metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[N-benzyl-2-(quinolin-8-yl­­oxy)acetamide]di­chloridocopper(II) aceto­nitrile solvate monohydrate

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China, and bLanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: wuwn08@hpu.edu.cn

(Received 14 January 2010; accepted 9 February 2010; online 13 February 2010)

In the title complex, [CuCl2(C18H16N2O2)2]·CH3CN·H2O, the six-coordinated Cu atom is in a distorted octa­hedral geometry with the donor centers of two O atoms and two N atom from two bidentate ligands, and two chloride ions. In the crystal, pairs of inter­molecular N—H⋯ Cl hydrogen bonds form centrosymmetric dimers and inter­molecular O—H⋯ O hydrogen bonds between the ligand and the uncoordinated water mol­ecules link the dimers into chains parallel to the c axis.

Related literature

For the synthesis of N-phenyl-2-(quinolin-8-yl­oxy)acetamide, see Wu, Yuan et al. (2006[Wu, W.-N., Yuan, W.-B., Tang, N., Yang, R.-D., Yan, L. & Xu, Z.-H. (2006). Spectrochim. Acta A, 65, 912-918.]); Wu et al. (2008[Wu, W.-N., Tang, N. & Yan, L. (2008). J. Fluoresc. 18, 101-107.]). For related structures, see: Al-Mandhary & Steel (2002[Al-Mandhary, M. R. A. & Steel, P. J. (2002). Aust. J. Chem. 55, 705-708.]); Wu, Wang et al. (2006[Wu, G., Wang, X.-F., Okamura, T., Sun, W.-Y. & Ueyama, N. (2006). Inorg. Chem. 45, 8523-8532.]); Zhu et al. (2005[Zhu, Z., Karasawa, S. & Koga, N. (2005). Inorg. Chem. 44, 6004-6011.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C18H16N2O2)2]·C2H3N·H2O

  • Mr = 778.17

  • Triclinic, [P \overline 1]

  • a = 10.202 (3) Å

  • b = 13.253 (4) Å

  • c = 14.009 (4) Å

  • α = 78.927 (3)°

  • β = 78.995 (3)°

  • γ = 86.366 (3)°

  • V = 1824.0 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 K

  • 0.31 × 0.21 × 0.13 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.818, Tmax = 0.902

  • 19499 measured reflections

  • 7457 independent reflections

  • 4374 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.186

  • S = 1.03

  • 7457 reflections

  • 464 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1i 0.86 2.35 3.160 (4) 158
N4—H4A⋯Cl2 0.86 2.39 3.230 (5) 165
O1W—H1WA⋯O2 0.85 1.95 2.776 (8) 165
O1W—H1WB⋯O4ii 0.86 (2) 2.2 (2) 2.781 (11) 121 (23)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The luminescent properties of the lanthanide complexes with amide type ligands have been investigated in our previous work (Wu, Yuan et al., 2006; Wu et al., 2008). As part of our ongoing studies of the amide type ligands, the title complex was synthesized and characterized by X-ray diffraction.

As shown in Fig. 1, in the title complex, the six-coordinated Cu atom is in a distored octahedral geometry with the donor centers of two O atoms and two N atom from two ligands, and two chloride ions. It is worth noting that the O3 atom of the ligand also participates coordination since the distance of Cu1—O3 are 2.446 (3) Å. A longer Cu—O distance of 2.586 Å has been reported in complex [Cu3(L1)2Cl6].2DMF, where L1= 1,3,5-tris(2-pyridylmethoxyl)benzene (Wu, G. et al. 2006). Other features of the structure are similar to those found in other sixcoordinate copper(II) complexes with similar donor sets (Al-Mandhary et al., 2002; Wu, Wang et al., 2006 & Zhu et al., 2005).

In the crystal, two intermolecular N—H··· Cl hydrogen bonds between two molecules create centrosymmetric dimers. and the dimers are linked into chains via the intermolecular O—H··· O hydrogen bonds between the ligand and the uncoordinated water molecules. Intermolecular N—H··· Cl hydrogen bonds are also present (Fig. 2).

Related literature top

For the synthesis of N-phenyl-2-(quinolin-8-yloxy)acetamide, see Wu, Yuan et al. (2006); Wu et al. (2008). For related structures, see: Al-Mandhary & Steel (2002); Wu, Wang et al. (2006); Zhu et al. (2005).

Experimental top

N-benzyl-2-(quinolin-8-yloxy)acetamide (Wu, Yuan et al., 2006) (0.292 g, 1 mmol) was dissolved in acetonitrile (10 ml), then an acetonitrile solution (10 ml) containing copper(II) chloride dihydrate (0.179 g, 1 mmol) was added dropwise at room temperature. After stirring for 2 h, the mixture was filtered and set aside to crystallize at room temperature for 10 d, giving blue block crystals.

Refinement top

The C31 phenyl ring was refined as rigid hexagon of 1.39 Å sides as there was a slight spread of C–C distances. The water H-atoms were located in a difference Fourier map and refined with an O—H distance restrain of 0.85 (2) Å. Other H atoms attached to C and N atoms were placed in calculated positions and treated using a riding-model approximation (C—H=0.93 for aromatic ring H atoms with Uiso(H)=1.2Ueq(C); N—H=0.86 with Uiso(H)=1.5Ueq(N)).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing for the title complex via hydrogen bonds (dashed lines).
Bis[N-benzyl-2-(quinolin-8-yloxy)acetamide]dichloridocopper(II) acetonitrile solvate monohydrate top
Crystal data top
[CuCl2(C18H16N2O2)2]·C2H3N·H2OV = 1824.0 (9) Å3
Mr = 778.17Z = 2
Triclinic, P1F(000) = 806
Hall symbol: -P 1Dx = 1.417 Mg m3
a = 10.202 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.253 (4) Åθ = 2.0–26.5°
c = 14.009 (4) ŵ = 0.80 mm1
α = 78.927 (3)°T = 293 K
β = 78.995 (3)°Block, blue
γ = 86.366 (3)°0.31 × 0.21 × 0.13 mm
Data collection top
Bruker SMART CCD
diffractometer
7457 independent reflections
Radiation source: fine-focus sealed tube4374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
phi and ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.818, Tmax = 0.902k = 1616
19499 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1001P)2]
where P = (Fo2 + 2Fc2)/3
7457 reflections(Δ/σ)max = 0.030
464 parametersΔρmax = 0.71 e Å3
9 restraintsΔρmin = 0.85 e Å3
Crystal data top
[CuCl2(C18H16N2O2)2]·C2H3N·H2Oγ = 86.366 (3)°
Mr = 778.17V = 1824.0 (9) Å3
Triclinic, P1Z = 2
a = 10.202 (3) ÅMo Kα radiation
b = 13.253 (4) ŵ = 0.80 mm1
c = 14.009 (4) ÅT = 293 K
α = 78.927 (3)°0.31 × 0.21 × 0.13 mm
β = 78.995 (3)°
Data collection top
Bruker SMART CCD
diffractometer
7457 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4374 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.902Rint = 0.059
19499 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0619 restraints
wR(F2) = 0.186H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.71 e Å3
7457 reflectionsΔρmin = 0.85 e Å3
464 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.70023 (5)0.29872 (4)0.40084 (4)0.04355 (19)
O10.6634 (3)0.3689 (2)0.5515 (2)0.0474 (7)
O20.5770 (4)0.2507 (2)0.7300 (2)0.0658 (9)
O30.7440 (3)0.1992 (2)0.2675 (2)0.0558 (8)
O40.6412 (5)0.2161 (4)0.0407 (3)0.1052 (15)
N10.8765 (3)0.3017 (3)0.4417 (3)0.0461 (8)
N20.4376 (4)0.3748 (3)0.7784 (3)0.0571 (10)
H2A0.40490.43540.76030.068*
N30.6864 (3)0.1485 (3)0.4624 (3)0.0450 (8)
N40.5215 (5)0.2459 (4)0.1848 (3)0.0731 (13)
H4A0.52650.26050.24120.088*
C10.9814 (5)0.2679 (4)0.3872 (4)0.0631 (13)
H10.96990.23670.33540.076*
C21.1110 (5)0.2766 (5)0.4033 (5)0.0812 (17)
H21.18400.25090.36350.097*
C31.1281 (5)0.3220 (5)0.4762 (5)0.0744 (16)
H31.21410.32920.48680.089*
C41.0206 (5)0.3584 (4)0.5365 (4)0.0588 (13)
C51.0327 (6)0.4074 (5)0.6140 (4)0.0757 (16)
H51.11670.41530.62770.091*
C60.9250 (6)0.4426 (4)0.6681 (4)0.0766 (17)
H60.93470.47520.71940.092*
C70.7977 (5)0.4320 (4)0.6499 (4)0.0639 (14)
H70.72360.45770.68860.077*
C80.7817 (4)0.3850 (3)0.5768 (3)0.0486 (11)
C90.8941 (4)0.3470 (3)0.5172 (3)0.0459 (10)
C100.5454 (4)0.3984 (3)0.6105 (3)0.0491 (11)
H10A0.47030.39270.57880.059*
H10B0.55040.46980.61610.059*
C110.5224 (4)0.3329 (3)0.7126 (3)0.0471 (10)
C120.3973 (5)0.3233 (4)0.8795 (3)0.0656 (14)
H12A0.37730.37470.92150.079*
H12B0.47170.28080.89980.079*
C130.2795 (6)0.2578 (4)0.8961 (3)0.0618 (13)
C140.2840 (7)0.1598 (5)0.9468 (4)0.0849 (18)
H140.36290.13260.96660.102*
C150.1726 (10)0.1004 (6)0.9691 (6)0.113 (3)
H150.17650.03341.00410.136*
C160.0591 (9)0.1384 (6)0.9409 (6)0.120 (3)
H160.01640.09840.95750.143*
C170.0531 (7)0.2365 (5)0.8872 (6)0.102 (2)
H170.02550.26270.86640.123*
C180.1644 (6)0.2949 (4)0.8650 (5)0.0769 (16)
H180.16130.36100.82800.092*
C190.6631 (4)0.1215 (3)0.5579 (4)0.0518 (11)
H190.65870.17280.59540.062*
C200.6444 (5)0.0211 (4)0.6076 (4)0.0583 (12)
H200.62810.00620.67640.070*
C210.6501 (5)0.0535 (4)0.5556 (4)0.0599 (13)
H210.63810.12130.58800.072*
C220.6738 (4)0.0304 (3)0.4537 (4)0.0534 (12)
C230.6761 (5)0.1045 (4)0.3929 (5)0.0688 (15)
H230.66220.17320.42170.083*
C240.6977 (6)0.0771 (4)0.2949 (5)0.0734 (15)
H240.69910.12700.25620.088*
C250.7184 (5)0.0248 (4)0.2495 (4)0.0693 (14)
H250.73160.04280.18090.083*
C260.7196 (4)0.0979 (3)0.3047 (4)0.0519 (11)
C270.6934 (4)0.0720 (3)0.4085 (3)0.0446 (10)
C280.7583 (5)0.2327 (4)0.1643 (4)0.0724 (15)
H28A0.82600.18970.13170.087*
H28B0.78990.30250.14780.087*
C290.6328 (7)0.2302 (4)0.1244 (4)0.0740 (15)
C300.3922 (6)0.2396 (4)0.1612 (4)0.0781 (16)
H30A0.33630.19960.21790.094*
H30B0.40140.20240.10690.094*
C310.3221 (5)0.3406 (4)0.1332 (3)0.0636 (13)
C320.1919 (5)0.3386 (5)0.1231 (4)0.0737 (15)
H320.14850.27650.13650.088*
C330.1260 (7)0.4277 (6)0.0935 (5)0.0914 (19)
H330.03740.42590.08630.110*
C340.1867 (7)0.5199 (6)0.0740 (5)0.096 (2)
H340.14110.58060.05280.115*
C350.3143 (6)0.5212 (5)0.0862 (4)0.0838 (17)
H350.35640.58380.07420.101*
C360.3830 (6)0.4332 (4)0.1155 (4)0.0748 (15)
H360.47100.43590.12360.090*
Cl10.75545 (12)0.43895 (9)0.28587 (10)0.0660 (4)
Cl20.47968 (10)0.31446 (8)0.39799 (8)0.0498 (3)
C380.9313 (9)0.0002 (7)0.7221 (8)0.136 (3)
N50.9214 (10)0.0854 (7)0.7463 (8)0.184 (4)
C370.9421 (9)0.1096 (6)0.6906 (8)0.165 (4)
H37A1.01980.13180.70910.198*
H37B0.86390.14340.72160.198*
H37C0.94950.12660.62000.198*
O1W0.6967 (15)0.1253 (12)0.8737 (6)0.369 (9)
H1WA0.64680.16070.83690.554*
H1WB0.651 (9)0.110 (18)0.933 (5)0.554*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0433 (3)0.0369 (3)0.0527 (4)0.0014 (2)0.0148 (2)0.0086 (2)
O10.0442 (16)0.0527 (18)0.0462 (17)0.0022 (13)0.0043 (13)0.0152 (14)
O20.087 (3)0.045 (2)0.059 (2)0.0147 (18)0.0079 (18)0.0071 (16)
O30.068 (2)0.0501 (19)0.050 (2)0.0027 (15)0.0122 (15)0.0093 (15)
O40.139 (4)0.132 (4)0.052 (3)0.017 (3)0.029 (2)0.029 (2)
N10.044 (2)0.042 (2)0.052 (2)0.0022 (16)0.0071 (17)0.0099 (17)
N20.065 (3)0.054 (2)0.049 (2)0.0007 (19)0.0003 (19)0.0117 (19)
N30.045 (2)0.043 (2)0.051 (2)0.0040 (15)0.0161 (16)0.0106 (17)
N40.083 (3)0.089 (3)0.056 (3)0.017 (3)0.030 (3)0.024 (2)
C10.056 (3)0.067 (3)0.066 (3)0.009 (2)0.011 (2)0.015 (3)
C20.046 (3)0.103 (5)0.089 (4)0.018 (3)0.010 (3)0.011 (4)
C30.044 (3)0.091 (4)0.086 (4)0.007 (3)0.024 (3)0.004 (3)
C40.047 (3)0.060 (3)0.067 (3)0.009 (2)0.021 (2)0.006 (2)
C50.071 (4)0.092 (4)0.072 (4)0.027 (3)0.033 (3)0.007 (3)
C60.097 (5)0.082 (4)0.060 (3)0.036 (4)0.028 (3)0.009 (3)
C70.082 (4)0.065 (3)0.051 (3)0.017 (3)0.014 (3)0.020 (2)
C80.057 (3)0.046 (3)0.045 (3)0.014 (2)0.013 (2)0.004 (2)
C90.046 (2)0.044 (2)0.048 (3)0.0065 (19)0.013 (2)0.002 (2)
C100.049 (3)0.048 (3)0.048 (3)0.005 (2)0.003 (2)0.010 (2)
C110.053 (3)0.042 (3)0.047 (3)0.005 (2)0.007 (2)0.008 (2)
C120.077 (3)0.073 (3)0.046 (3)0.006 (3)0.006 (2)0.013 (3)
C130.084 (4)0.056 (3)0.045 (3)0.007 (3)0.001 (3)0.017 (2)
C140.124 (5)0.066 (4)0.070 (4)0.002 (4)0.030 (4)0.014 (3)
C150.153 (8)0.076 (5)0.107 (6)0.045 (5)0.020 (6)0.002 (4)
C160.127 (7)0.096 (6)0.131 (7)0.060 (5)0.006 (6)0.020 (5)
C170.083 (5)0.079 (5)0.146 (7)0.016 (4)0.013 (4)0.027 (5)
