts (Fig. 2 and Table 2).

Related literature top

For the crystal structure of 2,4,6-tri-2-pyridyl-1,3,5-triazine (tptz), see: Drew et al. (1998). For the crystal structures of some other Mn(II)–tptz complexes, see: Hsu et al. (2006); Majumder et al. (2006); Sun et al. (2007); Tyagi & Singh (2009); Zhang et al. (2008); Zhao et al. (2007).

Experimental top

To a solution of 2,4,6-tri-2-pyridyl-1,3,5-triazine (0.25 g, 0.80 mmol) in EtOH (30 ml) was added MnCl2.4H2O (0.16 g, 0.81 mmol) and stirred for 2 h at room temperature. The formed precipitate was separated by filtration and washed with EtOH and dried under vacuum, to give a yellow powder (0.14 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. Hydrogen-bond interactions are drawn with dashed lines.
Dichlorido(2,4,6-tri-2-pyridyl-1,3,5-triazine)manganese(II) top
Crystal data top
[MnCl2(C18H12N6)]Z = 2
Mr = 438.18F(000) = 442
Triclinic, P1Dx = 1.603 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8247 (7) ÅCell parameters from 1442 reflections
b = 10.5538 (9) Åθ = 2.3–24.8°
c = 10.9635 (9) ŵ = 1.04 mm1
α = 66.572 (2)°T = 200 K
β = 75.812 (2)°Plate, yellow
γ = 82.867 (2)°0.32 × 0.13 × 0.06 mm
V = 907.91 (13) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
4424 independent reflections
Radiation source: fine-focus sealed tube2256 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 911
Tmin = 0.856, Tmax = 1.000k = 1412
6800 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.2689P]
where P = (Fo2 + 2Fc2)/3
4424 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[MnCl2(C18H12N6)]γ = 82.867 (2)°
Mr = 438.18V = 907.91 (13) Å3
Triclinic, P1Z = 2
a = 8.8247 (7) ÅMo Kα radiation
b = 10.5538 (9) ŵ = 1.04 mm1
c = 10.9635 (9) ÅT = 200 K
α = 66.572 (2)°0.32 × 0.13 × 0.06 mm
β = 75.812 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4424 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2256 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 1.000Rint = 0.049
6800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.05Δρmax = 0.73 e Å3
4424 reflectionsΔρmin = 0.86 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.11311 (8)0.09650 (8)0.20984 (8)0.0315 (2)
Cl11.19313 (15)0.18383 (16)0.41816 (14)0.0489 (4)
Cl21.27174 (15)0.17981 (15)0.05186 (14)0.0474 (4)
N10.8963 (4)0.0276 (4)0.2302 (4)0.0273 (9)
N20.7690 (4)0.2386 (4)0.2287 (4)0.0275 (9)
N30.6232 (4)0.0355 (4)0.2991 (4)0.0280 (9)
N41.1690 (4)0.1343 (4)0.1225 (4)0.0293 (10)
N50.4828 (5)0.3769 (4)0.2798 (4)0.0368 (11)
N60.9004 (5)0.2292 (4)0.2531 (4)0.0323 (10)
C10.8958 (5)0.1617 (5)0.2043 (5)0.0251 (11)
C21.0526 (5)0.2239 (5)0.1442 (5)0.0264 (11)
C31.0755 (6)0.3612 (5)0.1080 (5)0.0311 (12)
H30.99090.42060.12660.037*
C41.2251 (6)0.4128 (5)0.0433 (5)0.0360 (13)
H41.24430.50770.01650.043*
C51.3438 (6)0.3223 (5)0.0196 (5)0.0395 (14)
H51.44650.35430.02510.047*
C61.3123 (6)0.1852 (5)0.0613 (5)0.0355 (13)
H61.39590.12350.04590.043*
C70.6341 (5)0.1688 (5)0.2782 (5)0.0268 (11)
C80.4833 (5)0.2407 (5)0.3123 (5)0.0284 (11)
C90.3490 (5)0.1626 (5)0.3722 (5)0.0324 (12)
H90.35370.06680.38930.039*
C100.2098 (6)0.2279 (6)0.4058 (5)0.0405 (14)
H100.11640.17740.44790.049*
C110.2074 (6)0.3662 (6)0.3781 (6)0.0446 (14)
H110.11300.41280.40280.053*
C120.3452 (6)0.4377 (6)0.3130 (6)0.0419 (14)
H120.34160.53450.29090.050*
C130.7563 (5)0.0299 (5)0.2721 (5)0.0278 (11)
C140.7581 (5)0.1748 (5)0.2860 (5)0.0272 (11)
C150.6218 (6)0.2477 (5)0.3296 (5)0.0337 (12)
H150.52260.20550.35030.040*
C160.6351 (6)0.3834 (6)0.3417 (6)0.0429 (14)
H160.54450.43730.37410.051*
C170.7807 (6)0.4417 (6)0.3066 (6)0.0428 (14)
H170.79190.53480.31310.051*
C180.9087 (6)0.3594 (5)0.2619 (5)0.0379 (13)
H181.00860.39770.23590.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0200 (4)0.0324 (5)0.0388 (5)0.0006 (3)0.0039 (3)0.0120 (4)
Cl10.0270 (8)0.0674 (11)0.0416 (8)0.0058 (7)0.0071 (6)0.0086 (7)
Cl20.0349 (8)0.0593 (10)0.0476 (9)0.0063 (7)0.0022 (6)0.0259 (7)
N10.017 (2)0.028 (2)0.036 (2)0.0024 (16)0.0035 (17)0.0133 (19)
N20.022 (2)0.029 (2)0.033 (2)0.0064 (17)0.0035 (17)0.0136 (19)
N30.018 (2)0.028 (2)0.037 (2)0.0030 (17)0.0009 (17)0.0132 (19)
N40.017 (2)0.032 (2)0.033 (2)0.0043 (17)0.0016 (17)0.0104 (19)
N50.026 (2)0.035 (3)0.052 (3)0.0091 (19)0.012 (2)0.020 (2)
N60.027 (2)0.028 (2)0.045 (3)0.0023 (18)0.0091 (19)0.017 (2)
C10.020 (3)0.019 (3)0.032 (3)0.0023 (19)0.002 (2)0.007 (2)
C20.015 (2)0.031 (3)0.033 (3)0.001 (2)0.004 (2)0.012 (2)
C30.028 (3)0.024 (3)0.039 (3)0.004 (2)0.007 (2)0.008 (2)
C40.027 (3)0.036 (3)0.040 (3)0.013 (2)0.006 (2)0.006 (2)
C50.026 (3)0.041 (4)0.042 (3)0.009 (2)0.005 (2)0.007 (3)
C60.021 (3)0.039 (3)0.041 (3)0.002 (2)0.001 (2)0.014 (3)
C70.021 (3)0.029 (3)0.030 (3)0.001 (2)0.005 (2)0.012 (2)
C80.024 (3)0.030 (3)0.030 (3)0.000 (2)0.006 (2)0.010 (2)
C90.023 (3)0.036 (3)0.034 (3)0.001 (2)0.005 (2)0.009 (2)
C100.024 (3)0.054 (4)0.037 (3)0.004 (3)0.005 (2)0.014 (3)
C110.032 (3)0.059 (4)0.044 (3)0.014 (3)0.015 (3)0.022 (3)
C120.045 (4)0.040 (3)0.050 (4)0.010 (3)0.020 (3)0.023 (3)
C130.018 (3)0.033 (3)0.030 (3)0.007 (2)0.002 (2)0.009 (2)
C140.024 (3)0.026 (3)0.033 (3)0.003 (2)0.006 (2)0.012 (2)
C150.026 (3)0.035 (3)0.040 (3)0.006 (2)0.003 (2)0.015 (3)
C160.042 (4)0.036 (3)0.053 (4)0.015 (3)0.004 (3)0.017 (3)
C170.045 (4)0.032 (3)0.052 (4)0.008 (3)0.005 (3)0.018 (3)
C180.041 (3)0.027 (3)0.052 (4)0.006 (2)0.012 (3)0.022 (3)
Geometric parameters (Å, º) top
Mn1—N12.197 (4)C4—H40.9500
Mn1—N42.303 (4)C5—C61.376 (7)
Mn1—N62.324 (4)C5—H50.9500
Mn1—Cl22.3345 (16)C6—H60.9500
Mn1—Cl12.3494 (16)C7—C81.490 (6)
N1—C11.329 (6)C8—C91.395 (6)
N1—C131.339 (5)C9—C101.375 (7)
N2—C11.335 (6)C9—H90.9500
N2—C71.355 (5)C10—C111.367 (7)
N3—C131.317 (6)C10—H100.9500
N3—C71.345 (6)C11—C121.390 (7)
N4—C61.343 (5)C11—H110.9500
N4—C21.351 (6)C12—H120.9500
N5—C81.336 (6)C13—C141.474 (6)
N5—C121.339 (6)C14—C151.386 (6)
N6—C181.332 (6)C15—C161.378 (7)
N6—C141.342 (6)C15—H150.9500
C1—C21.488 (6)C16—C171.388 (7)
C2—C31.369 (6)C16—H160.9500
C3—C41.398 (6)C17—C181.380 (7)
C3—H30.9500C17—H170.9500
C4—C51.375 (7)C18—H180.9500
N1—Mn1—N470.05 (13)N4—C6—H6118.4
N1—Mn1—N670.68 (14)C5—C6—H6118.4
N4—Mn1—N6137.65 (14)N3—C7—N2124.9 (4)
N1—Mn1—Cl2139.00 (11)N3—C7—C8115.2 (4)
N4—Mn1—Cl2104.03 (11)N2—C7—C8119.9 (4)
N6—Mn1—Cl295.27 (11)N5—C8—C9123.6 (5)
N1—Mn1—Cl1108.53 (11)N5—C8—C7118.4 (4)
N4—Mn1—Cl1103.39 (11)C9—C8—C7118.0 (4)
N6—Mn1—Cl1103.49 (11)C10—C9—C8118.3 (5)
Cl2—Mn1—Cl1112.22 (6)C10—C9—H9120.9
C1—N1—C13116.3 (4)C8—C9—H9120.9
C1—N1—Mn1122.6 (3)C11—C10—C9119.2 (5)
C13—N1—Mn1121.1 (3)C11—C10—H10120.4
C1—N2—C7113.9 (4)C9—C10—H10120.4
C13—N3—C7115.7 (4)C10—C11—C12118.9 (5)
C6—N4—C2117.2 (4)C10—C11—H11120.5
C6—N4—Mn1124.6 (3)C12—C11—H11120.5
C2—N4—Mn1117.9 (3)N5—C12—C11123.3 (5)
C8—N5—C12116.7 (4)N5—C12—H12118.3
C18—N6—C14117.5 (4)C11—C12—H12118.3
C18—N6—Mn1125.3 (3)N3—C13—N1123.9 (5)
C14—N6—Mn1116.8 (3)N3—C13—C14120.5 (4)
N1—C1—N2125.0 (4)N1—C13—C14115.6 (4)
N1—C1—C2114.3 (4)N6—C14—C15123.3 (5)
N2—C1—C2120.8 (4)N6—C14—C13114.9 (4)
N4—C2—C3123.0 (4)C15—C14—C13121.8 (4)
N4—C2—C1114.0 (4)C16—C15—C14117.7 (5)
C3—C2—C1122.9 (4)C16—C15—H15121.1
C2—C3—C4119.1 (5)C14—C15—H15121.1
C2—C3—H3120.5C15—C16—C17120.2 (5)
C4—C3—H3120.5C15—C16—H16119.9
C5—C4—C3118.2 (5)C17—C16—H16119.9
C5—C4—H4120.9C18—C17—C16117.4 (5)
C3—C4—H4120.9C18—C17—H17121.3
C4—C5—C6119.4 (5)C16—C17—H17121.3
C4—C5—H5120.3N6—C18—C17123.8 (5)
C6—C5—H5120.3N6—C18—H18118.1
N4—C6—C5123.1 (5)C17—C18—H18118.1
N4—Mn1—N1—C18.9 (3)C3—C4—C5—C60.8 (8)
N6—Mn1—N1—C1172.7 (4)C2—N4—C6—C50.6 (7)
Cl2—Mn1—N1—C197.5 (4)Mn1—N4—C6—C5174.8 (4)
Cl1—Mn1—N1—C189.0 (4)C4—C5—C6—N41.3 (8)
N4—Mn1—N1—C13172.3 (4)C13—N3—C7—N22.1 (7)
N6—Mn1—N1—C138.4 (3)C13—N3—C7—C8178.6 (4)
Cl2—Mn1—N1—C1383.7 (4)C1—N2—C7—N31.6 (7)
Cl1—Mn1—N1—C1389.8 (4)C1—N2—C7—C8179.0 (4)
N1—Mn1—N4—C6176.4 (4)C12—N5—C8—C92.8 (7)
N6—Mn1—N4—C6153.5 (4)C12—N5—C8—C7179.5 (4)
Cl2—Mn1—N4—C639.0 (4)N3—C7—C8—N5172.6 (4)
Cl1—Mn1—N4—C678.4 (4)N2—C7—C8—N56.8 (7)
N1—Mn1—N4—C29.4 (3)N3—C7—C8—C95.2 (6)
N6—Mn1—N4—C232.4 (4)N2—C7—C8—C9175.4 (4)
Cl2—Mn1—N4—C2146.9 (3)N5—C8—C9—C103.3 (7)
Cl1—Mn1—N4—C295.7 (3)C7—C8—C9—C10179.0 (4)
N1—Mn1—N6—C18178.9 (4)C8—C9—C10—C110.8 (7)
N4—Mn1—N6—C18156.1 (4)C9—C10—C11—C121.8 (8)
Cl2—Mn1—N6—C1838.5 (4)C8—N5—C12—C110.1 (7)
Cl1—Mn1—N6—C1875.9 (4)C10—C11—C12—N52.4 (8)
N1—Mn1—N6—C148.5 (3)C7—N3—C13—N11.9 (7)
N4—Mn1—N6—C1431.4 (5)C7—N3—C13—C14177.6 (4)
Cl2—Mn1—N6—C14148.9 (3)C1—N1—C13—N35.8 (7)
Cl1—Mn1—N6—C1496.7 (3)Mn1—N1—C13—N3173.0 (4)
C13—N1—C1—N26.4 (7)C1—N1—C13—C14173.7 (4)
Mn1—N1—C1—N2172.5 (4)Mn1—N1—C13—C147.5 (5)
C13—N1—C1—C2173.8 (4)C18—N6—C14—C150.8 (7)
Mn1—N1—C1—C27.3 (5)Mn1—N6—C14—C15172.4 (4)
C7—N2—C1—N12.8 (7)C18—N6—C14—C13179.0 (4)
C7—N2—C1—C2177.4 (4)Mn1—N6—C14—C137.8 (5)
C6—N4—C2—C30.7 (7)N3—C13—C14—N6178.8 (4)
Mn1—N4—C2—C3173.9 (4)N1—C13—C14—N60.7 (6)
C6—N4—C2—C1176.3 (4)N3—C13—C14—C151.0 (7)
Mn1—N4—C2—C19.1 (5)N1—C13—C14—C15179.5 (4)
N1—C1—C2—N41.6 (6)N6—C14—C15—C161.3 (8)
N2—C1—C2—N4178.5 (4)C13—C14—C15—C16178.9 (4)
N1—C1—C2—C3178.6 (4)C14—C15—C16—C172.1 (8)
N2—C1—C2—C31.6 (7)C15—C16—C17—C180.9 (8)
N4—C2—C3—C41.2 (7)C14—N6—C18—C172.1 (8)
C1—C2—C3—C4175.5 (4)Mn1—N6—C18—C17170.4 (4)
C2—C3—C4—C50.4 (7)C16—C17—C18—N61.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl1i0.952.773.594 (5)145
C15—H15···Cl1ii0.952.823.714 (5)157
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[MnCl2(C18H12N6)]
Mr438.18
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.8247 (7), 10.5538 (9), 10.9635 (9)
α, β, γ (°)66.572 (2), 75.812 (2), 82.867 (2)
V3)907.91 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.32 × 0.13 × 0.06
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.856, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6800, 4424, 2256
Rint0.049
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.163, 1.05
No. of reflections4424
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.86

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl1i0.952.773.594 (5)145
C15—H15···Cl1ii0.952.823.714 (5)157
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, M. G. B., Hudson, M. J., Iveson, P. B., Russell, M. L. & Madic, C. (1998). Acta Cryst. C54, 985–987.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHsu, G.-Y., Misra, P., Cheng, S.-C., Wei, H.-H. & Mohanta, S. (2006). Polyhedron, 25, 3393–3398.  Web of Science CSD CrossRef CAS Google Scholar
First citationMajumder, A., Pilet, G., Rodriguez, M. T. G. & Misra, P. (2006). Polyhedron, 25, 2550–2558.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X.-P., Gu, W. & Liu, X. (2007). Acta Cryst. E63, m1027–m1028.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTyagi, P. & Singh, U. P. (2009). J. Coord. Chem. 62, 1613–1622.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, M., Fang, R. & Zhao, Q. (2008). J. Chem. Crystallogr. 38, 601–604.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, H., Shatruk, M., Prosvirin, A. V. & Dunbar, K. R. (2007). Chem. Eur. J. 13, 6573–6589.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds