metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m319-m320

Bis{tris­­[3-(2-pyrid­yl)-1H-pyrazole]nickel(II)} dodeca­molybdo(V,VI)phosphate hexa­hydrate

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 8 February 2010; accepted 13 February 2010; online 20 February 2010)

The hydro­thermally prepared title compound, [Ni(C8H7N3)3]2[PMo12O40]·6H2O, is a member of the isotypic series [(M(C8H7N3)3]2[PMo12O40]·6H2O where M is Mn, Cd, and Fe. The Ni2+ cation is in a distorted octa­hedral environment, coordinated by six N atoms from three chelating 3-(2-pyrid­yl)-1H-pyrazole ligands. In the one-electron reduced heteropolyanion, two O atoms of the central PO4 group ([\overline{1}] symmetry) are equally disordered about an inversion centre. N—H⋯O and O—H⋯O hydrogen bonds contribute to the crystal packing. Compared with the isotypic structures, the main difference is related with the M—N bond lengths, whereas all other bond lengths, angles and the hydrogen-bonding motifs are very similar.

Related literature

For the isotypic analogues, see: Hao, Ma et al. (2010[Hao, L., Ma, C., Chen, J., Zhang, X. & Zhang, X. (2010). Acta Cryst. E66, m231-m232.]) for M = Mn; Hao, Wang et al. (2010[Hao, L., Wang, Y., Zhang, X., Chen, J. & Zhang, X. (2010). Acta Cryst. E66, m268-m269.]) for M = Cd; Hao, Liu, et al. (2010[Hao, L., Liu, T., Chen, J. & Zhang, X. (2010). Acta Cryst. E66, m283-m284.]) for M = Fe. For general background to polyoxometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Zhang, Wei et al. (2009[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424-4428.]). For the structures of other reduced heteropolyanions with composition [PMo12O40]4−, see: Artero & Proust (2000[Artero, V. & Proust, A. (2000). Eur. J. Inorg. Chem., pp. 2393-2400]); Kurmoo et al. (1998[Kurmoo, M., Bonamico, M., Bellitto, C., Fares, V., Federici, F., Guionneau, P., Ducasse, L., Kitagawa, H. & Day, P. (1998). Adv. Mater. 7, 545-550.]).; Niu et al. (1999[Niu, J. Y., Shan, B. Z. & You, X. Z. (1999). Transition Met. Chem. 24, 108-114]). For the role of amines in hydro­thermal synthesis, see: Yang et al. (2003[Yang, W. B., Lu, C. Z., Wu, C. D. & Zhuang, H. H. (2003). Chin. J. Struct. Chem. 22, 137-142.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H7N3)3]2[PMo12O40]·6H2O

  • Mr = 2918.76

  • Monoclinic, C 2/c

  • a = 18.741 (4) Å

  • b = 16.285 (3) Å

  • c = 27.678 (6) Å

  • β = 103.83 (3)°

  • V = 8202 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 293 K

  • 0.42 × 0.27 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.440, Tmax = 0.652

  • 22802 measured reflections

  • 7216 independent reflections

  • 5310 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.155

  • S = 1.00

  • 7216 reflections

  • 592 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 1.58 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N5 2.077 (19)
Ni1—N8 2.06 (2)
Ni1—N2 2.084 (19)
Ni1—N4 2.13 (2)
Ni1—N1 2.118 (17)
Ni1—N7 2.14 (2)
P1—O21Ai 1.49 (2)
P1—O21Bi 1.50 (3)
P1—O19Bi 1.55 (3)
P1—O19Ai 1.57 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O17ii 0.86 2.05 2.83 (3) 149
N6—H6⋯O2W 0.86 1.99 2.84 (5) 166
N9—H9A⋯O1W 0.86 1.92 2.74 (3) 160
Symmetry code: (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the asymmetric unit of the title compound consists of three subunits, viz. of a complex [Ni(C8H7N3)3]2+ cation, half of a heteropolyanion [PMo12O40]4- and of three uncoordinated water molecules. The nickel(II) ion is in a distorted octahedral coordination by six N atoms from three chelating 3-(2-pyridyl)-1H-pyrazole ligands.

The heteropolyanion [PMo12O40]4- anion is a one-electron reduced derivative of [PMo12O40]3-, similar to anions with different counter cations as reported by Artero & Proust (2000); Kurmoo et al. (1998); Niu et al. (1999). The employed organic ligand appears to adjust the pH value, and additionally supplies reducing electrons, which is a commonly observed feature of hydrothermal syntheses when organic amines are used to prepare various hybrid materials, zeolites or metal phosphates (Yang et al., 2003).

In the Keggin-type heteropolyanion, each Mo atom is surrounded by six O atoms and the P atom is located at the center of the anion. There are four kinds of O atoms present in the anion according to their coordination environments: Oa (O atoms in the disordered PO4 tetrahedron), Ob (bridging O atoms between two triplet groups of MoO6 octahedra), Oc (bridging O atoms within one triplet group of MoO6 octahedra) and Od (terminal O atoms). The P—O bond distances are in the normal range of 1.49 (2)—1.57 (3) Å. The Mo—O bond distances vary widely from 1.653 (15) to 2.55 (2) Å. The shortest Mo—O bonds are in the range of 1.653 (15)—1.665 (16) Å for the terminal oxygen atoms. The longest Mo—O lengths are in the range of 2.44 (2)—2.55 (2) Å for those oxygen atoms connected with both Mo and P atoms.

N—H···O and O—H···O hydrogen bonding between the cationic and anionic moieties and the uncoordinated water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

The crystal structure of [(Ni(C8H7N3)3]2[PMo12O40](H2O)6 is isotypic with the Mn2+, Cd2+, and Fe2+ analogues, [(Mn(C8H7N3)3]2[PMo12O40](H2O)6 (Hao, Ma et al. (2010).), [(Cd(C8H7N3)3]2[PMo12O40](H2O)6 (Hao, Wang et al. (2010).), [(Fe(C8H7N3)3]2[PMo12O40](H2O)6 (Hao, Liu et al., 2010). In comparison with the Mn2+, Cd2+, and Fe2+ analogues, the Ni—N bond lengths are somewhat shorter at 2.077 (19)—2.14 (2) Å, versus 2.224 (6)—2.283 (5) Å for Mn—N, 2.085 (19)—2.15 (2) Å for Fe—N, and 2.316 (7)—2.334 (6) Å for Cd—N, whereas all other bond lengths and angles and the hydrogen-bonding motifs are very similar in the four structures.

Related literature top

For the isotypic analogues, see: Hao, Ma et al. (2010) for M = Mn; Hao, Wang et al. (2010) for M = Cd; Hao, Liu, et al. (2010) for M = Fe. For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei et al. (2009). For the structures of other reduced heteropolyanions with composition [PMo12O40]4-, see: Artero & Proust (2000); Kurmoo et al. (1998).; Niu et al. (1999). For the role of amines in hydrothermal synthesis, see: Yang et al. (2003).

Experimental top

A mixture of 3-(2-pyridyl)-1H-pyrazole (0.5 mmoL 0.07 g), sodium molybdate (0.4 mmoL, 0.10 g), nickel(II) chloride hexahydrate (0.25 mmol, 0.05 g), and dipotassium hydrogenphosphate (0.22 mmol, 0.05 g) in 10 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Green crystals suitable for the X-ray experiment were obtained. IR(cm-1): 3376, 3136, 2961, 1614, 1568, 1522, 1457, 1439, 1364, 1300, 1097, 950, 913, 812, 636, 507.

TGA curve shows a separation of lattice water molecules and the organic ligands above 343 and 682 K, respectively. The overall thermal decomposition process can be described by the followed equation: 4C48H54Ni2Mo12N18O46P + 325O2 = 108H2O + 192CO2 + 36N2O5 + 8NiO + 2P2O5 + 48MoO3

Refinement top

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). Hydrogen atoms attached to aromatic N atoms were refined with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(N). The hydrogen atoms of the three uncoordinated water molecules could not be located unambiguously from difference Fourier maps, probably due to disorder of the water molecules. Thus the structure was refined without the H atoms of the water molecules (which includes the water O atoms O1W, O2W, O3W). In the PO4 unit, the two oxygen atoms (O19 and O21) are equally disordered about the inversion centre. In the final difference Fourier map the highest peak is 2.70 Å from atom O2w and the deepest hole is 1.25 Å from atom O12. The highest peak is located in the voids of the crystal structure and may be associated with an additional water molecule. However, refinement of this position did not result in a reasonable model. Hence this position was also excluded from the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The building blocks of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, displayed with N—H···O and O—H···O hydrogen bonds as dashed lines.
Bis{tris[3-(2-pyridyl)-1H-pyrazole]nickel(II)} dodecamolybdo(V,VI)phosphate hexahydrate top
Crystal data top
[Ni(C8H7N3)3]2[PMo12O40]·6H2OF(000) = 5644
Mr = 2918.76Dx = 2.364 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7216 reflections
a = 18.741 (4) Åθ = 1.7–25.0°
b = 16.285 (3) ŵ = 2.34 mm1
c = 27.678 (6) ÅT = 293 K
β = 103.83 (3)°Block, green
V = 8202 (3) Å30.42 × 0.27 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7216 independent reflections
Radiation source: fine-focus sealed tube5310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2222
Tmin = 0.440, Tmax = 0.652k = 1719
22802 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.088P)2 + 10.3967P]
where P = (Fo2 + 2Fc2)/3
7216 reflections(Δ/σ)max = 0.001
592 parametersΔρmax = 1.58 e Å3
18 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Ni(C8H7N3)3]2[PMo12O40]·6H2OV = 8202 (3) Å3
Mr = 2918.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.741 (4) ŵ = 2.34 mm1
b = 16.285 (3) ÅT = 293 K
c = 27.678 (6) Å0.42 × 0.27 × 0.20 mm
β = 103.83 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
7216 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5310 reflections with I > 2σ(I)
Tmin = 0.440, Tmax = 0.652Rint = 0.062
22802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05318 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.088P)2 + 10.3967P]
where P = (Fo2 + 2Fc2)/3
7216 reflectionsΔρmax = 1.58 e Å3
592 parametersΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2023 (14)0.8990 (15)0.0923 (9)0.049 (6)
H10.24450.89420.08030.059*
C20.1420 (14)0.9332 (15)0.0634 (8)0.051 (6)
H20.14280.95260.03200.062*
C30.0798 (15)0.9396 (17)0.0799 (9)0.058 (7)
H30.03790.96310.05980.070*
C40.0790 (14)0.9114 (18)0.1261 (10)0.061 (7)
H40.03650.91500.13780.073*
C50.1416 (12)0.8778 (14)0.1549 (8)0.040 (5)
C60.1465 (13)0.8481 (14)0.2052 (8)0.043 (6)
C70.0946 (16)0.845 (2)0.2344 (11)0.074 (9)
H70.04550.86120.22570.089*
C80.135 (2)0.813 (2)0.2804 (11)0.074 (9)
H80.11720.80380.30860.089*
C90.3232 (13)0.9754 (14)0.2567 (9)0.047 (6)
H90.28950.95520.27350.056*
C100.3547 (16)1.050 (2)0.2699 (11)0.061 (8)
H100.34341.07930.29590.073*
C110.4016 (19)1.080 (2)0.2455 (15)0.090 (11)
H110.42261.13150.25420.108*
C120.4194 (14)1.0371 (19)0.2079 (10)0.063 (7)
H120.45231.05770.19060.075*
C130.3872 (13)0.9634 (16)0.1968 (9)0.052 (6)
C140.4049 (13)0.9098 (17)0.1581 (9)0.051 (6)
C150.4550 (15)0.919 (2)0.1271 (12)0.075 (10)
H150.48760.96210.12660.090*
C160.4433 (17)0.848 (2)0.0973 (12)0.074 (9)
H160.46700.83390.07260.089*
C170.4107 (15)0.7609 (19)0.2864 (10)0.060 (7)
H170.41640.81660.29380.072*
C180.4501 (18)0.706 (2)0.3200 (13)0.082 (10)
H180.48090.72410.34960.099*
C190.443 (2)0.625 (2)0.3091 (14)0.092 (11)
H190.47030.58680.33080.110*
C200.3948 (17)0.5994 (19)0.2644 (12)0.078 (9)
H200.38820.54400.25640.094*
C210.3580 (14)0.6586 (16)0.2337 (10)0.047 (6)
C220.3041 (14)0.6382 (16)0.1873 (9)0.048 (6)
C230.2838 (17)0.5645 (17)0.1627 (10)0.063 (8)
H230.30330.51270.17170.075*
C240.2287 (18)0.5843 (17)0.1221 (11)0.069 (8)
H240.20300.54790.09840.083*
Ni10.29253 (16)0.81664 (19)0.19077 (11)0.0411 (8)
Mo10.24269 (12)0.14134 (13)0.11084 (7)0.0420 (6)
Mo20.19263 (12)0.45800 (12)0.01469 (8)0.0417 (6)
Mo30.42259 (10)0.31668 (12)0.01927 (7)0.0370 (6)
Mo40.35304 (11)0.40513 (13)0.07783 (7)0.0388 (6)
Mo50.41654 (10)0.19716 (13)0.08814 (7)0.0402 (6)
Mo60.17514 (11)0.34583 (13)0.09260 (7)0.0385 (6)
N10.2031 (10)0.8709 (11)0.1392 (6)0.038 (4)
N20.2102 (10)0.8191 (12)0.2297 (7)0.043 (5)
N30.2020 (13)0.7966 (15)0.2756 (8)0.056 (6)
H3A0.23610.77490.29840.067*
N40.3392 (11)0.9302 (13)0.2204 (8)0.049 (5)
N50.3682 (11)0.8410 (13)0.1487 (7)0.048 (5)
N60.3924 (12)0.8050 (16)0.1113 (8)0.066 (7)
H60.37600.75880.09810.079*
N70.3642 (10)0.7388 (13)0.2433 (7)0.048 (5)
N80.2643 (11)0.7011 (13)0.1619 (7)0.050 (5)
N90.2184 (12)0.6674 (15)0.1229 (8)0.062 (6)
H9A0.18650.69410.10110.074*
O10.4066 (11)0.3947 (10)0.0246 (6)0.063 (5)
O20.1446 (9)0.3914 (12)0.1373 (6)0.057 (5)
O30.2405 (9)0.0897 (11)0.1619 (6)0.055 (5)
O40.3441 (11)0.1729 (13)0.1236 (8)0.079 (7)
O50.4024 (11)0.3112 (10)0.1052 (7)0.065 (6)
O60.2780 (9)0.3874 (13)0.1090 (7)0.066 (5)
O70.4526 (11)0.2417 (10)0.0345 (6)0.060 (5)
O80.4028 (11)0.4785 (11)0.1120 (7)0.066 (5)
O90.4027 (11)0.2166 (11)0.0602 (7)0.082 (7)
O100.5030 (9)0.3438 (11)0.0293 (7)0.061 (5)
O110.2863 (9)0.4671 (14)0.0283 (7)0.080 (7)
O120.1059 (11)0.4001 (13)0.0525 (7)0.081 (7)
O130.1431 (12)0.1324 (11)0.0721 (8)0.086 (8)
O140.1575 (9)0.4236 (14)0.0422 (7)0.071 (6)
O150.1673 (10)0.5557 (10)0.0206 (7)0.062 (5)
O160.2676 (12)0.0575 (14)0.0694 (8)0.090 (7)
O170.2203 (11)0.2506 (11)0.1275 (7)0.074 (6)
O180.4935 (9)0.1738 (12)0.1293 (6)0.064 (5)
O19A0.2028 (14)0.2368 (16)0.0390 (10)0.029 (6)0.50
O21A0.3246 (13)0.2799 (16)0.0253 (10)0.028 (6)0.50
O19B0.2904 (15)0.1847 (16)0.0376 (9)0.031 (6)0.50
O21B0.2482 (14)0.3299 (17)0.0264 (9)0.032 (6)0.50
O1W0.1158 (13)0.7172 (16)0.0399 (9)0.099 (8)
O2W0.358 (2)0.653 (2)0.0612 (15)0.163 (12)
O3W0.534 (3)0.072 (3)0.027 (2)0.27 (2)
P10.25000.25000.00000.0252 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (15)0.049 (15)0.045 (15)0.001 (12)0.013 (12)0.011 (12)
C20.058 (17)0.055 (15)0.035 (12)0.005 (13)0.000 (12)0.017 (11)
C30.045 (16)0.075 (19)0.047 (15)0.005 (14)0.005 (12)0.010 (14)
C40.037 (15)0.09 (2)0.055 (16)0.006 (14)0.003 (12)0.004 (15)
C50.032 (12)0.038 (13)0.048 (14)0.011 (10)0.007 (10)0.003 (11)
C60.042 (14)0.049 (14)0.041 (13)0.002 (11)0.013 (11)0.006 (11)
C70.047 (17)0.11 (3)0.07 (2)0.013 (17)0.020 (15)0.014 (19)
C80.09 (2)0.09 (2)0.053 (19)0.016 (19)0.028 (18)0.012 (16)
C90.052 (15)0.043 (14)0.045 (14)0.003 (11)0.009 (11)0.000 (11)
C100.065 (19)0.06 (2)0.053 (17)0.003 (16)0.003 (14)0.001 (16)
C110.08 (2)0.09 (2)0.09 (3)0.001 (19)0.01 (2)0.02 (2)
C120.055 (16)0.08 (2)0.051 (16)0.007 (15)0.005 (13)0.019 (15)
C130.034 (13)0.062 (17)0.054 (15)0.010 (12)0.003 (11)0.016 (13)
C140.038 (13)0.061 (17)0.053 (15)0.002 (12)0.008 (11)0.016 (13)
C150.040 (16)0.10 (3)0.08 (2)0.005 (16)0.010 (15)0.05 (2)
C160.06 (2)0.10 (2)0.07 (2)0.017 (17)0.039 (16)0.033 (18)
C170.057 (17)0.06 (2)0.057 (17)0.006 (15)0.006 (14)0.005 (15)
C180.08 (2)0.08 (2)0.07 (2)0.009 (19)0.025 (18)0.012 (19)
C190.10 (3)0.08 (3)0.09 (3)0.03 (2)0.00 (2)0.03 (2)
C200.07 (2)0.07 (2)0.08 (2)0.008 (16)0.015 (17)0.004 (17)
C210.046 (15)0.054 (16)0.042 (17)0.008 (12)0.010 (12)0.005 (13)
C220.049 (15)0.049 (16)0.046 (14)0.017 (13)0.016 (12)0.000 (13)
C230.08 (2)0.052 (17)0.052 (16)0.023 (15)0.014 (15)0.005 (13)
C240.09 (2)0.053 (17)0.061 (19)0.007 (16)0.023 (17)0.034 (14)
Ni10.0353 (16)0.0469 (18)0.0408 (17)0.0041 (13)0.0083 (13)0.0042 (14)
Mo10.0552 (13)0.0425 (12)0.0281 (10)0.0059 (10)0.0094 (9)0.0041 (9)
Mo20.0455 (12)0.0313 (11)0.0521 (13)0.0059 (9)0.0190 (10)0.0026 (9)
Mo30.0258 (10)0.0433 (12)0.0418 (12)0.0038 (8)0.0081 (8)0.0004 (9)
Mo40.0324 (11)0.0423 (12)0.0400 (11)0.0070 (9)0.0055 (8)0.0093 (9)
Mo50.0286 (11)0.0528 (13)0.0353 (11)0.0018 (9)0.0003 (8)0.0032 (9)
Mo60.0400 (12)0.0457 (12)0.0304 (10)0.0085 (9)0.0095 (8)0.0063 (9)
N10.035 (10)0.043 (11)0.037 (10)0.002 (8)0.009 (8)0.009 (8)
N20.040 (11)0.054 (12)0.034 (10)0.004 (9)0.008 (9)0.005 (9)
N30.049 (14)0.074 (17)0.043 (13)0.003 (12)0.010 (11)0.015 (12)
N40.041 (12)0.047 (13)0.058 (13)0.000 (10)0.009 (10)0.014 (11)
N50.041 (12)0.061 (14)0.048 (12)0.009 (10)0.021 (10)0.015 (10)
N60.053 (14)0.084 (18)0.061 (14)0.029 (13)0.014 (12)0.010 (13)
N70.037 (11)0.058 (14)0.047 (12)0.004 (10)0.008 (9)0.006 (10)
N80.054 (13)0.056 (13)0.036 (11)0.008 (10)0.003 (10)0.006 (10)
N90.059 (15)0.075 (18)0.047 (13)0.006 (12)0.004 (11)0.005 (12)
O10.100 (15)0.048 (11)0.055 (11)0.024 (10)0.045 (10)0.010 (9)
O20.050 (10)0.078 (14)0.045 (10)0.003 (9)0.018 (8)0.018 (9)
O30.058 (11)0.069 (12)0.035 (9)0.003 (9)0.005 (8)0.018 (8)
O40.073 (14)0.094 (16)0.087 (15)0.045 (12)0.052 (12)0.053 (12)
O50.104 (16)0.049 (11)0.055 (11)0.026 (10)0.044 (11)0.012 (9)
O60.028 (9)0.102 (15)0.067 (12)0.007 (9)0.008 (8)0.041 (11)
O70.095 (14)0.045 (10)0.050 (10)0.022 (10)0.041 (10)0.008 (8)
O80.077 (13)0.056 (12)0.060 (13)0.024 (10)0.009 (10)0.021 (10)
O90.091 (15)0.043 (11)0.077 (13)0.018 (10)0.048 (11)0.013 (10)
O100.043 (10)0.061 (12)0.091 (14)0.010 (9)0.038 (10)0.002 (10)
O110.038 (10)0.129 (18)0.077 (14)0.007 (11)0.021 (9)0.057 (13)
O120.079 (14)0.096 (16)0.087 (14)0.047 (12)0.058 (12)0.060 (12)
O130.095 (15)0.036 (10)0.089 (15)0.017 (10)0.051 (12)0.014 (10)
O140.027 (9)0.118 (17)0.067 (13)0.004 (10)0.012 (9)0.050 (12)
O150.064 (12)0.031 (9)0.090 (15)0.011 (8)0.015 (11)0.012 (10)
O160.082 (13)0.102 (15)0.102 (14)0.047 (12)0.052 (11)0.059 (12)
O170.078 (13)0.044 (11)0.075 (13)0.002 (10)0.033 (10)0.003 (9)
O180.049 (11)0.089 (15)0.044 (10)0.026 (10)0.007 (8)0.011 (10)
O19A0.023 (14)0.030 (15)0.036 (15)0.003 (11)0.007 (11)0.007 (12)
O21A0.018 (13)0.035 (15)0.030 (15)0.002 (11)0.007 (11)0.004 (12)
O19B0.042 (16)0.029 (15)0.019 (14)0.002 (12)0.000 (12)0.002 (11)
O21B0.029 (15)0.049 (17)0.021 (13)0.001 (12)0.011 (11)0.009 (12)
O1W0.077 (15)0.12 (2)0.084 (16)0.024 (14)0.011 (12)0.006 (14)
O2W0.165 (13)0.164 (13)0.191 (13)0.005 (3)0.102 (4)0.017 (3)
O3W0.22 (2)0.23 (2)0.39 (2)0.000 (3)0.151 (6)0.045 (3)
P10.026 (4)0.026 (4)0.023 (4)0.001 (3)0.004 (3)0.000 (3)
Geometric parameters (Å, º) top
C1—N11.37 (3)Mo2—O151.657 (16)
C1—C21.34 (3)Mo2—O16i1.86 (2)
C1—H10.9300Mo2—O111.876 (18)
C2—C31.35 (4)Mo2—O141.930 (18)
C2—H20.9300Mo2—O121.952 (18)
C3—C41.36 (4)Mo2—O19Bi2.45 (3)
C3—H30.9300Mo2—O21B2.48 (3)
C4—C51.37 (3)Mo3—O101.655 (16)
C4—H40.9300Mo3—O11.831 (17)
C5—N11.33 (3)Mo3—O71.903 (16)
C5—C61.45 (3)Mo3—O13i1.866 (17)
C6—N21.31 (3)Mo3—O91.969 (18)
C6—C71.41 (3)Mo3—O19Ai2.44 (2)
C7—C81.42 (4)Mo3—O21A2.52 (3)
C7—H70.9300Mo4—O81.665 (16)
C8—N31.32 (4)Mo4—O61.840 (17)
C8—H80.9300Mo4—O111.910 (18)
C9—N41.34 (3)Mo4—O51.853 (17)
C9—C101.36 (4)Mo4—O11.979 (17)
C9—H90.9300Mo4—O21B2.46 (3)
C10—C111.33 (4)Mo4—O21A2.49 (3)
C10—H100.9300Mo5—O181.655 (15)
C11—C121.36 (4)Mo5—O41.897 (18)
C11—H110.9300Mo5—O51.950 (17)
C12—C131.35 (4)Mo5—O12i1.860 (17)
C12—H120.9300Mo5—O71.915 (16)
C13—N41.34 (3)Mo5—O19B2.45 (3)
C13—C141.48 (4)Mo5—O21A2.52 (2)
C14—N51.31 (3)Mo6—O21.658 (16)
C14—C151.42 (4)Mo6—O9i1.828 (18)
C15—C161.41 (5)Mo6—O141.854 (17)
C15—H150.9300Mo6—O171.914 (17)
C16—N61.31 (3)Mo6—O61.990 (17)
C16—H160.9300Mo6—O19A2.45 (3)
C17—N71.35 (3)Mo6—O21B2.55 (2)
C17—C181.37 (4)N2—N31.37 (3)
C17—H170.9300N3—H3A0.8600
C18—C191.35 (4)N5—N61.36 (3)
C18—H180.9300N6—H60.8600
C19—C201.41 (4)N8—N91.33 (3)
C19—H190.9300N9—H9A0.8600
C20—C211.36 (4)O9—Mo6i1.828 (18)
C20—H200.9300O12—Mo5i1.860 (17)
C21—N71.33 (3)O13—Mo3i1.866 (17)
C21—C221.47 (3)O16—Mo2i1.86 (2)
C22—N81.36 (3)O19A—P11.57 (3)
C22—C231.39 (4)O19A—O21Ai1.75 (4)
C23—C241.37 (4)O19A—O21B1.81 (4)
C23—H230.9300O19A—O19B1.86 (4)
C24—N91.37 (3)O19A—Mo3i2.44 (2)
C24—H240.9300O21A—P11.49 (2)
Ni1—N52.077 (19)O21A—O21B1.65 (4)
Ni1—N82.06 (2)O21A—O19B1.74 (4)
Ni1—N22.084 (19)O21A—O19Ai1.75 (4)
Ni1—N42.13 (2)O19B—P11.55 (3)
Ni1—N12.118 (17)O19B—O21Bi1.76 (3)
Ni1—N72.14 (2)O19B—Mo2i2.45 (3)
Mo1—O31.653 (15)O21B—P11.50 (3)
Mo1—O131.923 (19)O21B—O19Bi1.76 (3)
Mo1—O161.91 (2)P1—O21Ai1.49 (2)
Mo1—O171.911 (18)P1—O21Bi1.50 (3)
Mo1—O41.919 (19)P1—O19Bi1.55 (3)
Mo1—O19A2.49 (3)P1—O19Ai1.57 (3)
Mo1—O19B2.50 (3)
N1—C1—C2121 (2)O4—Mo5—O19B64.3 (9)
N1—C1—H1119.2O5—Mo5—O19B92.8 (9)
C2—C1—H1119.6O12i—Mo5—O19B64.0 (9)
C3—C2—C1120 (2)O7—Mo5—O19B93.4 (9)
C3—C2—H2120.0O18—Mo5—O21A159.4 (9)
C1—C2—H2119.7O4—Mo5—O21A90.7 (10)
C2—C3—C4120 (2)O5—Mo5—O21A63.2 (8)
C2—C3—H3120.3O12i—Mo5—O21A93.3 (10)
C4—C3—H3120.1O7—Mo5—O21A64.7 (8)
C3—C4—C5119 (3)O19B—Mo5—O21A41.0 (8)
C3—C4—H4120.6O2—Mo6—O9i103.8 (10)
C5—C4—H4120.5O2—Mo6—O14103.0 (10)
N1—C5—C4122 (2)O9i—Mo6—O1491.9 (9)
N1—C5—C6115.1 (19)O2—Mo6—O17100.1 (10)
C4—C5—C6123 (2)O9i—Mo6—O1790.1 (7)
N2—C6—C7111 (2)O14—Mo6—O17155.6 (10)
N2—C6—C5117 (2)O2—Mo6—O699.5 (9)
C7—C6—C5132 (2)O9i—Mo6—O6156.5 (10)
C6—C7—C8104 (3)O14—Mo6—O685.9 (7)
C6—C7—H7128.3O17—Mo6—O682.7 (8)
C8—C7—H7128.1O2—Mo6—O19A159.8 (9)
N3—C8—C7107 (3)O9i—Mo6—O19A63.8 (9)
N3—C8—H8126.4O14—Mo6—O19A93.7 (10)
C7—C8—H8126.1O17—Mo6—O19A65.6 (9)
N4—C9—C10122 (3)O6—Mo6—O19A92.9 (8)
N4—C9—H9118.5O2—Mo6—O21B157.3 (9)
C10—C9—H9119.4O9i—Mo6—O21B95.4 (10)
C11—C10—C9120 (3)O14—Mo6—O21B63.8 (9)
C11—C10—H10120.2O17—Mo6—O21B91.8 (10)
C9—C10—H10120.2O6—Mo6—O21B62.7 (8)
C10—C11—C12121 (3)O19A—Mo6—O21B42.5 (9)
C10—C11—H11119.00C5—N1—C1117.9 (19)
C12—C11—H11119.0C5—N1—Ni1114.9 (14)
C11—C12—C13117 (3)C1—N1—Ni1127.2 (15)
C11—C12—H12121.4C6—N2—N3106.7 (19)
C13—C12—H12121.5C6—N2—Ni1115.7 (15)
N4—C13—C12124 (3)N3—N2—Ni1137.5 (16)
N4—C13—C14114 (2)C8—N3—N2111 (2)
C12—C13—C14122 (2)C8—N3—H3A125.00
N5—C14—C15111 (3)N2—N3—H3A124.9
N5—C14—C13117 (2)C13—N4—C9116 (2)
C15—C14—C13132 (3)C13—N4—Ni1115.1 (18)
C14—C15—C16103 (3)C9—N4—Ni1128.6 (17)
C14—C15—H15128.7C14—N5—N6105 (2)
C16—C15—H15128.1C14—N5—Ni1116.7 (18)
N6—C16—C15107 (3)N6—N5—Ni1137.8 (19)
N6—C16—H16126.0N5—N6—C16113 (3)
C15—C16—H16127.2N5—N6—H6123.1
N7—C17—C18124 (3)C16—N6—H6123.7
N7—C17—H17118.2C21—N7—C17117 (2)
C18—C17—H17118.0C21—N7—Ni1115.7 (16)
C19—C18—C17119 (3)C17—N7—Ni1127.6 (19)
C19—C18—H18120.8C22—N8—N9106 (2)
C17—C18—H18120.7C22—N8—Ni1115.4 (16)
C18—C19—C20120 (3)N9—N8—Ni1138.5 (17)
C18—C19—H19120.9C24—N9—N8111 (2)
C20—C19—H19121.00C24—N9—H9A124.5
C21—C20—C19117 (3)N8—N9—H9A124.7
C21—C20—H20120.8Mo3—O1—Mo4138.2 (11)
C19—C20—H20121.8Mo5—O4—Mo1139.5 (12)
N7—C21—C20124 (3)Mo5—O5—Mo4140.4 (11)
N7—C21—C22114 (2)Mo4—O6—Mo6138.9 (11)
C20—C21—C22122 (3)Mo3—O7—Mo5139.2 (10)
N8—C22—C23110 (2)Mo6i—O9—Mo3139.6 (13)
N8—C22—C21117 (2)Mo4—O11—Mo2140.0 (12)
C23—C22—C21133 (2)Mo5i—O12—Mo2138.5 (12)
C22—C23—C24105 (2)Mo1—O13—Mo3i140.7 (13)
C22—C23—H23127.8Mo6—O14—Mo2141.1 (11)
C24—C23—H23126.9Mo2i—O16—Mo1142.1 (13)
N9—C24—C23108 (2)Mo1—O17—Mo6136.8 (11)
N9—C24—H24127.0P1—O19A—O21Ai53.0 (11)
C23—C24—H24125.4P1—O19A—O21B52.0 (11)
N5—Ni1—N895.9 (9)O21Ai—O19A—O21B88.4 (17)
N5—Ni1—N2167.4 (8)P1—O19A—O19B53.1 (11)
N8—Ni1—N293.7 (8)O21Ai—O19A—O19B87.3 (16)
N5—Ni1—N477.1 (9)O21B—O19A—O19B85.4 (16)
N8—Ni1—N4170.8 (8)P1—O19A—Mo3i124.6 (14)
N2—Ni1—N494.1 (8)O21Ai—O19A—Mo3i71.6 (12)
N5—Ni1—N194.5 (7)O21B—O19A—Mo3i136.6 (16)
N8—Ni1—N191.8 (7)O19B—O19A—Mo3i129.8 (15)
N2—Ni1—N177.1 (7)P1—O19A—Mo6123.7 (14)
N4—Ni1—N194.8 (7)O21Ai—O19A—Mo6132.5 (16)
N5—Ni1—N795.3 (7)O21B—O19A—Mo671.7 (11)
N8—Ni1—N777.6 (8)O19B—O19A—Mo6131.4 (14)
N2—Ni1—N794.7 (7)Mo3i—O19A—Mo693.6 (9)
N4—Ni1—N796.9 (8)P1—O19A—Mo1121.6 (13)
N1—Ni1—N7166.2 (7)O21Ai—O19A—Mo1132.3 (16)
O3—Mo1—O13102.6 (10)O21B—O19A—Mo1127.5 (15)
O3—Mo1—O16102.1 (10)O19B—O19A—Mo168.5 (11)
O13—Mo1—O1687.4 (9)Mo3i—O19A—Mo192.6 (9)
O3—Mo1—O17102.4 (9)Mo6—O19A—Mo192.0 (9)
O13—Mo1—O1788.0 (7)P1—O21A—O21B56.6 (12)
O16—Mo1—O17155.5 (10)P1—O21A—O19B56.8 (12)
O3—Mo1—O4101.8 (9)O21B—O21A—O19B94.2 (18)
O13—Mo1—O4155.5 (10)P1—O21A—O19Ai57.1 (12)
O16—Mo1—O485.9 (8)O21B—O21A—O19Ai92.9 (17)
O17—Mo1—O488.3 (9)O19B—O21A—O19Ai91.6 (17)
O3—Mo1—O19A159.1 (9)P1—O21A—Mo3124.1 (14)
O13—Mo1—O19A62.4 (9)O21B—O21A—Mo3128.9 (16)
O16—Mo1—O19A92.1 (10)O19B—O21A—Mo3130.8 (16)
O17—Mo1—O19A64.6 (8)O19Ai—O21A—Mo367.1 (12)
O4—Mo1—O19A94.3 (9)P1—O21A—Mo4126.1 (14)
O3—Mo1—O19B157.2 (9)O21B—O21A—Mo469.5 (13)
O13—Mo1—O19B93.2 (10)O19B—O21A—Mo4130.8 (16)
O16—Mo1—O19B62.0 (9)O19Ai—O21A—Mo4133.7 (16)
O17—Mo1—O19B94.3 (9)Mo3—O21A—Mo490.7 (8)
O4—Mo1—O19B62.9 (9)P1—O21A—Mo5124.0 (14)
O19A—Mo1—O19B43.6 (8)O21B—O21A—Mo5134.5 (16)
O15—Mo2—O16i102.2 (10)O19B—O21A—Mo567.3 (12)
O15—Mo2—O11100.8 (10)O19Ai—O21A—Mo5127.1 (15)
O16i—Mo2—O1191.7 (9)Mo3—O21A—Mo590.4 (8)
O15—Mo2—O14102.3 (9)Mo4—O21A—Mo591.1 (8)
O16i—Mo2—O14155.2 (10)P1—O19B—O21A53.3 (12)
O11—Mo2—O1487.5 (8)P1—O19B—O21Bi53.3 (12)
O15—Mo2—O12103.3 (10)O21A—O19B—O21Bi90.3 (17)
O16i—Mo2—O1286.7 (8)P1—O19B—O19A53.8 (12)
O11—Mo2—O12155.6 (10)O21A—O19B—O19A88.1 (16)
O14—Mo2—O1283.9 (8)O21Bi—O19B—O19A86.0 (16)
O15—Mo2—O19Bi159.6 (9)P1—O19B—Mo2i123.3 (13)
O16i—Mo2—O19Bi63.8 (10)O21A—O19B—Mo2i135.8 (17)
O11—Mo2—O19Bi94.5 (10)O21Bi—O19B—Mo2i70.1 (12)
O14—Mo2—O19Bi91.5 (9)O19A—O19B—Mo2i127.6 (15)
O12—Mo2—O19Bi63.0 (9)P1—O19B—Mo5125.1 (14)
O15—Mo2—O21B158.5 (9)O21A—O19B—Mo571.8 (12)
O16i—Mo2—O21B93.1 (10)O21Bi—O19B—Mo5133.9 (17)
O11—Mo2—O21B63.2 (9)O19A—O19B—Mo5133.4 (15)
O14—Mo2—O21B64.5 (8)Mo2i—O19B—Mo593.4 (9)
O12—Mo2—O21B92.5 (10)P1—O19B—Mo1121.6 (15)
O19Bi—Mo2—O21B41.9 (8)O21A—O19B—Mo1128.9 (15)
O10—Mo3—O1103.0 (9)O21Bi—O19B—Mo1129.5 (16)
O10—Mo3—O7101.0 (9)O19A—O19B—Mo167.9 (12)
O1—Mo3—O789.5 (7)Mo2i—O19B—Mo192.1 (9)
O10—Mo3—O13i101.9 (11)Mo5—O19B—Mo192.5 (8)
O1—Mo3—O13i91.7 (8)P1—O21B—O21A56.1 (13)
O7—Mo3—O13i156.1 (10)P1—O21B—O19Bi56.2 (12)
O10—Mo3—O9100.3 (10)O21A—O21B—O19Bi93.6 (17)
O1—Mo3—O9156.6 (10)P1—O21B—O19A55.5 (12)
O7—Mo3—O984.2 (7)O21A—O21B—O19A92.3 (18)
O13i—Mo3—O985.3 (7)O19Bi—O21B—O19A88.9 (17)
O10—Mo3—O19Ai157.4 (9)P1—O21B—Mo4127.4 (15)
O1—Mo3—O19Ai95.4 (9)O21A—O21B—Mo471.4 (13)
O7—Mo3—O19Ai92.0 (9)O19Bi—O21B—Mo4136.7 (17)
O13i—Mo3—O19Ai64.2 (10)O19A—O21B—Mo4130.8 (15)
O9—Mo3—O19Ai62.4 (9)P1—O21B—Mo2124.2 (14)
O10—Mo3—O21A160.9 (9)O21A—O21B—Mo2132.5 (17)
O1—Mo3—O21A65.6 (8)O19Bi—O21B—Mo268.0 (12)
O7—Mo3—O21A65.0 (8)O19A—O21B—Mo2128.7 (15)
O13i—Mo3—O21A93.9 (10)Mo4—O21B—Mo292.1 (9)
O9—Mo3—O21A91.4 (10)P1—O21B—Mo6121.2 (15)
O19Ai—Mo3—O21A41.3 (8)O21A—O21B—Mo6132.8 (16)
O8—Mo4—O6103.5 (10)O19Bi—O21B—Mo6125.1 (16)
O8—Mo4—O11102.2 (10)O19A—O21B—Mo665.8 (11)
O6—Mo4—O1188.7 (7)Mo4—O21B—Mo691.5 (8)
O8—Mo4—O5101.7 (10)Mo2—O21B—Mo690.3 (9)
O6—Mo4—O592.4 (8)O21A—P1—O21Ai180 (3)
O11—Mo4—O5155.2 (10)O21A—P1—O21B67.3 (14)
O8—Mo4—O199.8 (9)O21Ai—P1—O21B112.7 (14)
O6—Mo4—O1156.4 (9)O21A—P1—O21Bi112.7 (14)
O11—Mo4—O182.6 (8)O21Ai—P1—O21Bi67.3 (14)
O5—Mo4—O186.6 (7)O21B—P1—O21Bi180.0 (19)
O8—Mo4—O21B161.4 (9)O21A—P1—O19B69.9 (14)
O6—Mo4—O21B66.3 (8)O21Ai—P1—O19B110.1 (14)
O11—Mo4—O21B63.4 (9)O21B—P1—O19B109.4 (14)
O5—Mo4—O21B94.4 (9)O21Bi—P1—O19B70.6 (14)
O1—Mo4—O21B90.2 (8)O21A—P1—O19Bi110.1 (14)
O8—Mo4—O21A159.0 (9)O21Ai—P1—O19Bi69.9 (14)
O6—Mo4—O21A93.7 (9)O21B—P1—O19Bi70.6 (14)
O11—Mo4—O21A90.1 (9)O21Bi—P1—O19Bi109.4 (14)
O5—Mo4—O21A65.1 (8)O19B—P1—O19Bi180 (2)
O1—Mo4—O21A64.6 (8)O21A—P1—O19A110.1 (13)
O21B—Mo4—O21A39.1 (8)O21Ai—P1—O19A69.9 (13)
O18—Mo5—O4102.1 (10)O21B—P1—O19A72.5 (14)
O18—Mo5—O5101.5 (9)O21Bi—P1—O19A107.5 (14)
O4—Mo5—O585.3 (8)O19B—P1—O19A73.1 (14)
O18—Mo5—O12i102.6 (10)O19Bi—P1—O19A106.9 (14)
O4—Mo5—O12i89.9 (8)O21A—P1—O19Ai69.9 (13)
O5—Mo5—O12i155.9 (10)O21Ai—P1—O19Ai110.1 (13)
O18—Mo5—O7102.1 (9)O21B—P1—O19Ai107.5 (14)
O4—Mo5—O7155.3 (9)O21Bi—P1—O19Ai72.5 (14)
O5—Mo5—O785.4 (7)O19B—P1—O19Ai106.9 (14)
O12i—Mo5—O789.3 (8)O19Bi—P1—O19Ai73.1 (14)
O18—Mo5—O19B159.6 (10)O19A—P1—O19Ai180 (2)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O17ii0.862.052.83 (3)149
N6—H6···O2W0.861.992.84 (5)166
N9—H9A···O1W0.861.922.74 (3)160
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C8H7N3)3]2[PMo12O40]·6H2O
Mr2918.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.741 (4), 16.285 (3), 27.678 (6)
β (°) 103.83 (3)
V3)8202 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.42 × 0.27 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.440, 0.652
No. of measured, independent and
observed [I > 2σ(I)] reflections
22802, 7216, 5310
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.155, 1.00
No. of reflections7216
No. of parameters592
No. of restraints18
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.088P)2 + 10.3967P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.58, 0.67

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N52.077 (19)Ni1—N72.14 (2)
Ni1—N82.06 (2)P1—O21Ai1.49 (2)
Ni1—N22.084 (19)P1—O21Bi1.50 (3)
Ni1—N42.13 (2)P1—O19Bi1.55 (3)
Ni1—N12.118 (17)P1—O19Ai1.57 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O17ii0.862.052.83 (3)149.3
N6—H6···O2W0.861.992.84 (5)166.4
N9—H9A···O1W0.861.922.74 (3)159.8
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Inter­national Cooperation Program for Excellent Lecturers of 2008 from Shandong Provincial Education Department, the Research Award Fund for Outstanding Young and Middle-aged Scientists of Shandong Province (2008BS04022), Shandong Provincial Education Department and Shandong Institute of Education are gratefully acknowledged.

References

First citationArtero, V. & Proust, A. (2000). Eur. J. Inorg. Chem., pp. 2393–2400  Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHao, L., Liu, T., Chen, J. & Zhang, X. (2010). Acta Cryst. E66, m283–m284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHao, L., Ma, C., Chen, J., Zhang, X. & Zhang, X. (2010). Acta Cryst. E66, m231–m232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHao, L., Wang, Y., Zhang, X., Chen, J. & Zhang, X. (2010). Acta Cryst. E66, m268–m269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKurmoo, M., Bonamico, M., Bellitto, C., Fares, V., Federici, F., Guionneau, P., Ducasse, L., Kitagawa, H. & Day, P. (1998). Adv. Mater. 7, 545–550.  CrossRef Google Scholar
First citationNiu, J. Y., Shan, B. Z. & You, X. Z. (1999). Transition Met. Chem. 24, 108–114  Web of Science CSD CrossRef CAS Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, W. B., Lu, C. Z., Wu, C. D. & Zhuang, H. H. (2003). Chin. J. Struct. Chem. 22, 137–142.  CAS Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m319-m320
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds