metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m268-m269

Bis{tris­­[3-(2-pyrid­yl)-1H-pyrazole]cadmium(II)} dodeca­molybdo(V,VI)phosphate hexa­hydrate

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, bAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, ShanDong Institute of Education, Jinan 250013, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 26 January 2010; accepted 3 February 2010; online 6 February 2010)

The hydro­thermally prepared title compound, [Cd(C8H7N3)3]2[PMo12O40]·6H2O, is isotypic with its MnII analogue [Hao et al. (2010[Hao, L., Ma, C., Chen, J., Zhang, X. & Zhang, X. (2010). Acta Cryst. E66, m231-m232.]). Acta Cryst. E66, m231–m232]. The CdII cation is in a distorted octa­hedral environment, coordinated by six N atoms from three chelating 3-(2-pyrid­yl)-1H-pyrazole ligands. In the reduced heteropolyanion, two O atoms of the central PO4 group ([\overline{1}] symmetry) are equally disordered about an inversion centre. N—H⋯O and O—H⋯O hydrogen bonds contribute to the crystal packing. Compared with the MnII analogue, the Cd—N bond lengths are longer at 2.316 (7)–2.334 (6) Å, versus 2.224 (6)–2.283 (5) Å for Mn—N, whereas all other bond lengths and angles and the hydrogen-bonding motifs are very similar in the two structures.

Related literature

For the isotypic MnII compound, see Hao et al. (2010[Hao, L., Ma, C., Chen, J., Zhang, X. & Zhang, X. (2010). Acta Cryst. E66, m231-m232.]). For general background to polyoxometallates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For polyoxometallates modified with amines, see: Zhang, Dou et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Zhang, Wei et al. (2009[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424-4428.]). For the structures of other reduced heteropolyanions [PMo12O40]4−, see: Artero & Proust (2000[Artero, V. & Proust, A. (2000). Eur. J. Inorg. Chem. pp. 2393-2400]); Kurmoo et al. (1998[Kurmoo, M., Bonamico, M., Bellitto, C., Fares, V., Federici, F., Guionneau, P., Ducasse, L., Kitagawa, H. & Day, P. (1998). Adv. Mater. 7, 545-550.]); Niu et al. (1999[Niu, J. Y., Shan, B. Z. & You, X. Z. (1999). Transition Met. Chem. 24, 108-114.]). For the role of amines in hydro­thermal synthesis, see: Yang et al. (2003[Yang, W. B., Lu, C. Z., Wu, C. D. & Zhuang, H. H. (2003). Chinese J. Struct. Chem. 22, 137-142.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H7N3)3]2[PMo12O40]·6H2O

  • Mr = 3026.14

  • Monoclinic, C 2/c

  • a = 19.0326 (14) Å

  • b = 16.4779 (12) Å

  • c = 27.267 (2) Å

  • β = 105.187 (1)°

  • V = 8252.8 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.39 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.763, Tmax = 0.832

  • 21276 measured reflections

  • 7254 independent reflections

  • 6211 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.00

  • 7254 reflections

  • 592 parameters

  • H-atom parameters constrained

  • Δρmax = 1.55 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N5 2.316 (7)
Cd1—N8 2.325 (7)
Cd1—N1 2.342 (6)
Cd1—N2 2.347 (6)
Cd1—N4 2.334 (7)
Cd1—N7 2.334 (6)
P1—O21Ai 1.516 (8)
P1—O21Bi 1.493 (8)
P1—O19Bi 1.520 (7)
P1—O19Ai 1.551 (7)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O17ii 0.86 1.95 2.803 (8) 171
N6—H6⋯O2W 0.86 2.25 3.102 (17) 173
N9—H9A⋯O1W 0.86 1.96 2.790 (11) 163
Symmetry code: (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Fig. 1, the asymmetric unit of the title compound consists of three subunits, viz. of a complex [Cd(C8H7N3)3]2+ cation, half of a a [PMo12O40]4- heteropolyanion and of three uncoordinated water molecules. The cadmium(II) ion is distorted octahedrally coordinated by six N atoms from three chelating 3-(2-pyridyl)-1H-pyrazole ligands.

The heteropolyanion [PMo12O40]4- anion is an one-electron reduced derivative of [PMo12O40]3-, similar to anions with different counter cations as reported by Artero & Proust (2000); Kurmoo et al. (1998); Niu et al. (1999). The employed organic ligand appears to adjust the pH value, and additionally supplies reducing electrons, which is a commonly observed feature of hydrothermal syntheses when organic amines are used to prepare various hybrid materials, zeolites or metal phosphates (Yang et al., 2003).

In the Keggin-type heteropolyanion, each Mo atom is surrounded by six O atoms and the P atom is located at the center of the anion. There are four kinds of O atoms present in the anion according to their coordination environments: Oa (O atoms in the disordered PO4 tetrahedron), Ob (bridging O atoms between two triplet groups of MoO6 octahedra), Oc (bridging O atoms within one triplet group of MoO6 octahedra) and Od (terminal O atoms). The P—O bond distances are in the normal range of 1.516 (8)–1.551 (7) Å. The Mo—O bond distances vary widely from 1.637 (4) to 2.509 (7) Å. The shortest Mo—O bonds are in the range of 1.637 (4)–1.661 (4) Å for the terminal oxygen atoms. The longest Mo—O lengths are in the range of 2.420 (7)–2.509 (7) Å for those oxygen atoms connected with both Mo and P atoms.

N—H···O and O—H···O hydrogen bonding between the cationic and anionic moieties and the uncoordinated water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

The crystal structure of [(Cd(C8H7N3)3]2[PMo12O40](H2O)6 is isotypic with the Mn2+ analogue, [(Mn(C8H7N3)3]2[PMo12O40](H2O)6 (Hao et al., 2010). In comparison with the Mn(II) analogue, the Cd—N bond lengths are longer, 2.316 (7)–2.334 (6) Å versus 2.224 (6)–2.283 (5) Å for Mn—N, whereas all other bond lengths, angles and the hydrogen bonding motifs are very similar in the two structures.

Related literature top

For the isotypic MnII compound, see Hao et al. (2010). For general background to polyoxometallates, see: Pope & Müller (1991). For polyoxometallates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei et al. (2009). For the structure of another reduced heteropolyanion [PMo12O40]4-, see: Artero & Proust (2000); Kurmoo et al. (1998); Niu et al. (1999). For the role of amines in hydrothermal synthesis, see: Yang et al. (2003).

Experimental top

A mixture of 3-(2-pyridyl)-1H-pyrazole (0.5 mmoL 0.07 g), sodium molybdate (0.4 mmoL, 0.10 g), cadmium sulfate (0.25 mmol, 0.04 g), and dipotassium hydrogenphosphate (0.22 mmol, 0.05 g) in 10 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Colorless crystals suitable for the X-ray experiment were obtained. Anal. C48H54Cd2Mo12N18O46P: C, 19.05; H, 1.80; N, 8.33. Found: C, 18.95; H, 1.62; N, 7.03 %. IR(cm-1): 3312, 3136, 1604, 1457, 1503, 1429, 1097, 1060, 950, 811, 765, 590, 498, 405.

TGA curve shows a separation of lattice water molecules and the organic ligands above 350 and 588 K, respectively. The overall thermal decomposition process can be described by the followed equation: 4C48H54Cd2Mo12N18O46P + 325O2 = 108H2O + 192CO2 + 36N2O5 + 8CdO + 2P2O5 + 48MoO3

Refinement top

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). Hydrogen atoms attached to aromatic N atoms were refined with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(N). The hydrogen atoms of the three uncoordinated water molecules could not be located unambiguously from difference Fourier maps, probably due to disorder of the water molecules. Thus the structure was refined without the H atoms of the water molecules (which includes the water O atoms O1W, O2W, O3W). In the PO4 unit, the two oxygen atoms (O19 and O21) are equally disordered about the inversion centre. In the final difference Fourier map the highest peak is 2.70 Å from atom O2w and the deepest hole is 0.46 Å from atom Mo1. The highest peak is located in the voids of the crystal structure and may be associated with an additional water molecule. However, refinement of this position did not result in a reasonable model. Hence this position was also excluded from the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The building blocks of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, displayed with N—H···O and O—H···O hydrogen bonds as dashed lines.
Bis{tris[3-(2-pyridyl)-1H-pyrazole]cadmium(II)} dodecamolybdo(V,VI)phosphate hexahydrate top
Crystal data top
[Cd(C8H7N3)3]2[PMo12O40]·6H2OF(000) = 5804
Mr = 3026.14Dx = 2.436 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5617 reflections
a = 19.0326 (14) Åθ = 2.5–28.4°
b = 16.4779 (12) ŵ = 2.39 mm1
c = 27.267 (2) ÅT = 293 K
β = 105.187 (1)°Block, colourless
V = 8252.8 (10) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7254 independent reflections
Radiation source: fine-focus sealed tube6211 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2222
Tmin = 0.763, Tmax = 0.832k = 1913
21276 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.057P)2 + 46.070P]
where P = (Fo2 + 2Fc2)/3
7254 reflections(Δ/σ)max = 0.001
592 parametersΔρmax = 1.55 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Cd(C8H7N3)3]2[PMo12O40]·6H2OV = 8252.8 (10) Å3
Mr = 3026.14Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.0326 (14) ŵ = 2.39 mm1
b = 16.4779 (12) ÅT = 293 K
c = 27.267 (2) Å0.12 × 0.10 × 0.08 mm
β = 105.187 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7254 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6211 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.832Rint = 0.105
21276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.057P)2 + 46.070P]
where P = (Fo2 + 2Fc2)/3
7254 reflectionsΔρmax = 1.55 e Å3
592 parametersΔρmin = 0.82 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2003 (5)0.9040 (4)0.0936 (3)0.0523 (18)
H10.24360.90080.08410.063*
C20.1407 (5)0.9372 (5)0.0604 (3)0.055 (2)
H20.14370.95590.02890.065*
C30.0772 (4)0.9426 (5)0.0738 (3)0.0529 (19)
H30.03630.96550.05170.063*
C40.0741 (4)0.9138 (5)0.1202 (2)0.0501 (18)
H40.03080.91620.13010.060*
C50.1369 (4)0.8809 (4)0.1527 (2)0.0371 (14)
C60.1383 (4)0.8536 (4)0.2040 (2)0.0416 (15)
C70.0812 (5)0.8491 (7)0.2271 (3)0.070 (3)
H70.03270.86330.21360.084*
C80.1136 (6)0.8186 (7)0.2744 (3)0.078 (3)
H80.09030.80760.29970.094*
C90.3372 (5)0.9934 (5)0.2687 (3)0.061 (2)
H90.30850.97450.28910.073*
C100.3625 (6)1.0678 (6)0.2741 (3)0.072 (3)
H100.34941.10120.29770.087*
C110.4017 (9)1.0952 (10)0.2501 (6)0.125 (5)
H110.41961.14770.25700.150*
C120.4183 (7)1.0575 (7)0.2181 (5)0.093 (4)
H120.44801.08090.19990.112*
C130.3945 (4)0.9806 (5)0.2078 (3)0.055 (2)
C140.4148 (4)0.9338 (6)0.1693 (3)0.058 (2)
C150.4670 (6)0.9529 (8)0.1422 (4)0.094 (3)
H150.49660.99850.14510.113*
C160.4624 (6)0.8789 (11)0.1064 (4)0.132 (6)
H160.48840.86980.08240.158*
C170.4153 (5)0.7420 (6)0.2994 (3)0.066 (2)
H170.42080.79570.31020.079*
C180.4552 (6)0.6849 (7)0.3306 (4)0.084 (3)
H180.48600.69870.36200.100*
C190.4482 (7)0.6075 (7)0.3142 (4)0.097 (3)
H190.47560.56700.33410.116*
C200.4011 (7)0.5879 (6)0.2683 (4)0.088 (3)
H200.39620.53450.25690.106*
C210.3613 (4)0.6494 (5)0.2394 (3)0.0510 (18)
C220.3078 (5)0.6333 (5)0.1910 (3)0.0537 (19)
C230.2869 (6)0.5616 (6)0.1655 (3)0.070 (2)
H230.30430.50990.17570.084*
C240.2367 (7)0.5815 (6)0.1233 (4)0.082 (3)
H240.21270.54590.09790.099*
Cd10.29910 (3)0.82317 (3)0.19989 (2)0.04993 (16)
Mo10.24356 (3)0.14473 (4)0.112775 (19)0.03963 (16)
Mo20.18969 (3)0.45389 (3)0.01844 (2)0.03810 (16)
Mo30.42042 (3)0.31320 (4)0.01864 (2)0.03638 (15)
Mo40.35147 (3)0.40777 (3)0.07580 (2)0.03486 (15)
Mo50.41452 (3)0.20314 (4)0.09234 (2)0.03702 (16)
Mo60.17953 (3)0.34705 (4)0.09257 (2)0.03701 (16)
N10.1987 (3)0.8760 (3)0.1393 (2)0.0404 (13)
N20.1995 (3)0.8305 (4)0.2354 (2)0.0449 (14)
N30.1831 (4)0.8077 (4)0.2780 (2)0.0535 (17)
H3A0.21390.78850.30440.064*
N40.3528 (4)0.9451 (4)0.2340 (3)0.0599 (17)
N50.3811 (4)0.8630 (5)0.1550 (3)0.0623 (18)
N60.4094 (5)0.8280 (6)0.1188 (3)0.088 (3)
H60.39670.78130.10540.106*
N70.3687 (4)0.7268 (4)0.2543 (3)0.0540 (16)
N80.2707 (4)0.6949 (4)0.1647 (2)0.0558 (16)
N90.2269 (4)0.6618 (4)0.1238 (3)0.0661 (19)
H9A0.19620.68840.10060.079*
O10.4052 (4)0.3934 (3)0.02395 (19)0.0642 (16)
O20.1518 (3)0.3937 (4)0.13815 (18)0.0588 (14)
O30.2429 (3)0.0954 (3)0.16477 (17)0.0559 (14)
O40.3462 (3)0.1774 (4)0.1271 (2)0.0707 (17)
O50.4032 (4)0.3144 (3)0.1061 (2)0.0695 (17)
O60.2803 (3)0.3886 (4)0.1088 (2)0.0637 (15)
O70.4496 (4)0.2421 (3)0.0358 (2)0.0658 (16)
O80.4017 (3)0.4809 (3)0.11005 (19)0.0580 (14)
O90.3983 (4)0.2149 (3)0.0612 (2)0.084 (2)
O100.4989 (3)0.3398 (3)0.0294 (2)0.0556 (13)
O110.2845 (3)0.4671 (4)0.0255 (2)0.0693 (16)
O120.1054 (3)0.3955 (4)0.0555 (2)0.076 (2)
O130.1468 (4)0.1374 (3)0.0742 (3)0.084 (2)
O140.1593 (3)0.4231 (4)0.0411 (2)0.0680 (16)
O150.1625 (3)0.5493 (3)0.0258 (2)0.0643 (15)
O160.2700 (4)0.0629 (4)0.0726 (2)0.085 (2)
O170.2257 (3)0.2543 (3)0.1295 (2)0.0758 (18)
O180.4915 (3)0.1816 (4)0.13433 (18)0.0575 (14)
O19A0.2060 (4)0.2389 (5)0.0400 (3)0.0249 (16)0.50
O21A0.3254 (4)0.2809 (5)0.0264 (3)0.0286 (17)0.50
O19B0.2893 (4)0.1874 (4)0.0384 (3)0.0269 (16)0.50
O21B0.2466 (4)0.3295 (5)0.0256 (3)0.0283 (17)0.50
O1W0.1149 (5)0.7162 (5)0.0426 (3)0.107 (3)
O2W0.3647 (8)0.6659 (10)0.0613 (6)0.207 (7)
O3W0.5313 (8)0.0724 (8)0.0267 (7)0.220 (8)
P10.25000.25000.00000.0216 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.059 (5)0.049 (4)0.052 (4)0.001 (4)0.022 (4)0.016 (3)
C20.065 (6)0.054 (4)0.042 (4)0.013 (4)0.010 (4)0.013 (4)
C30.041 (4)0.059 (5)0.047 (4)0.006 (4)0.008 (3)0.011 (4)
C40.035 (4)0.075 (5)0.039 (4)0.001 (4)0.006 (3)0.006 (4)
C50.032 (4)0.038 (3)0.040 (3)0.003 (3)0.008 (3)0.000 (3)
C60.034 (4)0.054 (4)0.036 (3)0.002 (3)0.008 (3)0.004 (3)
C70.047 (5)0.117 (8)0.050 (5)0.014 (5)0.021 (4)0.019 (5)
C80.069 (7)0.124 (9)0.050 (5)0.015 (6)0.030 (4)0.025 (5)
C90.077 (6)0.051 (5)0.066 (5)0.010 (4)0.040 (4)0.018 (4)
C100.083 (7)0.071 (6)0.053 (5)0.002 (5)0.001 (4)0.001 (5)
C110.118 (9)0.118 (9)0.122 (8)0.001 (7)0.002 (7)0.010 (7)
C120.087 (8)0.080 (7)0.086 (7)0.020 (6)0.026 (6)0.035 (6)
C130.033 (4)0.055 (5)0.067 (5)0.000 (4)0.005 (3)0.020 (4)
C140.033 (4)0.071 (5)0.065 (5)0.001 (4)0.003 (3)0.028 (4)
C150.054 (6)0.122 (7)0.099 (6)0.014 (5)0.006 (5)0.051 (6)
C160.062 (6)0.288 (18)0.060 (6)0.104 (9)0.043 (5)0.069 (9)
C170.065 (6)0.066 (5)0.058 (5)0.002 (5)0.001 (4)0.002 (4)
C180.075 (7)0.091 (8)0.073 (6)0.001 (6)0.001 (5)0.015 (6)
C190.090 (7)0.086 (6)0.098 (6)0.007 (5)0.003 (5)0.037 (6)
C200.109 (9)0.052 (5)0.091 (7)0.019 (5)0.004 (6)0.017 (5)
C210.052 (5)0.047 (4)0.059 (5)0.015 (4)0.024 (4)0.012 (4)
C220.063 (5)0.044 (4)0.060 (5)0.015 (4)0.026 (4)0.004 (4)
C230.089 (7)0.056 (5)0.063 (5)0.013 (5)0.018 (5)0.001 (4)
C240.115 (9)0.061 (6)0.073 (6)0.001 (6)0.029 (6)0.023 (5)
Cd10.0367 (3)0.0416 (3)0.0716 (4)0.0045 (2)0.0144 (3)0.0096 (3)
Mo10.0479 (4)0.0429 (3)0.0267 (3)0.0076 (3)0.0072 (2)0.0037 (2)
Mo20.0380 (3)0.0301 (3)0.0478 (3)0.0041 (2)0.0139 (2)0.0001 (2)
Mo30.0245 (3)0.0445 (3)0.0420 (3)0.0052 (2)0.0119 (2)0.0008 (2)
Mo40.0295 (3)0.0380 (3)0.0363 (3)0.0073 (2)0.0071 (2)0.0097 (2)
Mo50.0251 (3)0.0505 (3)0.0324 (3)0.0016 (2)0.0020 (2)0.0006 (2)
Mo60.0360 (3)0.0450 (3)0.0312 (3)0.0049 (2)0.0107 (2)0.0108 (2)
N10.037 (3)0.042 (3)0.044 (3)0.001 (3)0.014 (2)0.006 (3)
N20.040 (3)0.055 (4)0.038 (3)0.002 (3)0.007 (2)0.008 (3)
N30.055 (4)0.067 (4)0.035 (3)0.001 (3)0.006 (3)0.013 (3)
N40.046 (4)0.049 (4)0.087 (5)0.002 (3)0.022 (4)0.006 (4)
N50.042 (4)0.070 (5)0.080 (5)0.011 (3)0.026 (3)0.013 (4)
N60.076 (6)0.094 (6)0.089 (6)0.027 (5)0.012 (5)0.009 (5)
N70.048 (4)0.052 (4)0.062 (4)0.005 (3)0.015 (3)0.008 (3)
N80.053 (4)0.054 (4)0.057 (4)0.004 (3)0.008 (3)0.004 (3)
N90.068 (5)0.066 (4)0.061 (4)0.006 (4)0.010 (4)0.004 (4)
O10.098 (4)0.057 (3)0.051 (3)0.032 (3)0.043 (3)0.019 (2)
O20.046 (3)0.091 (4)0.046 (3)0.002 (3)0.023 (2)0.026 (3)
O30.058 (3)0.073 (4)0.034 (2)0.016 (3)0.006 (2)0.013 (2)
O40.068 (4)0.080 (4)0.081 (4)0.038 (3)0.047 (3)0.041 (3)
O50.106 (5)0.058 (3)0.064 (3)0.032 (3)0.057 (3)0.017 (3)
O60.037 (3)0.096 (4)0.058 (3)0.000 (3)0.014 (2)0.030 (3)
O70.103 (4)0.055 (3)0.056 (3)0.032 (3)0.050 (3)0.012 (3)
O80.061 (4)0.055 (3)0.051 (3)0.024 (3)0.004 (2)0.009 (3)
O90.081 (5)0.042 (3)0.090 (4)0.010 (3)0.047 (4)0.019 (3)
O100.040 (3)0.058 (3)0.079 (3)0.007 (2)0.033 (3)0.010 (3)
O110.038 (3)0.111 (4)0.060 (3)0.006 (3)0.015 (2)0.037 (3)
O120.069 (4)0.094 (5)0.083 (4)0.043 (4)0.051 (3)0.052 (4)
O130.080 (5)0.040 (3)0.095 (4)0.006 (3)0.044 (4)0.017 (3)
O140.032 (3)0.112 (4)0.058 (3)0.001 (3)0.008 (2)0.029 (3)
O150.052 (4)0.039 (3)0.099 (4)0.010 (2)0.015 (3)0.008 (3)
O160.074 (4)0.106 (5)0.094 (4)0.059 (4)0.056 (4)0.062 (4)
O170.067 (4)0.045 (3)0.083 (4)0.002 (3)0.038 (3)0.014 (3)
O180.042 (3)0.078 (4)0.044 (3)0.017 (3)0.003 (2)0.002 (3)
O19A0.024 (4)0.029 (4)0.021 (4)0.003 (3)0.005 (3)0.011 (3)
O21A0.023 (4)0.034 (4)0.029 (4)0.006 (3)0.008 (3)0.004 (3)
O19B0.027 (4)0.024 (4)0.030 (4)0.003 (3)0.007 (3)0.001 (3)
O21B0.022 (4)0.035 (4)0.029 (4)0.002 (3)0.009 (3)0.001 (3)
O1W0.086 (6)0.108 (6)0.110 (6)0.018 (5)0.005 (4)0.008 (5)
O2W0.170 (14)0.254 (16)0.239 (14)0.062 (11)0.126 (12)0.079 (12)
O3W0.199 (14)0.149 (10)0.39 (2)0.012 (9)0.210 (15)0.082 (12)
P10.0184 (10)0.0271 (10)0.0191 (9)0.0006 (8)0.0046 (7)0.0017 (8)
Geometric parameters (Å, º) top
C1—N11.334 (8)Mo1—O19B2.509 (7)
C1—C21.366 (11)Mo2—O151.650 (5)
C1—H10.9300Mo2—O16i1.854 (5)
C2—C31.352 (12)Mo2—O111.900 (6)
C2—H20.9300Mo2—O141.927 (5)
C3—C41.369 (10)Mo2—O121.916 (6)
C3—H30.9300Mo2—O21B2.477 (8)
C4—C51.398 (10)Mo2—O19Bi2.447 (7)
C4—H40.9300Mo3—O101.655 (5)
C5—N11.324 (8)Mo3—O11.831 (5)
C5—C61.462 (9)Mo3—O71.858 (5)
C6—N21.310 (9)Mo3—O13i1.892 (6)
C6—C71.392 (11)Mo3—O91.972 (5)
C7—C81.372 (12)Mo3—O19Ai2.476 (7)
C7—H70.9300Mo3—O21A2.496 (7)
C8—N31.313 (11)Mo4—O81.664 (5)
C8—H80.9300Mo4—O61.840 (5)
C9—N41.328 (10)Mo4—O111.882 (6)
C9—C101.312 (13)Mo4—O51.896 (5)
C9—H90.9300Mo4—O11.964 (5)
C10—C111.201 (18)Mo4—O21B2.468 (8)
C10—H100.9300Mo4—O21A2.466 (8)
C11—C121.179 (18)Mo5—O181.645 (5)
C11—H110.9300Mo5—O41.849 (5)
C12—C131.350 (13)Mo5—O51.894 (5)
C12—H120.9300Mo5—O12i1.897 (5)
C13—N41.335 (10)Mo5—O71.943 (5)
C13—C141.434 (12)Mo5—O19B2.464 (8)
C14—N51.340 (11)Mo5—O21A2.480 (8)
C14—C151.421 (13)Mo6—O21.661 (4)
C15—C161.549 (19)Mo6—O9i1.818 (6)
C15—H150.9300Mo6—O141.847 (5)
C16—N61.419 (17)Mo6—O171.913 (6)
C16—H160.9300Mo6—O61.975 (6)
C17—N71.338 (11)Mo6—O19A2.420 (7)
C17—C181.359 (13)Mo6—O21B2.505 (7)
C17—H170.9300N2—N31.334 (8)
C18—C191.346 (15)N3—H3A0.8600
C18—H180.9300N5—N61.368 (11)
C19—C201.373 (15)N6—H60.8600
C19—H190.9300N8—N91.323 (9)
C20—C211.381 (11)N9—H9A0.8600
C20—H200.9300O9—Mo6i1.818 (6)
C21—N71.335 (10)O12—Mo5i1.897 (5)
C21—C221.464 (12)O13—Mo3i1.892 (6)
C22—N81.333 (10)O16—Mo2i1.854 (5)
C22—C231.376 (12)O19A—P11.551 (7)
C23—C241.330 (14)O19A—O21Ai1.784 (10)
C23—H230.9300O19A—Mo3i2.476 (7)
C24—N91.336 (11)O21A—P11.516 (8)
C24—H240.9300O21A—O21B1.695 (11)
Cd1—N52.316 (7)O21A—O19Ai1.784 (10)
Cd1—N82.325 (7)O21A—O19B1.752 (10)
Cd1—N12.342 (6)O19B—P11.520 (7)
Cd1—N22.347 (6)O19B—O21Bi1.721 (10)
Cd1—N42.334 (7)O19B—Mo2i2.447 (7)
Cd1—N72.334 (6)O21B—P11.493 (8)
Mo1—O31.637 (4)O21B—O19Bi1.721 (10)
Mo1—O131.871 (6)P1—O21Ai1.516 (8)
Mo1—O161.888 (6)P1—O21Bi1.493 (8)
Mo1—O171.914 (6)P1—O19Bi1.520 (7)
Mo1—O41.964 (6)P1—O19Ai1.551 (7)
Mo1—O19A2.472 (7)
N1—C1—C2122.6 (7)O18—Mo5—O4102.2 (3)
N1—C1—H1118.6O18—Mo5—O5101.4 (3)
C2—C1—H1118.7O4—Mo5—O589.3 (3)
C1—C2—C3119.5 (7)O18—Mo5—O12i101.6 (3)
C1—C2—H2120.5O4—Mo5—O12i90.3 (2)
C3—C2—H2120.0O5—Mo5—O12i156.5 (3)
C4—C3—C2119.0 (7)O18—Mo5—O7101.2 (3)
C4—C3—H3120.4O4—Mo5—O7156.6 (3)
C2—C3—H3120.6O5—Mo5—O785.3 (2)
C3—C4—C5118.9 (7)O12i—Mo5—O785.7 (2)
C3—C4—H4120.6O18—Mo5—O19B159.9 (3)
C5—C4—H4120.5O4—Mo5—O19B65.3 (3)
N1—C5—C4121.5 (6)O5—Mo5—O19B94.5 (3)
N1—C5—C6116.9 (6)O12i—Mo5—O19B64.3 (3)
C4—C5—C6121.5 (6)O7—Mo5—O19B92.3 (3)
N2—C6—C7110.8 (6)O18—Mo5—O21A158.6 (3)
N2—C6—C5120.3 (6)O4—Mo5—O21A92.9 (3)
C7—C6—C5128.9 (7)O5—Mo5—O21A63.4 (3)
C8—C7—C6103.5 (8)O12i—Mo5—O21A93.2 (3)
C8—C7—H7128.3O7—Mo5—O21A64.3 (2)
C6—C7—H7128.3O19B—Mo5—O21A41.5 (2)
N3—C8—C7108.4 (7)O2—Mo6—O9i103.5 (3)
N3—C8—H8125.8O2—Mo6—O14102.2 (3)
C7—C8—H8125.7O9i—Mo6—O1492.4 (3)
N4—C9—C10119.7 (8)O2—Mo6—O1799.7 (3)
N4—C9—H9120.0O9i—Mo6—O1790.3 (2)
C10—C9—H9120.3O14—Mo6—O17156.7 (3)
C11—C10—C9123.6 (13)O2—Mo6—O698.8 (3)
C11—C10—H10118.7O9i—Mo6—O6157.5 (3)
C9—C10—H10117.7O14—Mo6—O686.1 (2)
C12—C11—C10121.9 (18)O17—Mo6—O682.7 (3)
C12—C11—H11119.3O2—Mo6—O19A160.0 (3)
C10—C11—H11118.8O9i—Mo6—O19A65.0 (3)
C11—C12—C13120.6 (15)O14—Mo6—O19A94.8 (3)
C11—C12—H12119.6O17—Mo6—O19A65.5 (3)
C13—C12—H12119.8O6—Mo6—O19A92.7 (3)
N4—C13—C12120.9 (10)O2—Mo6—O21B157.2 (3)
N4—C13—C14117.9 (7)O9i—Mo6—O21B95.7 (3)
C12—C13—C14121.2 (10)O14—Mo6—O21B64.4 (3)
N5—C14—C15112.8 (9)O17—Mo6—O21B92.3 (3)
N5—C14—C13118.7 (7)O6—Mo6—O21B63.5 (2)
C15—C14—C13128.4 (9)O19A—Mo6—O21B42.1 (3)
C14—C15—C16102.8 (9)C1—N1—C5118.5 (6)
C14—C15—H15129.2C1—N1—Cd1125.0 (5)
C16—C15—H15128.0C5—N1—Cd1116.5 (4)
N6—C16—C15104.0 (7)C6—N2—N3106.2 (6)
N6—C16—H16127.6C6—N2—Cd1115.0 (4)
C15—C16—H16128.4N3—N2—Cd1138.1 (5)
N7—C17—C18125.0 (9)C8—N3—N2111.0 (6)
N7—C17—H17117.6C8—N3—H3A124.5
C18—C17—H17117.5N2—N3—H3A124.5
C17—C18—C19117.2 (10)C13—N4—C9113.2 (7)
C17—C18—H18121.3C13—N4—Cd1115.1 (6)
C19—C18—H18121.5C9—N4—Cd1130.1 (6)
C20—C19—C18120.6 (10)C14—N5—N6109.1 (7)
C20—C19—H19119.6C14—N5—Cd1115.5 (6)
C18—C19—H19119.8N6—N5—Cd1135.1 (6)
C19—C20—C21118.5 (10)N5—N6—C16111.2 (9)
C19—C20—H20120.7N5—N6—H6124.1
C21—C20—H20120.8C16—N6—H6124.7
N7—C21—C20121.9 (8)C17—N7—C21116.7 (7)
N7—C21—C22116.1 (7)C17—N7—Cd1125.9 (6)
C20—C21—C22122.0 (8)C21—N7—Cd1117.4 (5)
N8—C22—C23109.9 (7)N9—N8—C22105.5 (7)
N8—C22—C21119.4 (7)N9—N8—Cd1138.5 (5)
C23—C22—C21130.7 (7)C22—N8—Cd1116.0 (5)
C24—C23—C22105.8 (8)N8—N9—C24111.0 (8)
C24—C23—H23127.1N8—N9—H9A124.5
C22—C23—H23127.0C24—N9—H9A124.4
N9—C24—C23107.8 (9)Mo3—O1—Mo4137.9 (3)
N9—C24—H24126.2Mo5—O4—Mo1139.2 (3)
C23—C24—H24126.0Mo5—O5—Mo4140.5 (4)
N5—Cd1—N899.0 (3)Mo4—O6—Mo6138.2 (3)
N5—Cd1—N193.4 (2)Mo3—O7—Mo5138.5 (3)
N8—Cd1—N189.4 (2)Mo6i—O9—Mo3139.5 (4)
N5—Cd1—N2158.8 (2)Mo4—O11—Mo2138.6 (4)
N8—Cd1—N295.2 (2)Mo5i—O12—Mo2137.1 (4)
N1—Cd1—N271.01 (19)Mo1—O13—Mo3i141.4 (4)
N5—Cd1—N471.4 (3)Mo6—O14—Mo2140.4 (4)
N8—Cd1—N4167.7 (2)Mo2i—O16—Mo1142.9 (4)
N1—Cd1—N498.7 (2)Mo1—O17—Mo6135.6 (3)
N2—Cd1—N496.2 (2)P1—O19A—O21Ai53.5 (3)
N5—Cd1—N7100.3 (2)P1—O19A—Mo6124.4 (4)
N8—Cd1—N771.1 (2)O21Ai—O19A—Mo6132.0 (5)
N1—Cd1—N7157.5 (2)P1—O19A—Mo3i123.0 (4)
N2—Cd1—N799.1 (2)O21Ai—O19A—Mo3i69.5 (3)
N4—Cd1—N7102.5 (2)Mo6—O19A—Mo3i93.1 (3)
O3—Mo1—O13103.0 (3)P1—O19A—Mo1122.9 (4)
O3—Mo1—O16102.2 (3)O21Ai—O19A—Mo1130.5 (5)
O13—Mo1—O1690.0 (3)Mo6—O19A—Mo192.8 (2)
O3—Mo1—O17102.7 (3)Mo3i—O19A—Mo191.7 (2)
O13—Mo1—O1789.1 (2)P1—O21A—O21B55.1 (4)
O16—Mo1—O17154.6 (3)P1—O21A—O19Ai55.4 (3)
O3—Mo1—O4101.3 (3)O21B—O21A—O19Ai90.7 (5)
O13—Mo1—O4155.7 (3)P1—O21A—O19B54.9 (4)
O16—Mo1—O484.8 (2)O21B—O21A—O19B91.7 (5)
O17—Mo1—O485.6 (3)O19Ai—O21A—O19B89.1 (5)
O3—Mo1—O19A160.1 (3)P1—O21A—Mo5123.6 (4)
O13—Mo1—O19A63.5 (3)O21B—O21A—Mo5133.5 (5)
O16—Mo1—O19A92.7 (3)O19Ai—O21A—Mo5128.7 (5)
O17—Mo1—O19A64.3 (2)O19B—O21A—Mo568.8 (4)
O4—Mo1—O19A92.9 (3)P1—O21A—Mo4125.0 (4)
O3—Mo1—O19B157.3 (3)O21B—O21A—Mo470.0 (4)
O13—Mo1—O19B93.6 (3)O19Ai—O21A—Mo4132.5 (5)
O16—Mo1—O19B61.9 (3)O19B—O21A—Mo4132.6 (4)
O17—Mo1—O19B92.8 (3)Mo5—O21A—Mo492.4 (2)
O4—Mo1—O19B63.0 (3)P1—O21A—Mo3123.7 (4)
O19A—Mo1—O19B42.6 (2)O21B—O21A—Mo3130.2 (5)
O15—Mo2—O16i103.1 (3)O19Ai—O21A—Mo368.4 (3)
O15—Mo2—O11100.5 (3)O19B—O21A—Mo3130.5 (5)
O16i—Mo2—O1189.8 (3)Mo5—O21A—Mo391.2 (3)
O15—Mo2—O14101.5 (3)Mo4—O21A—Mo391.1 (3)
O16i—Mo2—O14155.4 (3)P1—O19B—O21A54.6 (3)
O11—Mo2—O1486.8 (2)P1—O19B—O21Bi54.4 (4)
O15—Mo2—O12102.8 (3)O21A—O19B—O21Bi91.4 (5)
O16i—Mo2—O1288.3 (2)P1—O19B—Mo5124.4 (4)
O11—Mo2—O12156.4 (3)O21A—O19B—Mo569.7 (4)
O14—Mo2—O1285.3 (2)O21Bi—O19B—Mo5133.4 (5)
O15—Mo2—O21B158.5 (3)P1—O19B—Mo2i124.9 (4)
O16i—Mo2—O21B92.4 (3)O21A—O19B—Mo2i134.5 (5)
O11—Mo2—O21B64.3 (3)O21Bi—O19B—Mo2i70.5 (4)
O14—Mo2—O21B64.1 (3)Mo5—O19B—Mo2i92.5 (3)
O12—Mo2—O21B92.3 (3)P1—O19B—Mo1122.3 (4)
O15—Mo2—O19Bi160.6 (3)O21A—O19B—Mo1129.3 (4)
O16i—Mo2—O19Bi63.6 (3)O21Bi—O19B—Mo1130.1 (5)
O11—Mo2—O19Bi93.8 (3)Mo5—O19B—Mo191.9 (2)
O14—Mo2—O19Bi92.3 (3)Mo2i—O19B—Mo191.4 (2)
O12—Mo2—O19Bi64.4 (3)P1—O21B—O21A56.3 (4)
O21B—Mo2—O19Bi40.9 (2)P1—O21B—O19Bi55.9 (4)
O10—Mo3—O1102.8 (3)O21A—O21B—O19Bi93.1 (5)
O10—Mo3—O7102.3 (3)P1—O21B—Mo4126.2 (4)
O1—Mo3—O790.7 (2)O21A—O21B—Mo469.8 (4)
O10—Mo3—O13i101.3 (3)O19Bi—O21B—Mo4134.1 (5)
O1—Mo3—O13i90.7 (3)P1—O21B—Mo2124.5 (4)
O7—Mo3—O13i155.4 (3)O21A—O21B—Mo2132.1 (5)
O10—Mo3—O9100.2 (3)O19Bi—O21B—Mo268.6 (4)
O1—Mo3—O9157.0 (3)Mo4—O21B—Mo291.4 (3)
O7—Mo3—O985.7 (3)P1—O21B—Mo6122.3 (4)
O13i—Mo3—O983.5 (2)O21A—O21B—Mo6131.5 (5)
O10—Mo3—O19Ai156.4 (3)O19Bi—O21B—Mo6127.9 (5)
O1—Mo3—O19Ai95.4 (3)Mo4—O21B—Mo691.6 (3)
O7—Mo3—O19Ai92.2 (3)Mo2—O21B—Mo690.9 (3)
O13i—Mo3—O19Ai63.2 (3)O21A—P1—O21Ai180.0 (7)
O9—Mo3—O19Ai62.1 (3)O21A—P1—O21B68.6 (4)
O10—Mo3—O21A161.4 (3)O21Ai—P1—O21B111.4 (4)
O1—Mo3—O21A65.6 (3)O21A—P1—O21Bi111.4 (4)
O7—Mo3—O21A64.9 (3)O21Ai—P1—O21Bi68.6 (4)
O13i—Mo3—O21A93.5 (3)O21B—P1—O21Bi180.0 (6)
O9—Mo3—O21A92.5 (3)O21A—P1—O19B70.5 (4)
O19Ai—Mo3—O21A42.1 (2)O21Ai—P1—O19B109.5 (4)
O8—Mo4—O6103.7 (3)O21B—P1—O19B110.3 (4)
O8—Mo4—O11102.2 (3)O21Bi—P1—O19B69.7 (4)
O6—Mo4—O1190.1 (2)O21A—P1—O19Bi109.5 (4)
O8—Mo4—O5100.8 (3)O21Ai—P1—O19Bi70.5 (4)
O6—Mo4—O590.7 (2)O21B—P1—O19Bi69.7 (4)
O11—Mo4—O5156.1 (3)O21Bi—P1—O19Bi110.3 (4)
O8—Mo4—O199.2 (3)O19B—P1—O19Bi180.0 (6)
O6—Mo4—O1157.0 (3)O21A—P1—O19A108.9 (4)
O11—Mo4—O185.4 (2)O21Ai—P1—O19A71.1 (4)
O5—Mo4—O184.7 (2)O21B—P1—O19A71.1 (4)
O8—Mo4—O21B162.1 (3)O21Bi—P1—O19A108.9 (4)
O6—Mo4—O21B65.8 (3)O19B—P1—O19A72.2 (4)
O11—Mo4—O21B64.7 (3)O19Bi—P1—O19A107.8 (4)
O5—Mo4—O21B94.0 (3)O21A—P1—O19Ai71.1 (4)
O1—Mo4—O21B92.0 (3)O21Ai—P1—O19Ai108.9 (4)
O8—Mo4—O21A157.5 (3)O21B—P1—O19Ai108.9 (4)
O6—Mo4—O21A93.0 (3)O21Bi—P1—O19Ai71.1 (4)
O11—Mo4—O21A92.4 (3)O19B—P1—O19Ai107.8 (4)
O5—Mo4—O21A63.7 (3)O19Bi—P1—O19Ai72.2 (4)
O1—Mo4—O21A64.7 (2)O19A—P1—O19Ai180.0 (7)
O21B—Mo4—O21A40.2 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O17ii0.861.952.803 (8)171
N6—H6···O2W0.862.253.102 (17)173
N9—H9A···O1W0.861.962.790 (11)163
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C8H7N3)3]2[PMo12O40]·6H2O
Mr3026.14
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.0326 (14), 16.4779 (12), 27.267 (2)
β (°) 105.187 (1)
V3)8252.8 (10)
Z4
Radiation typeMo Kα
µ (mm1)2.39
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.763, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
21276, 7254, 6211
Rint0.105
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.00
No. of reflections7254
No. of parameters592
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.057P)2 + 46.070P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.55, 0.82

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N52.316 (7)Cd1—N72.334 (6)
Cd1—N82.325 (7)P1—O21Ai1.516 (8)
Cd1—N12.342 (6)P1—O21Bi1.493 (8)
Cd1—N22.347 (6)P1—O19Bi1.520 (7)
Cd1—N42.334 (7)P1—O19Ai1.551 (7)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O17ii0.861.952.803 (8)171.00
N6—H6···O2W0.862.253.102 (17)172.6
N9—H9A···O1W0.861.962.790 (11)162.9
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Inter­national Cooperation Programme for Excellent Lecturers of 2008 from Shandong Provincial Education Department, the Research Award Fund for Outstanding Young and Middle-aged Scientists of Shandong Province (grant No. 2008BS04022), Shandong Provincial Education Department and Shandong Institute of Education is gratefully acknowledged.

References

First citationArtero, V. & Proust, A. (2000). Eur. J. Inorg. Chem. pp. 2393–2400  CrossRef Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHao, L., Ma, C., Chen, J., Zhang, X. & Zhang, X. (2010). Acta Cryst. E66, m231–m232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKurmoo, M., Bonamico, M., Bellitto, C., Fares, V., Federici, F., Guionneau, P., Ducasse, L., Kitagawa, H. & Day, P. (1998). Adv. Mater. 7, 545–550.  CrossRef Google Scholar
First citationNiu, J. Y., Shan, B. Z. & You, X. Z. (1999). Transition Met. Chem. 24, 108–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, W. B., Lu, C. Z., Wu, C. D. & Zhuang, H. H. (2003). Chinese J. Struct. Chem. 22, 137–142.  CAS Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m268-m269
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds