inorganic compounds
Aluminium cyclohexaphosphate
aLaboratoire de Chimie du Solide Minéral, Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco, bLaboratoire de Chimie Industrielle, Département de Génie des Matériaux, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP W 3038, Sfax, Tunisia, and cLaboratoire des Matériaux Inorganiques, UMR CNRS 6002, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière, France
*Correspondence e-mail: Daniel.avignant@univ-bpclermont.fr
Single crystals of the title compound, Al2P6O18, were obtained by solid-state reaction. The monoclinic structure is isotypic with its CrIII, GaIII and RuIII analogues and is built up of six-membered phosphate ring anions, P6O186−, isolated from each other and further linked by isolated AlO6 octahedra by sharing corners. Each AlO6 octahedron is linked to four P6O186− rings. More accurately, two rings are linked through bidentate diphosphate groups attached in the cis-positions to the AlO6 octahedron. The other two rings are linked to the two remaining corners, also in cis-positions of the AlO6 octahedron.
Related literature
The title compound was first synthesized by Kanene et al. (1985) and its determined from Weissenberg photographs. Isotypic compounds have been reported: Ga2P6O18 (Chudinova et al., 1987); Cr2P6O18 (Bagieu-Beucher & Guitel, 1977) and Ru2P6O18 (Fukuoka et al., 1995). For a review of the crystal chemistry of cyclohexaphosphates, see: Durif (1995, 2005). For applications of aluminium phosphate, see: Vippola et al. (2000). For the structures of other cyclohexaphosphates with the P6O186− anion, see: Averbuch-Pouchot & Durif (1991a,b,c).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CaRine (Boudias & Monceau, 1998) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810005374/wm2303sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810005374/wm2303Isup2.hkl
Single crystals of the title compound have been obtained by reacting Al2O3 with (NH4)H2PO4 in an alumina boat. A mixture of these reagents in the molar ratio 1:6 was used for the synthesis. The mixture was first heated at 473 K for 24 h. Afterwards the temperature was successively raised to 573 K for 12 h, then to 673 K for 12 additional hours and finally to 923 K. After a heating period of 48 h at this temperature, the sample was cooled to room temperature by switching the furnace off. Translucent rhombs of Al2P6O18 were extracted from the batch.
The highest residual peak in the final difference Fourier map was located 0.47 Å from atom O7 and the deepest hole was located 1.12 Å from atom P3.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CaRine (Boudias & Monceau, 1998) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. (a) ORTEP-3 view of the centrosymmetric (P6O18)6- ring anion. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (iii) 2 - x, 1/2 + y, 1/2 - z; (iv) 1 - x, 1 - y, -z; (v) 2 - x, 1 - y, 1 - z; (vi) x, 1 + y, z; (vii) 1 + x, 1 + y, 1 + z; (viii) x, 3/2 - y, 1/2 + z. (b) Partial projection along [101] showing the orientation of the mean planes of the (P6O18)6- ring anions. | |
Fig. 2. Partial projection showing the connection between the (P6O18)6- ring anion and the AlO6 octahedra. |
Al2P6O18 | F(000) = 520 |
Mr = 527.79 | Dx = 2.412 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2041 reflections |
a = 6.0931 (2) Å | θ = 3.5–27.5° |
b = 15.0676 (4) Å | µ = 0.96 mm−1 |
c = 8.2016 (3) Å | T = 296 K |
β = 105.166 (1)° | Rhombic, colourless |
V = 726.75 (4) Å3 | 0.16 × 0.07 × 0.06 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 1674 independent reflections |
Radiation source: fine-focus sealed tube | 1398 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 27.5°, θmin = 2.7° |
ϕ and ω scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −11→19 |
Tmin = 0.860, Tmax = 0.945 | l = −10→10 |
6548 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.032 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0787P)2 + 0.2264P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max < 0.001 |
1674 reflections | Δρmax = 0.56 e Å−3 |
118 parameters | Δρmin = −0.71 e Å−3 |
Al2P6O18 | V = 726.75 (4) Å3 |
Mr = 527.79 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.0931 (2) Å | µ = 0.96 mm−1 |
b = 15.0676 (4) Å | T = 296 K |
c = 8.2016 (3) Å | 0.16 × 0.07 × 0.06 mm |
β = 105.166 (1)° |
Bruker APEXII CCD diffractometer | 1674 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1398 reflections with I > 2σ(I) |
Tmin = 0.860, Tmax = 0.945 | Rint = 0.035 |
6548 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 118 parameters |
wR(F2) = 0.130 | 0 restraints |
S = 1.16 | Δρmax = 0.56 e Å−3 |
1674 reflections | Δρmin = −0.71 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.70149 (15) | 0.33738 (5) | 0.01706 (11) | 0.0049 (2) | |
P2 | 0.64525 (14) | 0.04431 (5) | 0.21869 (11) | 0.0050 (2) | |
P3 | 0.08497 (14) | 0.11301 (5) | −0.20937 (11) | 0.0054 (2) | |
Al | 0.61549 (17) | 0.13831 (6) | −0.12313 (13) | 0.0046 (3) | |
O1 | 0.3051 (4) | 0.15855 (15) | −0.1454 (3) | 0.0082 (5) | |
O2 | −0.0766 (4) | 0.11484 (16) | −0.1026 (3) | 0.0090 (5) | |
O3 | 0.6755 (4) | 0.25850 (15) | −0.0920 (3) | 0.0078 (5) | |
O4 | 0.6653 (4) | 0.12162 (15) | 0.1117 (3) | 0.0076 (5) | |
O5 | 0.5656 (4) | 0.34555 (16) | 0.1415 (3) | 0.0084 (5) | |
O6 | 0.4448 (4) | −0.01495 (15) | 0.1608 (3) | 0.0073 (5) | |
O7 | 0.6509 (5) | 0.42395 (15) | −0.0967 (3) | 0.0109 (5) | |
O8 | 0.8737 (4) | −0.01227 (15) | 0.2539 (3) | 0.0110 (5) | |
O9 | 0.9653 (4) | 0.34779 (16) | 0.1085 (3) | 0.0107 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0052 (5) | 0.0050 (4) | 0.0042 (5) | −0.0007 (3) | 0.0008 (3) | 0.0001 (3) |
P2 | 0.0060 (5) | 0.0041 (4) | 0.0050 (5) | −0.0003 (3) | 0.0014 (3) | −0.0009 (3) |
P3 | 0.0036 (5) | 0.0058 (4) | 0.0069 (5) | 0.0007 (3) | 0.0015 (3) | 0.0002 (3) |
Al | 0.0034 (5) | 0.0055 (5) | 0.0052 (5) | −0.0006 (4) | 0.0015 (4) | −0.0003 (3) |
O1 | 0.0045 (12) | 0.0065 (12) | 0.0136 (13) | −0.0012 (9) | 0.0025 (10) | −0.0021 (9) |
O2 | 0.0050 (12) | 0.0127 (12) | 0.0094 (13) | −0.0002 (9) | 0.0024 (10) | 0.0014 (10) |
O3 | 0.0110 (13) | 0.0045 (11) | 0.0077 (12) | −0.0028 (9) | 0.0020 (10) | −0.0015 (9) |
O4 | 0.0119 (13) | 0.0059 (11) | 0.0053 (12) | −0.0022 (9) | 0.0025 (10) | −0.0007 (9) |
O5 | 0.0066 (13) | 0.0132 (12) | 0.0057 (12) | 0.0000 (9) | 0.0020 (10) | 0.0003 (9) |
O6 | 0.0060 (12) | 0.0063 (12) | 0.0098 (12) | 0.0002 (9) | 0.0025 (10) | −0.0012 (9) |
O7 | 0.0221 (15) | 0.0059 (12) | 0.0053 (12) | 0.0033 (9) | 0.0045 (11) | 0.0022 (9) |
O8 | 0.0061 (12) | 0.0073 (12) | 0.0175 (14) | −0.0004 (9) | −0.0007 (10) | −0.0038 (9) |
O9 | 0.0052 (13) | 0.0186 (13) | 0.0084 (13) | −0.0021 (10) | 0.0019 (10) | −0.0062 (10) |
P1—O3 | 1.471 (2) | Al—O3 | 1.852 (2) |
P1—O5 | 1.478 (2) | Al—O2iv | 1.873 (3) |
P1—O7 | 1.587 (2) | Al—O1 | 1.877 (3) |
P1—O9 | 1.594 (3) | Al—O4 | 1.887 (3) |
P2—O4 | 1.482 (2) | Al—O5v | 1.889 (3) |
P2—O6 | 1.487 (2) | Al—O6iii | 1.904 (2) |
P2—O7i | 1.579 (2) | O2—Alvi | 1.873 (3) |
P2—O8 | 1.593 (2) | O5—Ali | 1.889 (3) |
P3—O1 | 1.476 (2) | O6—Aliii | 1.904 (2) |
P3—O2 | 1.479 (3) | O7—P2v | 1.579 (2) |
P3—O9ii | 1.594 (2) | O8—P3iii | 1.597 (2) |
P3—O8iii | 1.597 (2) | O9—P3vii | 1.594 (3) |
O3—P1—O5 | 119.77 (14) | O3—Al—O4 | 90.93 (11) |
O3—P1—O7 | 109.47 (14) | O2iv—Al—O4 | 89.61 (11) |
O5—P1—O7 | 106.27 (14) | O1—Al—O4 | 90.56 (12) |
O3—P1—O9 | 107.50 (14) | O3—Al—O5v | 89.33 (11) |
O5—P1—O9 | 110.17 (14) | O2iv—Al—O5v | 90.32 (11) |
O7—P1—O9 | 102.27 (14) | O1—Al—O5v | 89.50 (11) |
O4—P2—O6 | 118.09 (14) | O4—Al—O5v | 179.74 (12) |
O4—P2—O7i | 110.17 (13) | O3—Al—O6iii | 178.54 (12) |
O6—P2—O7i | 107.36 (14) | O2iv—Al—O6iii | 88.66 (11) |
O4—P2—O8 | 108.93 (14) | O1—Al—O6iii | 89.77 (11) |
O6—P2—O8 | 110.01 (13) | O4—Al—O6iii | 90.46 (11) |
O7i—P2—O8 | 100.91 (14) | O5v—Al—O6iii | 89.29 (11) |
O1—P3—O2 | 117.68 (15) | P3—O1—Al | 139.30 (16) |
O1—P3—O9ii | 108.14 (14) | P3—O2—Alvi | 139.15 (17) |
O2—P3—O9ii | 109.62 (14) | P1—O3—Al | 149.33 (16) |
O1—P3—O8iii | 109.89 (14) | P2—O4—Al | 133.84 (15) |
O2—P3—O8iii | 108.82 (14) | P1—O5—Ali | 138.32 (16) |
O9ii—P3—O8iii | 101.47 (14) | P2—O6—Aliii | 138.20 (15) |
O3—Al—O2iv | 90.88 (11) | P2v—O7—P1 | 139.91 (16) |
O3—Al—O1 | 90.69 (11) | P2—O8—P3iii | 130.56 (16) |
O2iv—Al—O1 | 178.43 (11) | P1—O9—P3vii | 129.42 (16) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x−1, −y+1/2, z−1/2; (iii) −x+1, −y, −z; (iv) x+1, y, z; (v) x, −y+1/2, z−1/2; (vi) x−1, y, z; (vii) x+1, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | Al2P6O18 |
Mr | 527.79 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 6.0931 (2), 15.0676 (4), 8.2016 (3) |
β (°) | 105.166 (1) |
V (Å3) | 726.75 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.96 |
Crystal size (mm) | 0.16 × 0.07 × 0.06 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.860, 0.945 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6548, 1674, 1398 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.130, 1.16 |
No. of reflections | 1674 |
No. of parameters | 118 |
Δρmax, Δρmin (e Å−3) | 0.56, −0.71 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CaRine (Boudias & Monceau, 1998) and ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).
P1—O3 | 1.471 (2) | P3—O2 | 1.479 (3) |
P1—O5 | 1.478 (2) | P3—O9ii | 1.594 (2) |
P1—O7 | 1.587 (2) | P3—O8iii | 1.597 (2) |
P1—O9 | 1.594 (3) | Al—O3 | 1.852 (2) |
P2—O4 | 1.482 (2) | Al—O2iv | 1.873 (3) |
P2—O6 | 1.487 (2) | Al—O1 | 1.877 (3) |
P2—O7i | 1.579 (2) | Al—O4 | 1.887 (3) |
P2—O8 | 1.593 (2) | Al—O5v | 1.889 (3) |
P3—O1 | 1.476 (2) | Al—O6iii | 1.904 (2) |
P2v—O7—P1 | 139.91 (16) | P1—O9—P3vi | 129.42 (16) |
P2—O8—P3iii | 130.56 (16) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x−1, −y+1/2, z−1/2; (iii) −x+1, −y, −z; (iv) x+1, y, z; (v) x, −y+1/2, z−1/2; (vi) x+1, −y+1/2, z+1/2. |
References
Averbuch-Pouchot, M. T. & Durif, A. (1991a). Eur. J. Solid State Inorg. Chem. 28, 9–22. CAS Google Scholar
Averbuch-Pouchot, M. T. & Durif, A. (1991b). Acta Cryst. C47, 1148–1150. CrossRef CAS Web of Science IUCr Journals Google Scholar
Averbuch-Pouchot, M. T. & Durif, A. (1991c). Acta Cryst. C47, 1150–1152. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bagieu-Beucher, M. & Guitel, J. C. (1977). Acta Cryst. B33, 2529–2533. CrossRef CAS IUCr Journals Web of Science Google Scholar
Boudias, C. & Monceau, D. (1998). CaRine. CaRine Crystallography, DIVERGENT SA, Compiègne, France. Google Scholar
Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chudinova, N. N., Grunze, I. & Guzeeva, L. S. (1987). Neorg. Mater. 23, 616–621. Google Scholar
Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York and London : Plenum Press. Google Scholar
Durif, A. (2005). Solid State Sci. 7, 760–766. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fukuoka, H., Imoto, H. & Saito, T. (1995). J. Solid State Chem. 119, 107–114. CrossRef CAS Web of Science Google Scholar
Kanene, Z. Y., Konstant, Z. A. & Krasikov, V. V. (1985). Neorg. Mater. 21, 1552–1554. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vippola, M., Keranen, J., Zou, X., Hovmöller, S., Lepisto, T. & Mäntylä, T. (2000). J. Am. Ceram. Soc. 83, 1834–1836. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Although the Al2P6018 cyclohexaphosphate is known since twenty five years (Kanene et al., 1985), its crystal structure has never been refined from single crystal X-ray diffraction data. This paper deals with this purpose.
The crystal structure of Al2P6018 is isotypic with Cr2P6O18 (Bagieu-Beucher & Guitel, 1977), Ga2P6O18 (Chudinova et al., 1987) and Ru2P6O18 (Fukuoka et al., 1995). It is built up of six-membered phosphate ring anions (P6O18)6- isolated from each others and further linked by AlO6 octahedra by sharing corners. These centrosymmetric ring anions (P6O18)6- are located around inversion centers at 0 0 1/2 and 0 1/2 0 (Fig. 1a). Their mean planes are parallel to either (121) or (121 ) planes (Fig. 1 b). Each AlO6 octahedron is linked to four P6O18 rings. More accurately, two rings are linked through bidentate diphosphate groups attached in cis-positions to the AlO6 octahedron. The two other rings are linked to the two remaining corners of the AlO6 octahedron (Fig. 2). Each (P6O18)6- ring anion is connected to eight AlO6 octahedra by corner-sharing. Four diphosphate groups of the ring anion including P(3)O4 and either P(1)O4 or P(2)O4 tetrahedra are bidentate whereas the P(1)O4—P(2)O4 couple does not bind in a bidentate fashion. This may be correlated with the value of the P(1)—O—P(2) angle (139.91 (16)°) which is greater than P(2)—O—P(3) (130.56 (16)°) and P(1)—O—P(3) (129.42 (16) °) ones and also to the P(1)—P(2) distance (2.9741 (12) Å) slightly greater than P(2)—P(3) = 2.8970 (11) Å and P(1)—P(3) = 2.8826 (12) Å ones.
A survey of the internal symmetry of the (P6O18)6- ring anions shows that most of them are centrosymmetric with P—P—P angles spreading from 87.8° to 142.8° (Averbuch-Pouchot & Durif, 1991a), i.e. with large deviations from the ideal value of 120°. When the (P6O18)6- ring anion has internal 1 symmetry, it is built up of three independent P atoms and hence there are three characteristic αi = P—P—P angles in the ring (α1 = P1—P2—P3, α2 = P2—P3—P1, α3 = P3—P1—P2). When taking the δ = Σi|120-αi| parameter as a rough measure of the ring distorsion, Al2P6O18 exhibits the third lowest δ = 15.28° value after its homologous congeners Ru2P6O18 (δ = 13.78°) and Cr2P6O18 (δ = 14.39°). It should be noted that the characteristic P—P—P angles for both isotypic Ga2P6O18 and Fe2P6O18 structures have not been reported. The highest δ values calculated from data for other cyclohexaphosphates reported up to date are related to Cu2(NH4)2P6O18.8H2O (δ = 65.98°) (Averbuch-Pouchot & Durif, 1991b) and Ag4Li2P6O18.2H2O (δ = 67.29°) (Averbuch-Pouchot & Durif, 1991c).
For applications of aluminium phosphate, see: Vippola et al. (2000). For general reviews on the crystal chemistry of cyclohexaphosphates, see: Durif (1995) and Durif (2005).