C180.080 (4)0.055 (3)0.093 (4)0.012 (3)0.006 (3)0.013 (3)
C190.058 (3)0.042 (3)0.058 (3)0.007 (2)0.017 (2)0.013 (2)
C200.065 (3)0.049 (3)0.060 (3)0.003 (2)0.019 (2)0.001 (2)
C210.063 (3)0.039 (3)0.079 (4)0.003 (2)0.026 (3)0.002 (2)
C220.045 (3)0.040 (3)0.079 (4)0.0042 (19)0.023 (2)0.011 (2)
C230.076 (4)0.040 (3)0.100 (5)0.008 (2)0.026 (3)0.030 (3)
C240.088 (4)0.054 (3)0.091 (4)0.010 (3)0.029 (3)0.034 (3)
C250.083 (4)0.062 (3)0.070 (4)0.013 (3)0.023 (3)0.025 (3)
C260.055 (3)0.042 (3)0.064 (3)0.009 (2)0.017 (2)0.017 (2)
C270.041 (2)0.037 (2)0.060 (3)0.0052 (18)0.018 (2)0.015 (2)
C280.079 (4)0.078 (4)0.056 (3)0.003 (3)0.004 (3)0.013 (3)
C290.101 (5)0.073 (4)0.052 (3)0.007 (3)0.023 (3)0.013 (3)
C300.092 (4)0.077 (4)0.074 (4)0.002 (3)0.033 (3)0.017 (3)
C310.074 (4)0.075 (4)0.047 (3)0.005 (3)0.019 (2)0.018 (3)
C320.069 (4)0.087 (4)0.067 (4)0.004 (3)0.019 (3)0.011 (3)
C330.077 (4)0.114 (6)0.089 (5)0.006 (4)0.024 (3)0.027 (4)
C340.107 (6)0.100 (5)0.084 (5)0.028 (4)0.030 (4)0.025 (4)
C350.098 (5)0.072 (4)0.082 (4)0.007 (4)0.016 (4)0.016 (3)
C360.070 (4)0.079 (4)0.079 (4)0.005 (3)0.021 (3)0.016 (3)
Cl10.0627 (8)0.0501 (7)0.0804 (9)0.0065 (6)0.0203 (6)0.0085 (6)
Cl20.0443 (6)0.0460 (6)0.0630 (7)0.0010 (5)0.0165 (5)0.0138 (5)
C380.113 (7)0.118 (7)0.183 (10)0.006 (6)0.049 (6)0.018 (8)
N50.208 (10)0.119 (7)0.213 (10)0.002 (7)0.003 (7)0.038 (7)
C370.155 (8)0.110 (7)0.233 (12)0.035 (6)0.092 (8)0.030 (7)
O1W0.487 (18)0.438 (17)0.168 (8)0.350 (16)0.110 (10)0.086 (10)
Geometric parameters (Å, º) top
Cu1—N11.993 (3)C15—C161.333 (10)
Cu1—N32.014 (3)C15—H150.9300
Cu1—Cl12.2364 (13)C16—C171.375 (10)
Cu1—Cl22.2537 (13)C16—H160.9300
Cu1—O12.423 (3)C17—C181.367 (8)
O1—C81.360 (5)C17—H170.9300
O1—C101.404 (5)C18—H180.9300
O2—C111.196 (5)C19—C201.384 (6)
O3—C261.363 (5)C19—H190.9300
O3—C281.410 (6)C20—C211.329 (7)
O4—C291.208 (6)C20—H200.9300
N1—C11.299 (6)C21—C221.379 (7)
N1—C91.357 (5)C21—H210.9300
N2—C111.318 (5)C22—C271.393 (6)
N2—C121.444 (6)C22—C231.415 (7)
N2—H2A0.8600C23—C241.329 (7)
N3—C191.296 (5)C23—H230.9300
N3—C271.367 (5)C24—C251.389 (7)
N4—C291.311 (7)C24—H240.9300
N4—C301.431 (7)C25—C261.354 (6)
N4—H4A0.8600C25—H250.9300
C1—C21.399 (7)C26—C271.405 (6)
C1—H10.9300C28—C291.497 (8)
C2—C31.324 (8)C28—H28A0.9700
C2—H20.9300C28—H28B0.9700
C3—C41.374 (7)C30—C311.497 (7)
C3—H30.9300C30—H30A0.9700
C4—C91.390 (6)C30—H30B0.9700
C4—C51.395 (7)C31—C321.365 (6)
C5—C61.323 (8)C31—C361.370 (6)
C5—H50.9300C32—C331.355 (8)
C6—C71.392 (7)C32—H320.9300
C6—H60.9300C33—C341.362 (7)
C7—C81.336 (6)C33—H330.9300
C7—H70.9300C34—C351.346 (7)
C8—C91.410 (6)C34—H340.9300
C10—C111.507 (6)C35—C361.356 (6)
C10—H10A0.9700C35—H350.9300
C10—H10B0.9700C36—H360.9300
C12—C131.483 (7)C38—N51.125 (10)
C12—H12A0.9700C38—C371.436 (8)
C12—H12B0.9700C37—H37A0.9600
C13—C141.359 (7)C37—H37B0.9600
C13—C181.360 (8)C37—H37C0.9600
C14—C151.375 (9)O1W—H1WA0.8501
C14—H140.9300O1W—H1WB0.86 (2)
N1—Cu1—N389.95 (13)C15—C16—C17120.3 (7)
N1—Cu1—Cl189.01 (11)C15—C16—H16119.8
N3—Cu1—Cl1158.68 (11)C17—C16—H16119.8
N1—Cu1—Cl2162.28 (11)C18—C17—C16119.1 (7)
N3—Cu1—Cl292.14 (10)C18—C17—H17120.5
Cl1—Cu1—Cl295.29 (5)C16—C17—H17120.5
N1—Cu1—O172.19 (12)C13—C18—C17121.0 (6)
N3—Cu1—O198.37 (12)C13—C18—H18119.5
Cl1—Cu1—O1101.57 (8)C17—C18—H18119.5
Cl2—Cu1—O190.10 (7)N3—C19—C20124.2 (4)
C8—O1—C10117.9 (3)N3—C19—H19117.9
C8—O1—Cu1110.8 (2)C20—C19—H19117.9
C10—O1—Cu1131.3 (3)C21—C20—C19119.0 (5)
C26—O3—C28118.1 (4)C21—C20—H20120.5
C1—N1—C9118.3 (4)C19—C20—H20120.5
C1—N1—Cu1118.1 (3)C20—C21—C22120.0 (5)
C9—N1—Cu1123.1 (3)C20—C21—H21120.0
C11—N2—C12122.7 (4)C22—C21—H21120.0
C11—N2—H2A118.6C21—C22—C27117.9 (4)
C12—N2—H2A118.6C21—C22—C23123.7 (5)
C19—N3—C27117.1 (4)C27—C22—C23118.4 (5)
C19—N3—Cu1119.6 (3)C24—C23—C22120.8 (5)
C27—N3—Cu1123.3 (3)C24—C23—H23119.6
C29—N4—C30123.0 (5)C22—C23—H23119.6
C29—N4—H4A118.5C23—C24—C25121.0 (5)
C30—N4—H4A118.5C23—C24—H24119.5
N1—C1—C2122.6 (5)C25—C24—H24119.5
N1—C1—H1118.7C26—C25—C24120.2 (5)
C2—C1—H1118.7C26—C25—H25119.9
C3—C2—C1119.0 (5)C24—C25—H25119.9
C3—C2—H2120.5C25—C26—O3124.9 (5)
C1—C2—H2120.5C25—C26—C27120.1 (4)
C2—C3—C4120.8 (5)O3—C26—C27115.0 (4)
C2—C3—H3119.6N3—C27—C22121.7 (4)
C4—C3—H3119.6N3—C27—C26118.9 (4)
C3—C4—C9117.6 (5)C22—C27—C26119.3 (4)
C3—C4—C5123.3 (5)O3—C28—C29114.4 (4)
C9—C4—C5119.2 (5)O3—C28—H28A108.7
C6—C5—C4120.3 (5)C29—C28—H28A108.7
C6—C5—H5119.9O3—C28—H28B108.7
C4—C5—H5119.9C29—C28—H28B108.7
C5—C6—C7121.4 (5)H28A—C28—H28B107.6
C5—C6—H6119.3O4—C29—N4125.7 (6)
C7—C6—H6119.3O4—C29—C28118.8 (6)
C8—C7—C6120.2 (5)N4—C29—C28115.5 (5)
C8—C7—H7119.9N4—C30—C31115.4 (5)
C6—C7—H7119.9N4—C30—H30A108.4
C7—C8—O1126.2 (4)C31—C30—H30A108.4
C7—C8—C9120.0 (4)N4—C30—H30B108.4
O1—C8—C9113.8 (4)C31—C30—H30B108.4
N1—C9—C4121.7 (4)H30A—C30—H30B107.5
N1—C9—C8119.3 (4)C32—C31—C36119.2 (5)
C4—C9—C8119.0 (4)C32—C31—C30117.5 (5)
O1—C10—C11111.9 (4)C36—C31—C30123.3 (5)
O1—C10—H10A109.2C33—C32—C31119.7 (6)
C11—C10—H10A109.2C33—C32—H32120.1
O1—C10—H10B109.2C31—C32—H32120.1
C11—C10—H10B109.2C32—C33—C34121.3 (6)
H10A—C10—H10B107.9C32—C33—H33119.3
O2—C11—N2124.5 (4)C34—C33—H33119.3
O2—C11—C10121.8 (4)C35—C34—C33118.5 (6)
N2—C11—C10113.7 (4)C35—C34—H34120.8
N2—C12—C13114.3 (4)C33—C34—H34120.8
N2—C12—H12A108.7C34—C35—C36121.5 (6)
C13—C12—H12A108.7C34—C35—H35119.2
N2—C12—H12B108.7C36—C35—H35119.2
C13—C12—H12B108.7C35—C36—C31119.7 (5)
H12A—C12—H12B107.6C35—C36—H36120.1
C14—C13—C18118.8 (6)C31—C36—H36120.1
C14—C13—C12119.6 (6)N5—C38—C37179.1 (12)
C18—C13—C12121.5 (5)C38—C37—H37A109.5
C13—C14—C15120.5 (7)C38—C37—H37B109.5
C13—C14—H14119.8H37A—C37—H37B109.5
C15—C14—H14119.8C38—C37—H37C109.5
C16—C15—C14120.3 (7)H37A—C37—H37C109.5
C16—C15—H15119.9H37B—C37—H37C109.5
C14—C15—H15119.9H1WA—O1W—H1WB108.6
N1—Cu1—O1—C87.6 (3)O1—C10—C11—O219.0 (6)
N3—Cu1—O1—C894.8 (3)O1—C10—C11—N2161.3 (4)
Cl1—Cu1—O1—C877.6 (3)C11—N2—C12—C1388.6 (6)
Cl2—Cu1—O1—C8173.0 (2)N2—C12—C13—C14131.0 (5)
N1—Cu1—O1—C10175.8 (4)N2—C12—C13—C1851.7 (7)
N3—Cu1—O1—C1088.6 (3)C18—C13—C14—C152.2 (9)
Cl1—Cu1—O1—C1099.0 (3)C12—C13—C14—C15175.3 (5)
Cl2—Cu1—O1—C103.6 (3)C13—C14—C15—C160.2 (11)
N3—Cu1—N1—C180.9 (4)C14—C15—C16—C171.5 (13)
Cl1—Cu1—N1—C177.8 (3)C15—C16—C17—C181.2 (12)
Cl2—Cu1—N1—C1177.8 (3)C14—C13—C18—C172.5 (9)
O1—Cu1—N1—C1179.8 (4)C12—C13—C18—C17174.9 (5)
N3—Cu1—N1—C9106.3 (3)C16—C17—C18—C130.8 (10)
Cl1—Cu1—N1—C995.0 (3)C27—N3—C19—C200.4 (6)
Cl2—Cu1—N1—C99.4 (6)Cu1—N3—C19—C20176.3 (3)
O1—Cu1—N1—C97.5 (3)N3—C19—C20—C210.1 (7)
N1—Cu1—N3—C1972.2 (3)C19—C20—C21—C220.2 (7)
Cl1—Cu1—N3—C19159.3 (3)C20—C21—C22—C271.0 (7)
Cl2—Cu1—N3—C1990.2 (3)C20—C21—C22—C23177.3 (5)
O1—Cu1—N3—C190.2 (3)C21—C22—C23—C24179.1 (5)
N1—Cu1—N3—C27111.3 (3)C27—C22—C23—C240.7 (7)
Cl1—Cu1—N3—C2724.2 (5)C22—C23—C24—C250.2 (8)
Cl2—Cu1—N3—C2786.3 (3)C23—C24—C25—C261.4 (8)
O1—Cu1—N3—C27176.7 (3)C24—C25—C26—O3177.4 (4)
C9—N1—C1—C20.0 (7)C24—C25—C26—C273.1 (7)
Cu1—N1—C1—C2173.1 (4)C28—O3—C26—C255.5 (7)
N1—C1—C2—C30.8 (9)C28—O3—C26—C27174.0 (4)
C1—C2—C3—C41.2 (9)C19—N3—C27—C221.3 (6)
C2—C3—C4—C90.8 (8)Cu1—N3—C27—C22175.3 (3)
C2—C3—C4—C5179.6 (5)C19—N3—C27—C26179.5 (4)
C3—C4—C5—C6178.6 (5)Cu1—N3—C27—C264.0 (5)
C9—C4—C5—C60.2 (8)C21—C22—C27—N31.6 (6)
C4—C5—C6—C70.1 (9)C23—C22—C27—N3176.9 (4)
C5—C6—C7—C80.3 (8)C21—C22—C27—C26179.2 (4)
C6—C7—C8—O1179.5 (4)C23—C22—C27—C262.4 (6)
C6—C7—C8—C90.7 (7)C25—C26—C27—N3175.7 (4)
C10—O1—C8—C74.1 (6)O3—C26—C27—N33.9 (6)
Cu1—O1—C8—C7173.0 (4)C25—C26—C27—C223.6 (7)
C10—O1—C8—C9176.2 (3)O3—C26—C27—C22176.8 (4)
Cu1—O1—C8—C96.7 (4)C26—O3—C28—C2968.0 (6)
C1—N1—C9—C40.4 (6)C30—N4—C29—O45.4 (9)
Cu1—N1—C9—C4172.3 (3)C30—N4—C29—C28175.8 (5)
C1—N1—C9—C8179.5 (4)O3—C28—C29—O4150.3 (5)
Cu1—N1—C9—C86.7 (5)O3—C28—C29—N430.9 (7)
C3—C4—C9—N10.0 (7)C29—N4—C30—C31104.2 (6)
C5—C4—C9—N1178.8 (4)N4—C30—C31—C32171.4 (5)
C3—C4—C9—C8179.1 (4)N4—C30—C31—C3610.1 (8)
C5—C4—C9—C80.2 (7)C36—C31—C32—C331.6 (8)
C7—C8—C9—N1178.4 (4)C30—C31—C32—C33177.0 (5)
O1—C8—C9—N11.4 (6)C31—C32—C33—C340.5 (9)
C7—C8—C9—C40.7 (7)C32—C33—C34—C350.9 (10)
O1—C8—C9—C4179.6 (4)C33—C34—C35—C361.1 (10)
C8—O1—C10—C1167.7 (5)C34—C35—C36—C310.1 (9)
Cu1—O1—C10—C11115.9 (4)C32—C31—C36—C351.4 (8)
C12—N2—C11—O22.3 (7)C30—C31—C36—C35177.1 (5)
C12—N2—C11—C10177.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.862.353.160 (4)158
N4—H4A···Cl20.862.393.230 (5)165
O1W—H1WA···O20.851.952.776 (8)165
O1W—H1WB···O4ii0.86 (2)2.2 (2)2.781 (11)121 (23)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[CuCl2(C18H16N2O2)2]·C2H3N·H2O
Mr778.17
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.202 (3), 13.253 (4), 14.009 (4)
α, β, γ (°)78.927 (3), 78.995 (3), 86.366 (3)
V3)1824.0 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.31 × 0.21 × 0.13
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.818, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
19499, 7457, 4374
Rint0.059
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.186, 1.03
No. of reflections7457
No. of parameters464
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.71, 0.85

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.862.353.160 (4)157.6
N4—H4A···Cl20.862.393.230 (5)164.8
O1W—H1WA···O20.851.952.776 (8)165.0
O1W—H1WB···O4ii0.86 (2)2.2 (2)2.781 (11)121 (23)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.
 

Acknowledgements

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 092102210363), the Main Teacher Project of Henan Province (grant No. 649082) and the Doctoral Foundation of Henan Polytechnic University (B2009–65 648359 and B2009–70 648364).

References

First citationAl-Mandhary, M. R. A. & Steel, P. J. (2002). Aust. J. Chem. 55, 705–708.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W.-N., Tang, N. & Yan, L. (2008). J. Fluoresc. 18, 101–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, G., Wang, X.-F., Okamura, T., Sun, W.-Y. & Ueyama, N. (2006). Inorg. Chem. 45, 8523–8532.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, W.-N., Yuan, W.-B., Tang, N., Yang, R.-D., Yan, L. & Xu, Z.-H. (2006). Spectrochim. Acta A, 65, 912–918.  CrossRef Google Scholar
First citationZhu, Z., Karasawa, S. & Koga, N. (2005). Inorg. Chem. 44, 6004–6011.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds