organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1,1,4,4-Tetra­phenyl­but-2-yne-1,4-diol

aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, bEnvironmental and Analytical Division, School of Advanced Sciences, VIT University, Vellore 632 104, India, cOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 104, India, dDepartment of Physics, The Madura College, Madurai 625 011, India, and eDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 15 February 2010; accepted 17 February 2010; online 20 February 2010)

The mol­ecule of the title compound, C28H22O2, is centrosymmetric with the inversion centre located at the mid-point of the C≡C bond [1.178 (5) Å]. The hydroxyl groups therefore lie on either side of the mol­ecule. The crystal structure is stabilized by O—H⋯O hydrogen bonds, leading to the formation of a linear supra­molecular chain along the b axis.

Related literature

For related structures, see: Braga et al. (1997[Braga, D., Grepioni, F., Walther, D., Heubach, K., Schmidt, A., Imhof, W., Görls, H. & Klettke, T. (1997). Organometallics, 16, 4910-4919.]); Steiner (1996[Steiner, Th. (1996). Acta Cryst. C52, 2885-2887.]).

[Scheme 1]

Experimental

Crystal data
  • C28H22O2

  • Mr = 390.46

  • Monoclinic, P 21 /n

  • a = 11.7760 (7) Å

  • b = 6.1154 (4) Å

  • c = 14.7620 (9) Å

  • β = 104.930 (8)°

  • V = 1027.20 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Nonius Mach3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.982, Tmax = 0.985

  • 2268 measured reflections

  • 1793 independent reflections

  • 1190 reflections with I > 2σ(I)

  • Rint = 0.019

  • 2 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.276

  • S = 1.09

  • 1793 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1a⋯O1i 0.82 2.37 3.040 (3) 139
Symmetry code: (i) -x+1, -y, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our investigations on but-2-yne 1,4-diol molecules, the title molecule, (I), has been synthesized and structurally characterized. The molecule is centrosymmetric with the centre of inversion located at the mid-point of the C14C14i bond, Fig. 1; symmetry operation i: 1-x, 1-y, -z. From symmetry, the hydroxyl groups lie on opposite sides of the molecule. The C14C14i bond distance of 1.178 (5) Å is comparable with those in uncoordinated alkyne, i.e. 1.193 (3) A° (Braga et al., 1997), and 1.200 (4) Å in 2-butyne-1,4-diol (Steiner, 1996). The OH groups in (I) are engaged in intermolecular hydrogen bonding interactions (Table 1) that lead to the formation of a linear supramolecular chain along the b axis.

Related literature top

For related structures, see: Braga et al. (1997); Steiner (1996).

Experimental top

Sodium acetylide (2.5 ml, 18 wt%, 0.01 M) was placed in a round bottom flask, washed twice with dry THF to remove xylene and light mineral oil. A solution of benzophenone (1.82 g, 0.01 M) in dry THF (10 ml) was added drop-wise to the above mixture and stirred for 2 h. A slight excess of powdered ammonium chloride (5 g) was added gradually to decompose the sodium derivative. The mixture was allowed to stand overnight with stirring (to remove excess ammonia). The residue was extracted with dry THF, the organic layer was washed successively with water; dilute sulphuric acid and sodium hydrogen carbonate solutions, and then dried over magnesium sulphate. The obtained product was purified using column chromatography with hexane and ethylacetate (3:2). The obtained product was recrystallized from diethyl ether. M.pt.: 459–461 K, Yield: 52%.

Refinement top

The H atoms were placed in their calculated positions and allowed to ride on their carrier atoms with C—H = 0.93 Å and O—H = 0.82 Å, and with Uiso = 1.2Ueq(C) and Uiso = 1.5Ueq(O) for OH group.

Structure description top

As part of our investigations on but-2-yne 1,4-diol molecules, the title molecule, (I), has been synthesized and structurally characterized. The molecule is centrosymmetric with the centre of inversion located at the mid-point of the C14C14i bond, Fig. 1; symmetry operation i: 1-x, 1-y, -z. From symmetry, the hydroxyl groups lie on opposite sides of the molecule. The C14C14i bond distance of 1.178 (5) Å is comparable with those in uncoordinated alkyne, i.e. 1.193 (3) A° (Braga et al., 1997), and 1.200 (4) Å in 2-butyne-1,4-diol (Steiner, 1996). The OH groups in (I) are engaged in intermolecular hydrogen bonding interactions (Table 1) that lead to the formation of a linear supramolecular chain along the b axis.

For related structures, see: Braga et al. (1997); Steiner (1996).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Symmetry operation i: 1-x, 1-y, -z.
(E)-1,1,4,4-Tetraphenylbut-2-yne-1,4-diol top
Crystal data top
C28H22O2F(000) = 412
Mr = 390.46Dx = 1.262 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.7760 (7) Åθ = 2–25°
b = 6.1154 (4) ŵ = 0.08 mm1
c = 14.7620 (9) ÅT = 293 K
β = 104.930 (8)°Block, colourless
V = 1027.20 (11) Å30.23 × 0.21 × 0.19 mm
Z = 2
Data collection top
Nonius Mach3
diffractometer
1190 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
ω–2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 17
Tmin = 0.982, Tmax = 0.985l = 1716
2268 measured reflections2 standard reflections every 60 min
1793 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.276H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.191P)2 + 0.1322P]
where P = (Fo2 + 2Fc2)/3
1793 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C28H22O2V = 1027.20 (11) Å3
Mr = 390.46Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.7760 (7) ŵ = 0.08 mm1
b = 6.1154 (4) ÅT = 293 K
c = 14.7620 (9) Å0.23 × 0.21 × 0.19 mm
β = 104.930 (8)°
Data collection top
Nonius Mach3
diffractometer
1190 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.019
Tmin = 0.982, Tmax = 0.9852 standard reflections every 60 min
2268 measured reflections intensity decay: none
1793 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.276H-atom parameters constrained
S = 1.09Δρmax = 0.35 e Å3
1793 reflectionsΔρmin = 0.29 e Å3
136 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C140.4922 (3)0.4489 (5)0.03168 (19)0.0503 (8)
O10.5081 (2)0.0924 (4)0.09705 (15)0.0718 (9)
H1A0.46790.04500.04710.108*
C120.5499 (2)0.3958 (5)0.20504 (18)0.0443 (8)
C130.4735 (3)0.3145 (5)0.10995 (18)0.0471 (8)
C110.5673 (3)0.2553 (6)0.2819 (2)0.0619 (9)
H110.53430.11620.27520.074*
C60.3446 (3)0.3186 (5)0.11176 (17)0.0496 (8)
C70.5985 (3)0.5994 (5)0.2167 (2)0.0569 (9)
H70.58620.69450.16590.068*
C10.2929 (4)0.1361 (7)0.1416 (2)0.0754 (12)
H10.33560.00790.15850.090*
C50.2780 (3)0.5067 (6)0.0880 (2)0.0605 (9)
H50.31230.62960.06900.073*
C90.6848 (3)0.5280 (7)0.3798 (2)0.0707 (11)
H90.73070.57180.43810.085*
C100.6348 (3)0.3262 (7)0.3685 (2)0.0742 (11)
H100.64590.23340.41990.089*
C80.6667 (3)0.6660 (7)0.3044 (3)0.0681 (10)
H80.69990.80490.31160.082*
C40.1615 (3)0.5167 (8)0.0917 (3)0.0861 (14)
H40.11810.64420.07490.103*
C20.1750 (5)0.1500 (11)0.1458 (3)0.0978 (17)
H20.13980.02990.16600.117*
C30.1116 (4)0.3374 (12)0.1204 (3)0.1031 (19)
H30.03350.34250.12280.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C140.0636 (18)0.0556 (19)0.0336 (14)0.0098 (14)0.0161 (13)0.0068 (12)
O10.129 (2)0.0447 (14)0.0443 (12)0.0142 (13)0.0267 (13)0.0013 (10)
C120.0537 (16)0.0489 (17)0.0340 (14)0.0073 (13)0.0182 (11)0.0070 (12)
C130.0724 (19)0.0384 (16)0.0340 (15)0.0061 (13)0.0201 (13)0.0056 (11)
C110.078 (2)0.062 (2)0.0448 (17)0.0043 (16)0.0145 (15)0.0139 (15)
C60.0677 (19)0.0574 (19)0.0246 (13)0.0177 (15)0.0138 (12)0.0078 (12)
C70.067 (2)0.0514 (19)0.0527 (18)0.0034 (15)0.0167 (15)0.0098 (14)
C10.105 (3)0.076 (2)0.0483 (19)0.031 (2)0.0263 (18)0.0002 (17)
C50.063 (2)0.066 (2)0.0534 (19)0.0021 (16)0.0166 (15)0.0072 (16)
C90.059 (2)0.099 (3)0.0489 (19)0.004 (2)0.0057 (15)0.0053 (19)
C100.080 (2)0.096 (3)0.0424 (18)0.004 (2)0.0081 (16)0.0191 (18)
C80.067 (2)0.070 (2)0.064 (2)0.0095 (18)0.0111 (16)0.0126 (18)
C40.068 (2)0.122 (4)0.068 (2)0.001 (2)0.0177 (19)0.035 (2)
C20.108 (3)0.132 (4)0.063 (3)0.073 (3)0.038 (2)0.032 (3)
C30.081 (3)0.161 (5)0.078 (3)0.046 (4)0.039 (2)0.052 (3)
Geometric parameters (Å, º) top
C14—C14i1.178 (5)C1—C21.408 (7)
C14—C131.480 (4)C1—H10.9300
O1—C131.445 (3)C5—C41.389 (5)
O1—H1A0.8200C5—H50.9300
C12—C71.363 (4)C9—C101.359 (5)
C12—C111.395 (4)C9—C81.370 (5)
C12—C131.541 (4)C9—H90.9300
C13—C61.526 (4)C10—H100.9300
C11—C101.389 (5)C8—H80.9300
C11—H110.9300C4—C31.362 (7)
C6—C51.385 (5)C4—H40.9300
C6—C11.395 (5)C2—C31.366 (7)
C7—C81.396 (5)C2—H20.9300
C7—H70.9300C3—H30.9300
C14i—C14—C13178.3 (4)C2—C1—H1120.6
C13—O1—H1A109.5C6—C5—C4121.8 (4)
C7—C12—C11119.4 (3)C6—C5—H5119.1
C7—C12—C13122.5 (2)C4—C5—H5119.1
C11—C12—C13118.1 (3)C10—C9—C8119.2 (3)
O1—C13—C14108.4 (2)C10—C9—H9120.4
O1—C13—C6109.5 (3)C8—C9—H9120.4
C14—C13—C6110.7 (2)C9—C10—C11121.6 (3)
O1—C13—C12107.7 (2)C9—C10—H10119.2
C14—C13—C12111.3 (2)C11—C10—H10119.2
C6—C13—C12109.2 (2)C9—C8—C7120.4 (3)
C10—C11—C12119.0 (3)C9—C8—H8119.8
C10—C11—H11120.5C7—C8—H8119.8
C12—C11—H11120.5C3—C4—C5119.1 (5)
C5—C6—C1118.7 (3)C3—C4—H4120.5
C5—C6—C13120.7 (3)C5—C4—H4120.5
C1—C6—C13120.6 (3)C3—C2—C1120.9 (4)
C12—C7—C8120.4 (3)C3—C2—H2119.5
C12—C7—H7119.8C1—C2—H2119.5
C8—C7—H7119.8C4—C3—C2120.8 (4)
C6—C1—C2118.7 (5)C4—C3—H3119.6
C6—C1—H1120.6C2—C3—H3119.6
C14i—C14—C13—O17 (15)C12—C13—C6—C190.2 (3)
C14i—C14—C13—C6114 (15)C11—C12—C7—C81.0 (5)
C14i—C14—C13—C12125 (15)C13—C12—C7—C8179.7 (3)
C7—C12—C13—O1137.1 (3)C5—C6—C1—C20.4 (5)
C11—C12—C13—O144.2 (3)C13—C6—C1—C2177.5 (3)
C7—C12—C13—C1418.4 (4)C1—C6—C5—C41.0 (5)
C11—C12—C13—C14162.8 (3)C13—C6—C5—C4178.1 (3)
C7—C12—C13—C6104.1 (3)C8—C9—C10—C111.1 (6)
C11—C12—C13—C674.7 (3)C12—C11—C10—C90.6 (6)
C7—C12—C11—C100.5 (5)C10—C9—C8—C70.6 (5)
C13—C12—C11—C10179.3 (3)C12—C7—C8—C90.4 (5)
O1—C13—C6—C5155.4 (2)C6—C5—C4—C30.6 (5)
C14—C13—C6—C536.0 (4)C6—C1—C2—C30.5 (6)
C12—C13—C6—C586.8 (3)C5—C4—C3—C20.4 (6)
O1—C13—C6—C127.6 (3)C1—C2—C3—C40.9 (7)
C14—C13—C6—C1147.0 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1a···O1ii0.822.373.040 (3)139
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC28H22O2
Mr390.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.7760 (7), 6.1154 (4), 14.7620 (9)
β (°) 104.930 (8)
V3)1027.20 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerNonius Mach3
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.982, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
2268, 1793, 1190
Rint0.019
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.276, 1.09
No. of reflections1793
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1a···O1i0.822.373.040 (3)139
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the DST for support through the FIST programme. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBraga, D., Grepioni, F., Walther, D., Heubach, K., Schmidt, A., Imhof, W., Görls, H. & Klettke, T. (1997). Organometallics, 16, 4910–4919.  CSD CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, Th. (1996). Acta Cryst. C52, 2885–2887.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds