organic compounds
2-Amino-5-bromopyridinium 3-aminobenzoate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title salt, C5H6BrN2+·C7H6NO2−, the pyridine N atom of the 2-amino-5-bromopyridine molecule is protonated. In the crystal, the protonated N atom and the 2-amino group are hydrogen-bonded to the carboxylate O atoms via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. Two inversion-related 3-aminobenzoate anions are linked through N—H⋯O hydrogen-bonds, forming an R22(14) ring motif. The is further stabilized by π⋯π interactions involving the benzene and pyridinium rings with a centroid–centroid distance of 3.7743 (15) Å.
Related literature
For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). Balasubramani & Fun (2009). For related structures, see: Goubitz et al. (2001); Vaday & Foxman (1999). For details of 3-aminobenzoic acid, see: Windholz (1976); Voogd et al. (1980). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810006288/tk2628sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810006288/tk2628Isup2.hkl
A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (87 mg, Aldrich) and 3-aminobenzoic acid (68 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of (I) appeared after a few days.
All hydrogen atoms were positioned geometrically [C–H = 0.93Å and N–H = 0.86–0.98Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C5H6BrN2+·C7H6NO2− | F(000) = 620 |
Mr = 309.15 | Dx = 1.671 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4215 reflections |
a = 10.1650 (7) Å | θ = 2.6–26.8° |
b = 11.0431 (7) Å | µ = 3.34 mm−1 |
c = 11.9550 (9) Å | T = 296 K |
β = 113.710 (2)° | Blcok, brown |
V = 1228.71 (15) Å3 | 0.42 × 0.39 × 0.11 mm |
Z = 4 |
Bruker APEX DUO CCD area-detector diffractometer | 3565 independent reflections |
Radiation source: fine-focus sealed tube | 2650 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 30.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −14→14 |
Tmin = 0.332, Tmax = 0.708 | k = −15→14 |
15251 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0846P)2 + 0.125P] where P = (Fo2 + 2Fc2)/3 |
3565 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
C5H6BrN2+·C7H6NO2− | V = 1228.71 (15) Å3 |
Mr = 309.15 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.1650 (7) Å | µ = 3.34 mm−1 |
b = 11.0431 (7) Å | T = 296 K |
c = 11.9550 (9) Å | 0.42 × 0.39 × 0.11 mm |
β = 113.710 (2)° |
Bruker APEX DUO CCD area-detector diffractometer | 3565 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2650 reflections with I > 2σ(I) |
Tmin = 0.332, Tmax = 0.708 | Rint = 0.034 |
15251 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.51 e Å−3 |
3565 reflections | Δρmin = −0.54 e Å−3 |
163 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.82844 (3) | 0.52926 (3) | 0.04268 (3) | 0.05749 (15) | |
N1 | 0.5198 (2) | 0.30649 (19) | 0.06832 (17) | 0.0383 (4) | |
N2 | 0.4208 (3) | 0.2756 (2) | 0.2082 (2) | 0.0499 (5) | |
H2A | 0.3715 | 0.2168 | 0.1638 | 0.060* | |
H2B | 0.4125 | 0.2940 | 0.2749 | 0.060* | |
C1 | 0.5087 (2) | 0.3373 (2) | 0.1739 (2) | 0.0378 (5) | |
C2 | 0.5959 (3) | 0.4328 (3) | 0.2429 (2) | 0.0442 (5) | |
H2 | 0.5897 | 0.4569 | 0.3151 | 0.053* | |
C3 | 0.6892 (3) | 0.4899 (2) | 0.2043 (3) | 0.0448 (5) | |
H3 | 0.7469 | 0.5525 | 0.2502 | 0.054* | |
C4 | 0.6971 (2) | 0.4537 (2) | 0.0954 (2) | 0.0387 (5) | |
C5 | 0.6125 (2) | 0.3619 (2) | 0.0294 (2) | 0.0387 (5) | |
H5 | 0.6183 | 0.3370 | −0.0428 | 0.046* | |
O1 | 0.3733 (2) | 1.13481 (18) | 0.91776 (17) | 0.0528 (5) | |
O2 | 0.2423 (2) | 1.11501 (19) | 1.02651 (17) | 0.0549 (5) | |
N3 | −0.0679 (3) | 0.7483 (2) | 0.8606 (3) | 0.0677 (7) | |
H3A | −0.1118 | 0.6865 | 0.8182 | 0.081* | |
H3B | −0.0901 | 0.7746 | 0.9185 | 0.081* | |
C6 | 0.2439 (3) | 0.9284 (2) | 0.7774 (2) | 0.0426 (5) | |
H6 | 0.3115 | 0.9693 | 0.7576 | 0.051* | |
C7 | 0.1775 (3) | 0.8250 (3) | 0.7134 (2) | 0.0477 (6) | |
H7 | 0.2012 | 0.7963 | 0.6508 | 0.057* | |
C8 | 0.0755 (3) | 0.7644 (2) | 0.7426 (2) | 0.0461 (6) | |
H8 | 0.0315 | 0.6954 | 0.6992 | 0.055* | |
C9 | 0.0388 (3) | 0.8058 (2) | 0.8355 (2) | 0.0445 (5) | |
C10 | 0.1058 (3) | 0.9094 (2) | 0.9004 (2) | 0.0412 (5) | |
H10 | 0.0820 | 0.9380 | 0.9630 | 0.049* | |
C11 | 0.2085 (3) | 0.9701 (2) | 0.8712 (2) | 0.0375 (5) | |
C12 | 0.2807 (3) | 1.0815 (2) | 0.9441 (2) | 0.0399 (5) | |
H1 | 0.4617 | 0.2439 | 0.0129 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0532 (2) | 0.0605 (2) | 0.0637 (2) | −0.01495 (12) | 0.02867 (15) | −0.00314 (12) |
N1 | 0.0453 (10) | 0.0357 (10) | 0.0354 (9) | −0.0041 (8) | 0.0179 (8) | −0.0056 (8) |
N2 | 0.0630 (14) | 0.0513 (13) | 0.0451 (11) | −0.0075 (10) | 0.0320 (10) | −0.0064 (10) |
C1 | 0.0432 (11) | 0.0364 (12) | 0.0346 (10) | 0.0035 (9) | 0.0165 (8) | −0.0018 (9) |
C2 | 0.0519 (13) | 0.0432 (13) | 0.0391 (12) | 0.0008 (11) | 0.0200 (10) | −0.0102 (10) |
C3 | 0.0454 (13) | 0.0388 (12) | 0.0480 (13) | −0.0018 (10) | 0.0167 (10) | −0.0113 (10) |
C4 | 0.0357 (11) | 0.0374 (12) | 0.0438 (12) | −0.0006 (8) | 0.0168 (9) | −0.0014 (9) |
C5 | 0.0427 (11) | 0.0401 (13) | 0.0356 (11) | −0.0004 (9) | 0.0183 (9) | −0.0031 (9) |
O1 | 0.0679 (12) | 0.0533 (12) | 0.0469 (10) | −0.0214 (9) | 0.0332 (9) | −0.0119 (8) |
O2 | 0.0784 (13) | 0.0500 (11) | 0.0479 (10) | −0.0120 (9) | 0.0376 (10) | −0.0104 (8) |
N3 | 0.0686 (16) | 0.0571 (16) | 0.094 (2) | −0.0195 (13) | 0.0496 (15) | −0.0166 (15) |
C6 | 0.0455 (12) | 0.0433 (13) | 0.0412 (12) | −0.0013 (10) | 0.0196 (9) | −0.0006 (10) |
C7 | 0.0490 (13) | 0.0480 (15) | 0.0467 (13) | 0.0038 (11) | 0.0198 (10) | −0.0063 (11) |
C8 | 0.0443 (13) | 0.0380 (13) | 0.0508 (14) | 0.0026 (10) | 0.0137 (10) | −0.0052 (11) |
C9 | 0.0384 (11) | 0.0407 (13) | 0.0546 (14) | 0.0005 (9) | 0.0191 (10) | 0.0024 (11) |
C10 | 0.0430 (12) | 0.0389 (13) | 0.0457 (12) | 0.0005 (9) | 0.0221 (10) | 0.0008 (10) |
C11 | 0.0422 (11) | 0.0334 (12) | 0.0353 (11) | 0.0024 (8) | 0.0139 (9) | 0.0034 (9) |
C12 | 0.0493 (13) | 0.0365 (12) | 0.0336 (10) | −0.0017 (9) | 0.0163 (9) | 0.0021 (9) |
Br1—C4 | 1.885 (2) | O2—C12 | 1.252 (3) |
N1—C5 | 1.353 (3) | N3—C9 | 1.390 (3) |
N1—C1 | 1.355 (3) | N3—H3A | 0.8600 |
N1—H1 | 0.9745 | N3—H3B | 0.8600 |
N2—C1 | 1.313 (3) | C6—C11 | 1.387 (3) |
N2—H2A | 0.8600 | C6—C7 | 1.389 (4) |
N2—H2B | 0.8600 | C6—H6 | 0.9300 |
C1—C2 | 1.410 (4) | C7—C8 | 1.391 (4) |
C2—C3 | 1.365 (4) | C7—H7 | 0.9300 |
C2—H2 | 0.9300 | C8—C9 | 1.384 (4) |
C3—C4 | 1.395 (4) | C8—H8 | 0.9300 |
C3—H3 | 0.9300 | C9—C10 | 1.396 (4) |
C4—C5 | 1.358 (3) | C10—C11 | 1.398 (3) |
C5—H5 | 0.9300 | C10—H10 | 0.9300 |
O1—C12 | 1.254 (3) | C11—C12 | 1.515 (3) |
C5—N1—C1 | 122.5 (2) | H3A—N3—H3B | 120.0 |
C5—N1—H1 | 113.7 | C11—C6—C7 | 119.5 (2) |
C1—N1—H1 | 123.8 | C11—C6—H6 | 120.3 |
C1—N2—H2A | 120.0 | C7—C6—H6 | 120.3 |
C1—N2—H2B | 120.0 | C6—C7—C8 | 120.2 (2) |
H2A—N2—H2B | 120.0 | C6—C7—H7 | 119.9 |
N2—C1—N1 | 118.8 (2) | C8—C7—H7 | 119.9 |
N2—C1—C2 | 123.5 (2) | C9—C8—C7 | 120.8 (2) |
N1—C1—C2 | 117.7 (2) | C9—C8—H8 | 119.6 |
C3—C2—C1 | 120.4 (2) | C7—C8—H8 | 119.6 |
C3—C2—H2 | 119.8 | C8—C9—N3 | 120.6 (2) |
C1—C2—H2 | 119.8 | C8—C9—C10 | 119.2 (2) |
C2—C3—C4 | 119.5 (2) | N3—C9—C10 | 120.2 (2) |
C2—C3—H3 | 120.3 | C9—C10—C11 | 120.1 (2) |
C4—C3—H3 | 120.3 | C9—C10—H10 | 120.0 |
C5—C4—C3 | 119.7 (2) | C11—C10—H10 | 120.0 |
C5—C4—Br1 | 120.33 (18) | C6—C11—C10 | 120.3 (2) |
C3—C4—Br1 | 119.97 (19) | C6—C11—C12 | 120.8 (2) |
N1—C5—C4 | 120.3 (2) | C10—C11—C12 | 118.9 (2) |
N1—C5—H5 | 119.9 | O2—C12—O1 | 124.2 (2) |
C4—C5—H5 | 119.9 | O2—C12—C11 | 117.4 (2) |
C9—N3—H3A | 120.0 | O1—C12—C11 | 118.4 (2) |
C9—N3—H3B | 120.0 | ||
C5—N1—C1—N2 | −177.0 (2) | C7—C8—C9—N3 | 176.9 (3) |
C5—N1—C1—C2 | 1.5 (3) | C7—C8—C9—C10 | −0.2 (4) |
N2—C1—C2—C3 | 177.4 (3) | C8—C9—C10—C11 | 0.0 (4) |
N1—C1—C2—C3 | −1.0 (4) | N3—C9—C10—C11 | −177.1 (3) |
C1—C2—C3—C4 | 0.4 (4) | C7—C6—C11—C10 | −0.7 (4) |
C2—C3—C4—C5 | −0.2 (4) | C7—C6—C11—C12 | 179.1 (2) |
C2—C3—C4—Br1 | −178.6 (2) | C9—C10—C11—C6 | 0.4 (4) |
C1—N1—C5—C4 | −1.3 (4) | C9—C10—C11—C12 | −179.3 (2) |
C3—C4—C5—N1 | 0.7 (4) | C6—C11—C12—O2 | 179.1 (2) |
Br1—C4—C5—N1 | 178.99 (18) | C10—C11—C12—O2 | −1.2 (3) |
C11—C6—C7—C8 | 0.5 (4) | C6—C11—C12—O1 | −0.2 (4) |
C6—C7—C8—C9 | −0.1 (4) | C10—C11—C12—O1 | 179.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.98 | 1.65 | 2.626 (3) | 176 |
N2—H2A···O2i | 0.86 | 1.99 | 2.826 (3) | 165 |
N2—H2B···O1ii | 0.86 | 2.06 | 2.909 (3) | 170 |
N3—H3B···O2iii | 0.86 | 2.26 | 3.028 (4) | 148 |
Symmetry codes: (i) x, y−1, z−1; (ii) x, −y+3/2, z−1/2; (iii) −x, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C5H6BrN2+·C7H6NO2− |
Mr | 309.15 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 10.1650 (7), 11.0431 (7), 11.9550 (9) |
β (°) | 113.710 (2) |
V (Å3) | 1228.71 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.34 |
Crystal size (mm) | 0.42 × 0.39 × 0.11 |
Data collection | |
Diffractometer | Bruker APEX DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.332, 0.708 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15251, 3565, 2650 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.137, 1.06 |
No. of reflections | 3565 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.54 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.9800 | 1.6500 | 2.626 (3) | 176.00 |
N2—H2A···O2i | 0.8600 | 1.9900 | 2.826 (3) | 165.00 |
N2—H2B···O1ii | 0.8600 | 2.0600 | 2.909 (3) | 170.00 |
N3—H3B···O2iii | 0.8600 | 2.2600 | 3.028 (4) | 148.00 |
Symmetry codes: (i) x, y−1, z−1; (ii) x, −y+3/2, z−1/2; (iii) −x, −y+2, −z+2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Balasubramani, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1729–o1730. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Goubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176–181. Web of Science CSD CrossRef CAS Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley. Google Scholar
Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vaday, S. & Foxman, M. B. (1999). Cryst. Eng. 2, 145–151. CSD CrossRef CAS Google Scholar
Voogd, J., Verzijl, B. H. M. & Duisenberg, A. J. M. (1980). Acta Cryst. B36, 2805–2806. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Windholz, M. (1976). The Merck Index, 9th ed. Boca Raton USA: Merck & Co. Inc. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 3-Aminobenzoic acid is used as an intermediate for dyes and pesticides (Windholz, 1976). The crystal structures of 3-aminobenzoic acid (Voogd et al., 1980), 2-amino-5-bromopyridine (Goubitz et al., 2001) and 2-amino-5-bromopyridinium propynoate (Vaday & Foxman, 1999) have been reported in the literature. In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title salt, (I), is presented here.
The asymmetric unit of (I) (Fig. 1) contains a 2-amino-5-bromopyridinium cation and a 3-aminobenzoate anion, indicating that proton transfer has occurred during the co-crystallisation experiment. In the 2-amino-5-bromopyridinium cation, a wider than normal angle (C5—N1—C1 = 122.5 (2)°) is subtented at the protonated N1 atom. The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.020 (2)Å for atom N1.
In the crystal packing (Fig. 2), the protonated N1 atom and 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). Two inversion-related 3-aminobenzoate anions are linked through N3—H3B···O2 hydrogen-bonding to form a R22(14) ring motif (Table 1). This motif is also observed in the crystal structure of 2,3-diaminopyridinium 3-amino benzoate (Balasubramani & Fun, 2009). The crystal structure is further stabilized by a π···π stacking interaction between the pyridine rings (C1–C5/N1) and benzene ring (C6–C11) with a centroid- to-centroid distance of 3.7743 (15)Å [symmetry codes: 1-x, 1-y, 1-z].