inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Undeca­europium hexa­zinc dodeca­arsenide

aDepartment of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
*Correspondence e-mail: sbobev@mail.chem.udel.edu

(Received 9 February 2010; accepted 23 February 2010; online 27 February 2010)

The title compound, Eu11Zn6As12, crystallizes with the Sr11Cd6Sb12 structure type (Pearson's symbol mC58). The complex monoclinic structure of the first arsenide to form with this type features chains made of corner-sharing ZnAs4 tetra­hedra, separated by Eu atoms. There are a total of 15 unique positions in the asymmetric unit. Except for one Eu atom with site symmetry 2/m, all atoms are located on mirror planes. An usual aspect of the structure are some Zn—As distances, which are much longer than the sum of the covalent radii, indicating weaker inter­actions.

Related literature

The growing inter­est in ternary pnictides of alkaline- and rare-earth metals with group 12 metals has feen fueled by the recent discovery of superconductivity (Rotter et al., 2008[Rotter, M., Tegel, M. & Johrendt, D. (2008). Phys. Rev. Lett. 101, 107006.]). Such compounds have also been investigated because of their promising behaviour as materials with high thermoelectric conversion efficiency (Snyder & Toberer, 2008[Snyder, G. J. & Toberer, E. S. (2008). Nat. Mater. 7, 105-114.]). Our own exploratory studies revealed a wealth of new compounds with diverse crystal structures, including Ca2CdSb2 and Yb2CdSb2 (Xia & Bobev, 2007a[Xia, S.-Q. & Bobev, S. (2007a). J. Am. Chem. Soc. 129, 4049-4057.]), A9Cd4+xPn9 and A9Zn4+xPn9 (A = Ca, Sr, Eu, Yb; Pn = Sb, Bi) (Xia & Bobev, 2007b[Xia, S.-Q. & Bobev, S. (2007b). J. Am. Chem. Soc. 129, 10011-10018.]), A11Cd6Sb12 (A = Sr, Ba, Eu) and Eu11Zn6Sb12 (Park & Kim, 2004[Park, S.-M. & Kim, S.-J. (2004). J. Solid State Chem. 177, 3418-3422.]; Xia & Bobev, 2008b[Xia, S.-Q. & Bobev, S. (2008b). J. Comput. Chem. 29, 2125-2133.]; Saparov et al., 2008a[Saparov, B., Bobev, S., Ozbay, A. & Nowak, E. R. (2008a). J. Solid State Chem. 181, 2690-2696.]), A21Cd4Pn18 (A = Sr, Ba, Eu; Pn = Sb, Bi) (Xia & Bobev, 2008a[Xia, S.-Q. & Bobev, S. (2008a). Inorg. Chem. 47, 1919-1921.]), Ba3Cd2Sb4 (Saparov et al., 2008b[Saparov, B., Xia, S.-Q. & Bobev, S. (2008b). Inorg. Chem. 47, 11237-11244.]), Ba2Cd2Pn3 (Pn = As, Sb) (Saparov et al., 2010[Saparov, B., He, H., Zhang, H., Greene, R. & Bobev, S. (2010). Dalton Trans. pp. 1063-1070.]). The title compound is the As-analog of Eu11Zn6Sb12 (Saparov et al., 2008a[Saparov, B., Bobev, S., Ozbay, A. & Nowak, E. R. (2008a). J. Solid State Chem. 181, 2690-2696.]). For covalent radii, see: Pauling (1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, NY: Cornell University Press.]).

Experimental

Crystal data
  • Eu11Zn6As12

  • Mr = 2962.82

  • Monoclinic, C 2/m

  • a = 30.310 (8) Å

  • b = 4.3318 (11) Å

  • c = 11.774 (3) Å

  • β = 109.746 (4)°

  • V = 1455.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 41.68 mm−1

  • T = 200 K

  • 0.07 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.161, Tmax = 0.256

  • 7178 measured reflections

  • 1796 independent reflections

  • 1498 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.062

  • S = 1.01

  • 1796 reflections

  • 90 parameters

  • Δρmax = 1.70 e Å−3

  • Δρmin = −1.74 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure of Eu11Zn6As12 projected along b-axis is shown in Figure 1. The asymmetric unit is composed of 6 Eu, 3 Zn and 6 As atoms, all in special positions (Wyckoff position for Eu6 is 2a, for all others 4i).

The anionic substructure is made of Zn-centered ZnAs4 tetrahedra that share common corners to form chains. The terminal As atoms of two chains are close together, so that they form a covalent bond. This can be inferred from the resulting As5—As5 distance at 2.457 (3) Å, which is on par with the As—As separation in elemental As (2.517 Å). All other interatomic distances fall within the expected range, excluding the Zn3—As5 distance at 3.288 Å. The latter is too long - more than 30% longer than the sum of the Pauling's covalent radii (Pauling, 1960) - to be considered a simple 2-center-2-electron bond. Analogously longer than normal Cd3—Sb5 and Zn3—Sb5 distances have been reported in Eu11Cd6Sb12 and Eu11Zn6Sb12 (Saparov et al., 2008a). We refer to the theoretical studies on Sr11Cd6Sb12 and Ba11Cd6Sb12 (Xia & Bobev, 2008b) for a more detailed discussion of the bonding interactions in this structure type.

d-metal centered tetrahedra of the pnicogen elements are recurring motifs in the structural chemistry of such solid-state compounds, as evidenced by a number of reports (Rotter et al., 2008; Snyder & Toberer, 2008; Xia & Bobev, 2008a; Saparov et al., 2008b; Saparov et al., 2010). Sr11Cd6Sb12, the first structurally characterized phase with this monoclinic structure, was synthesized from a high temperature reaction of elements using Sn as metal flux (Park & Kim, 2004). In this report, the crystal structure was described as being composed of "double pentagonal tubes". A slightly different description of the structure was given in the light of the very long Cd3—Sb5 bond in Ba11Cd6Sb12 (Xia & Bobev, 2008b). Therein, the authors performed comprehensive electronic structure calculations aimed at full understanding of the bonding in Sr11Cd6Sb12 and Ba11Cd6Sb12. From these computational results, and from earlier results pertaining to related materials such as Yb2CdSb2 (Xia & Bobev, 2007a), A9Cd4+xPn9 and A9Zn4+xPn9 (A=Ca, Sr, Eu, Yb; Pn= Sb, Bi) (Xia & Bobev, 2007b), it can be expected that the Eu cations in Eu11Zn6As12 will be divalent, and the spins of the Eu's 7 unpaired electrons may couple magnetically at low temperatures. We were unable to experimentally confirm this conjecture because the title compound was not isolated as a pure phase, but magnetic property measurements on the isotypic europium antimonides Eu11Cd6Sb12 and Eu11Zn6Sb12 (Saparov et al., 2008a) confirmed Eu2+ cations (4f7 state). These measurements also suggested antiferromagnetic ordering in Eu11Cd6Sb12 below TN=7.5 K. The temperature dependent electrical resistivity measurements carried out on a single crystal of Eu11Cd6Sb12 suggested poorly metallic behavior, as expected from band structure calculations performed for Sr11Cd6Sb12 and Ba11Cd6Sb12 (Xia & Bobev, 2008b).

Related literature top

The growing interest in ternary pnictides of alkaline- and rare-earth metals with group 12 metals has feen fueled by the recent discovery of superconductivity (Rotter et al., 2008). Such compounds have also been investigated because of their promising behaviour as materials with high thermoelectric conversion efficiency (Snyder & Toberer, 2008). Our own exploratory studies revealed a wealth of new compounds with diverse crystal structures, including Ca2CdSb2 and Yb2CdSb2 (Xia & Bobev, 2007a), A9Cd4+xPn9 and A9Zn4+xPn9 (A = Ca, Sr, Eu, Yb; Pn = Sb, Bi) (Xia & Bobev, 2007b), A11Cd6Sb12 (A = Sr, Ba, Eu) and Eu11Zn6Sb12 (Park & Kim, 2004; Xia & Bobev, 2008b; Saparov et al., 2008a), A21Cd4Pn18 (A = Sr, Ba, Eu; Pn = Sb, Bi) (Xia & Bobev, 2008a), Ba3Cd2Sb4 (Saparov et al., 2008b), Ba2Cd2Pn3 (Pn = As, Sb) (Saparov et al., 2010). The title compound is the As-analog of Eu11Zn6Sb12 (Saparov et al., 2008a). For covalent radii, see: Pauling (1960).

Experimental top

The starting materials, Eu, Zn, As, and Pb, with stated purity greater than 99.9%, were purchased from Alfa or Aldrich, and used as received. Elements were loaded into an alumina crucible in a Eu:Zn:As:Pb=2:1:2:10 molar ratio inside an argon-filled glove-box. The alumina crucible was then sealed under vacuum in a silica tube. The reaction mixture was heated to 1223 K, kept at this temperature for 20 hours, and then slowly cooled to 723 K at a rate of 3 K/hour. Finally, the Pb-flux was removed by centrifugation at this temperature. Together with irregular-shaped crystals with hitherto unknown structure, black needle shaped crystals of Eu11Zn6As12 were also obtained.

Refinement top

The collected data were successfully refined using the coordinates of Eu11Zn6Sb12 (Saparov et al., 2008a) as a starting model. The maximum peak and deepest hole are located 0.97 Å away from Eu6 and 1.47 Å away from Zn1, respectively.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A plot of the Eu11Zn6As12 structure viewed down the b-axis. Displacement ellipsoids are drawn at the 95% probability level. Color key: Eu - red, Zn - green, All As atoms, excluding As5 - blue. As5, which form dimers are shown in yellow. The long As5—Zn3 bonds are depicted as thiner solid lines. The unit cell is outlined.
Undecaeuropium hexazinc dodecaarsenide, Eu11Zn6As12 top
Crystal data top
Eu11Zn6As12F(000) = 2538
Mr = 2962.82Dx = 6.763 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 1796 reflections
a = 30.310 (8) Åθ = 1.4–27.1°
b = 4.3318 (11) ŵ = 41.68 mm1
c = 11.774 (3) ÅT = 200 K
β = 109.746 (4)°Needle, black
V = 1455.0 (7) Å30.07 × 0.05 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
1796 independent reflections
Radiation source: fine-focus sealed tube1498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 3838
Tmin = 0.161, Tmax = 0.256k = 55
7178 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0242P)2 + 16.9522P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max < 0.001
S = 1.01Δρmax = 1.70 e Å3
1796 reflectionsΔρmin = 1.74 e Å3
90 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.000263 (17)
Crystal data top
Eu11Zn6As12V = 1455.0 (7) Å3
Mr = 2962.82Z = 2
Monoclinic, C2/mMo Kα radiation
a = 30.310 (8) ŵ = 41.68 mm1
b = 4.3318 (11) ÅT = 200 K
c = 11.774 (3) Å0.07 × 0.05 × 0.05 mm
β = 109.746 (4)°
Data collection top
Bruker SMART APEX
diffractometer
1796 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1498 reflections with I > 2σ(I)
Tmin = 0.161, Tmax = 0.256Rint = 0.042
7178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0242P)2 + 16.9522P]
where P = (Fo2 + 2Fc2)/3
S = 1.01Δρmax = 1.70 e Å3
1796 reflectionsΔρmin = 1.74 e Å3
90 parameters
Special details top

Experimental. Selected in the glove box, crystals were put in a Paratone N oil and cut to the desired dimensions. The chosen crystal was mounted on a tip of a glass fiber and quickly transferred onto the goniometer. The crystal was kept under a cold nitrogen stream to protect from the ambient air and moisture.

Data collection is performed with four batch runs at ϕ = 0.00 ° (600 frames), at ϕ = 90.00 ° (600 frames), at ϕ = 180.00 ° (600 frames), and at ϕ = 270.00 (600 frames). Frame width = 0.30 \& in ω. Data are merged and treated with multi-scan absorption corrections.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.01672 (2)0.00000.67859 (6)0.01461 (16)
Eu20.11288 (2)0.00000.51100 (6)0.01520 (16)
Eu30.12610 (2)0.00000.02177 (6)0.01671 (17)
Eu40.19815 (2)0.00000.34699 (6)0.01708 (16)
Eu50.28179 (2)0.00000.13448 (6)0.01841 (17)
Eu60.00000.00000.00000.0151 (2)
As10.08620 (4)0.00000.23794 (11)0.0139 (3)
As20.14491 (4)0.00000.78289 (12)0.0141 (3)
As30.30702 (5)0.00000.45283 (12)0.0147 (3)
As40.45498 (4)0.00000.12128 (12)0.0137 (3)
As50.45839 (4)0.00000.49049 (12)0.0139 (3)
As60.70775 (4)0.00000.14605 (12)0.0150 (3)
Zn10.21901 (6)0.00000.66996 (14)0.0204 (3)
Zn20.40088 (5)0.00000.24844 (14)0.0175 (3)
Zn30.54783 (6)0.00000.23600 (16)0.0226 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.0163 (3)0.0135 (3)0.0139 (3)0.0000.0050 (3)0.000
Eu20.0129 (3)0.0186 (3)0.0146 (3)0.0000.0053 (3)0.000
Eu30.0155 (3)0.0209 (3)0.0146 (4)0.0000.0063 (3)0.000
Eu40.0142 (3)0.0209 (3)0.0164 (4)0.0000.0056 (3)0.000
Eu50.0159 (3)0.0153 (3)0.0249 (4)0.0000.0080 (3)0.000
Eu60.0138 (5)0.0176 (4)0.0142 (5)0.0000.0050 (4)0.000
As10.0137 (6)0.0153 (6)0.0129 (7)0.0000.0048 (5)0.000
As20.0145 (6)0.0131 (6)0.0149 (7)0.0000.0055 (5)0.000
As30.0153 (7)0.0135 (6)0.0149 (7)0.0000.0047 (5)0.000
As40.0136 (6)0.0146 (6)0.0135 (7)0.0000.0052 (5)0.000
As50.0116 (6)0.0140 (6)0.0163 (7)0.0000.0050 (5)0.000
As60.0129 (6)0.0148 (6)0.0164 (7)0.0000.0040 (5)0.000
Zn10.0208 (8)0.0175 (7)0.0177 (8)0.0000.0005 (7)0.000
Zn20.0146 (7)0.0165 (7)0.0218 (8)0.0000.0066 (6)0.000
Zn30.0197 (8)0.0145 (7)0.0330 (10)0.0000.0080 (7)0.000
Geometric parameters (Å, º) top
Eu1—As4i3.1006 (12)Eu6—Zn3viii3.4339 (15)
Eu1—As4ii3.1006 (12)Eu6—Zn3iii3.4339 (15)
Eu1—As5iii3.1742 (12)Eu6—Eu3xi3.7434 (12)
Eu1—As5iv3.1742 (12)As1—Zn3iii2.4548 (11)
Eu1—Zn2i3.1965 (13)As1—Zn3iv2.4548 (11)
Eu1—Zn2ii3.1965 (13)As1—Eu1v3.5733 (16)
Eu1—As5ii3.1997 (12)As2—Zn2ii2.5313 (12)
Eu1—As5i3.1997 (12)As2—Zn2i2.5313 (12)
Eu1—Zn3ii3.2954 (14)As2—Zn12.971 (2)
Eu1—Zn3i3.2954 (14)As2—Eu5i3.0187 (11)
Eu1—As1v3.5732 (16)As2—Eu5ii3.0187 (11)
Eu1—As23.6580 (17)As2—Eu3xii3.0526 (16)
Eu2—As23.0150 (17)As3—Zn1ii2.5754 (12)
Eu2—As13.0386 (16)As3—Zn1i2.5754 (12)
Eu2—As5ii3.0548 (11)As3—Eu2i3.1731 (12)
Eu2—As5i3.0548 (11)As3—Eu2ii3.1731 (12)
Eu2—Zn13.1276 (18)As3—Eu4i3.2434 (12)
Eu2—As3i3.1730 (12)As3—Eu4ii3.2434 (12)
Eu2—As3ii3.1730 (12)As4—Zn22.567 (2)
Eu2—Zn2i3.6993 (15)As4—Zn32.679 (2)
Eu2—Zn2ii3.6993 (15)As4—Eu1i3.1006 (12)
Eu2—Eu43.7123 (11)As4—Eu1ii3.1006 (12)
Eu2—Eu1v3.8063 (13)As4—Eu6xiii3.1477 (10)
Eu3—As2vi3.0526 (16)As4—Eu6xiv3.1477 (10)
Eu3—As13.1656 (15)As4—Eu3vii3.2820 (12)
Eu3—As6iv3.2419 (12)As4—Eu3viii3.2820 (12)
Eu3—As6iii3.2419 (12)As5—As5xv2.456 (3)
Eu3—As4vii3.2819 (12)As5—Zn22.794 (2)
Eu3—As4viii3.2819 (12)As5—Eu2ii3.0548 (11)
Eu3—Zn2vii3.7045 (16)As5—Eu2i3.0548 (11)
Eu3—Zn2viii3.7045 (16)As5—Eu1xiv3.1743 (12)
Eu3—Eu43.7122 (13)As5—Eu1xiii3.1743 (12)
Eu3—Eu63.7434 (12)As5—Eu1ii3.1996 (12)
Eu3—Eu1vi4.2739 (13)As5—Eu1i3.1996 (12)
Eu3—Eu3ix4.3318 (11)As6—Zn1xv2.524 (2)
Eu4—As33.1086 (16)As6—Eu5xiv3.1547 (12)
Eu4—As13.1966 (16)As6—Eu5xiii3.1547 (12)
Eu4—As3i3.2435 (12)As6—Eu3xiii3.2418 (12)
Eu4—As3ii3.2435 (12)As6—Eu3xiv3.2418 (12)
Eu4—As6iii3.2922 (13)As6—Eu4xiv3.2922 (13)
Eu4—As6iv3.2922 (13)As6—Eu4xiii3.2922 (13)
Eu4—Zn1i3.3727 (15)As6—Eu5x3.4229 (17)
Eu4—Zn1ii3.3727 (15)Zn1—As6xv2.524 (2)
Eu4—Zn13.638 (2)Zn1—As3ii2.5754 (12)
Eu4—Eu54.1199 (12)Zn1—As3i2.5754 (12)
Eu5—As2i3.0188 (11)Zn1—Eu5i3.1671 (14)
Eu5—As2ii3.0188 (11)Zn1—Eu5ii3.1671 (14)
Eu5—As6iii3.1546 (12)Zn1—Eu4i3.3727 (15)
Eu5—As6iv3.1546 (12)Zn1—Eu4ii3.3727 (15)
Eu5—Zn1i3.1672 (14)Zn2—As2ii2.5313 (12)
Eu5—Zn1ii3.1672 (14)Zn2—As2i2.5313 (12)
Eu5—Zn23.3995 (19)Zn2—Eu1i3.1964 (13)
Eu5—As6x3.4230 (17)Zn2—Eu1ii3.1964 (13)
Eu5—As33.5633 (18)Zn2—Eu2i3.6993 (15)
Eu5—Eu5vii3.7827 (13)Zn2—Eu2ii3.6993 (15)
Eu5—Eu5viii3.7827 (13)Zn2—Eu3vii3.7045 (16)
Eu6—As1xi3.1191 (14)Zn2—Eu3viii3.7045 (16)
Eu6—As13.1191 (14)Zn3—As1xiv2.4548 (11)
Eu6—As4vii3.1478 (10)Zn3—As1xiii2.4548 (11)
Eu6—As4iv3.1478 (10)Zn3—Eu1ii3.2954 (14)
Eu6—As4viii3.1478 (10)Zn3—Eu1i3.2954 (14)
Eu6—As4iii3.1478 (10)Zn3—Eu6xiii3.4339 (15)
Eu6—Zn3vii3.4339 (15)Zn3—Eu6xiv3.4339 (15)
Eu6—Zn3iv3.4339 (15)
As4i—Eu1—As4ii88.62 (4)As4iv—Eu6—As4viii93.04 (4)
As4i—Eu1—As5iii162.32 (4)As1xi—Eu6—As4iii92.72 (3)
As4ii—Eu1—As5iii89.97 (3)As1—Eu6—As4iii87.28 (3)
As4i—Eu1—As5iv89.97 (3)As4vii—Eu6—As4iii93.04 (4)
As4ii—Eu1—As5iv162.32 (4)As4iv—Eu6—As4iii86.96 (4)
As5iii—Eu1—As5iv86.05 (4)As4viii—Eu6—As4iii180.00 (5)
As4i—Eu1—Zn2i48.09 (4)As1xi—Eu6—Zn3vii43.67 (2)
As4ii—Eu1—Zn2i106.18 (4)As1—Eu6—Zn3vii136.33 (2)
As5iii—Eu1—Zn2i148.25 (4)As4vii—Eu6—Zn3vii47.79 (4)
As5iv—Eu1—Zn2i85.74 (3)As4iv—Eu6—Zn3vii132.21 (4)
As4i—Eu1—Zn2ii106.18 (4)As4viii—Eu6—Zn3vii101.31 (4)
As4ii—Eu1—Zn2ii48.09 (4)As4iii—Eu6—Zn3vii78.69 (4)
As5iii—Eu1—Zn2ii85.74 (3)As1xi—Eu6—Zn3iv136.33 (2)
As5iv—Eu1—Zn2ii148.25 (4)As1—Eu6—Zn3iv43.67 (2)
Zn2i—Eu1—Zn2ii85.31 (4)As4vii—Eu6—Zn3iv132.21 (4)
As4i—Eu1—As5ii151.99 (4)As4iv—Eu6—Zn3iv47.79 (4)
As4ii—Eu1—As5ii86.40 (3)As4viii—Eu6—Zn3iv78.69 (4)
As5iii—Eu1—As5ii45.32 (4)As4iii—Eu6—Zn3iv101.31 (4)
As5iv—Eu1—As5ii102.75 (3)Zn3vii—Eu6—Zn3iv180.00 (5)
Zn2i—Eu1—As5ii107.39 (4)As1xi—Eu6—Zn3viii43.67 (2)
Zn2ii—Eu1—As5ii51.79 (4)As1—Eu6—Zn3viii136.33 (2)
As4i—Eu1—As5i86.40 (3)As4vii—Eu6—Zn3viii101.31 (4)
As4ii—Eu1—As5i151.99 (4)As4iv—Eu6—Zn3viii78.69 (4)
As5iii—Eu1—As5i102.75 (3)As4viii—Eu6—Zn3viii47.79 (4)
As5iv—Eu1—As5i45.32 (4)As4iii—Eu6—Zn3viii132.21 (4)
Zn2i—Eu1—As5i51.79 (4)Zn3vii—Eu6—Zn3viii78.21 (4)
Zn2ii—Eu1—As5i107.39 (4)Zn3iv—Eu6—Zn3viii101.79 (4)
As5ii—Eu1—As5i85.20 (4)As1xi—Eu6—Zn3iii136.33 (2)
As4i—Eu1—Zn3ii105.52 (4)As1—Eu6—Zn3iii43.67 (2)
As4ii—Eu1—Zn3ii49.41 (4)As4vii—Eu6—Zn3iii78.69 (4)
As5iii—Eu1—Zn3ii61.07 (4)As4iv—Eu6—Zn3iii101.31 (4)
As5iv—Eu1—Zn3ii114.41 (4)As4viii—Eu6—Zn3iii132.21 (4)
Zn2i—Eu1—Zn3ii148.64 (5)As4iii—Eu6—Zn3iii47.79 (4)
Zn2ii—Eu1—Zn3ii87.89 (4)Zn3vii—Eu6—Zn3iii101.79 (4)
As5ii—Eu1—Zn3ii91.95 (3)Zn3iv—Eu6—Zn3iii78.21 (4)
As5i—Eu1—Zn3ii157.49 (4)Zn3viii—Eu6—Zn3iii180.00 (8)
As4i—Eu1—Zn3i49.41 (4)As1xi—Eu6—Eu3125.98 (3)
As4ii—Eu1—Zn3i105.52 (4)As1—Eu6—Eu354.02 (3)
As5iii—Eu1—Zn3i114.41 (4)As4vii—Eu6—Eu356.08 (2)
As5iv—Eu1—Zn3i61.07 (4)As4iv—Eu6—Eu3123.92 (2)
Zn2i—Eu1—Zn3i87.89 (4)As4viii—Eu6—Eu356.08 (2)
Zn2ii—Eu1—Zn3i148.64 (5)As4iii—Eu6—Eu3123.92 (2)
As5ii—Eu1—Zn3i157.49 (4)Zn3vii—Eu6—Eu3101.40 (3)
As5i—Eu1—Zn3i91.95 (3)Zn3iv—Eu6—Eu378.60 (3)
Zn3ii—Eu1—Zn3i82.18 (4)Zn3viii—Eu6—Eu3101.40 (3)
As4i—Eu1—As1v80.45 (3)Zn3iii—Eu6—Eu378.60 (3)
As4ii—Eu1—As1v80.45 (3)As1xi—Eu6—Eu3xi54.02 (3)
As5iii—Eu1—As1v81.93 (3)As1—Eu6—Eu3xi125.98 (3)
As5iv—Eu1—As1v81.93 (3)As4vii—Eu6—Eu3xi123.92 (2)
Zn2i—Eu1—As1v126.98 (3)As4iv—Eu6—Eu3xi56.08 (2)
Zn2ii—Eu1—As1v126.98 (3)As4viii—Eu6—Eu3xi123.92 (2)
As5ii—Eu1—As1v125.62 (3)As4iii—Eu6—Eu3xi56.08 (2)
As5i—Eu1—As1v125.62 (3)Zn3vii—Eu6—Eu3xi78.60 (3)
Zn3ii—Eu1—As1v41.63 (2)Zn3iv—Eu6—Eu3xi101.40 (3)
Zn3i—Eu1—As1v41.63 (2)Zn3viii—Eu6—Eu3xi78.60 (3)
As4i—Eu1—As275.82 (3)Zn3iii—Eu6—Eu3xi101.40 (3)
As4ii—Eu1—As275.82 (3)Eu3—Eu6—Eu3xi180.0
As5iii—Eu1—As2120.82 (3)Zn3iii—As1—Zn3iv123.85 (9)
As5iv—Eu1—As2120.82 (3)Zn3iii—As1—Eu288.04 (5)
Zn2i—Eu1—As242.68 (2)Zn3iv—As1—Eu288.04 (5)
Zn2ii—Eu1—As242.68 (2)Zn3iii—As1—Eu675.00 (5)
As5ii—Eu1—As276.23 (3)Zn3iv—As1—Eu675.00 (5)
As5i—Eu1—As276.23 (3)Eu2—As1—Eu6142.47 (5)
Zn3ii—Eu1—As2124.78 (3)Zn3iii—As1—Eu3107.52 (5)
Zn3i—Eu1—As2124.78 (3)Zn3iv—As1—Eu3107.52 (5)
As1v—Eu1—As2146.58 (4)Eu2—As1—Eu3144.42 (5)
As2—Eu2—As1176.86 (4)Eu6—As1—Eu373.11 (4)
As2—Eu2—As5ii88.83 (3)Zn3iii—As1—Eu4116.04 (4)
As1—Eu2—As5ii93.38 (3)Zn3iv—As1—Eu4116.04 (4)
As2—Eu2—As5i88.83 (3)Eu2—As1—Eu473.03 (3)
As1—Eu2—As5i93.38 (3)Eu6—As1—Eu4144.50 (5)
As5ii—Eu2—As5i90.31 (4)Eu3—As1—Eu471.39 (3)
As2—Eu2—Zn157.82 (4)Zn3iii—As1—Eu1v63.11 (4)
As1—Eu2—Zn1119.04 (4)Zn3iv—As1—Eu1v63.11 (4)
As5ii—Eu2—Zn1125.86 (3)Eu2—As1—Eu1v69.76 (3)
As5i—Eu2—Zn1125.86 (3)Eu6—As1—Eu1v72.71 (3)
As2—Eu2—As3i84.27 (3)Eu3—As1—Eu1v145.82 (4)
As1—Eu2—As3i93.44 (3)Eu4—As1—Eu1v142.79 (5)
As5ii—Eu2—As3i172.86 (4)Zn2ii—As2—Zn2i117.67 (8)
As5i—Eu2—As3i91.39 (3)Zn2ii—As2—Zn1113.26 (5)
Zn1—Eu2—As3i48.25 (3)Zn2i—As2—Zn1113.26 (5)
As2—Eu2—As3ii84.27 (3)Zn2ii—As2—Eu283.18 (5)
As1—Eu2—As3ii93.44 (3)Zn2i—As2—Eu283.18 (5)
As5ii—Eu2—As3ii91.39 (3)Zn1—As2—Eu262.99 (4)
As5i—Eu2—As3ii172.86 (4)Zn2ii—As2—Eu5i165.57 (6)
Zn1—Eu2—As3ii48.25 (3)Zn2i—As2—Eu5i74.97 (4)
As3i—Eu2—As3ii86.09 (4)Zn1—As2—Eu5i63.83 (3)
As2—Eu2—Zn2i42.80 (3)Eu2—As2—Eu5i106.27 (4)
As1—Eu2—Zn2i138.72 (3)Zn2ii—As2—Eu5ii74.97 (4)
As5ii—Eu2—Zn2i99.04 (4)Zn2i—As2—Eu5ii165.57 (6)
As5i—Eu2—Zn2i47.69 (3)Zn1—As2—Eu5ii63.83 (3)
Zn1—Eu2—Zn2i84.32 (4)Eu2—As2—Eu5ii106.27 (4)
As3i—Eu2—Zn2i77.09 (3)Eu5i—As2—Eu5ii91.70 (4)
As3ii—Eu2—Zn2i125.16 (4)Zn2ii—As2—Eu3xii82.55 (5)
As2—Eu2—Zn2ii42.80 (3)Zn2i—As2—Eu3xii82.55 (5)
As1—Eu2—Zn2ii138.72 (3)Zn1—As2—Eu3xii144.78 (6)
As5ii—Eu2—Zn2ii47.69 (3)Eu2—As2—Eu3xii152.23 (5)
As5i—Eu2—Zn2ii99.04 (4)Eu5i—As2—Eu3xii92.82 (4)
Zn1—Eu2—Zn2ii84.32 (4)Eu5ii—As2—Eu3xii92.82 (4)
As3i—Eu2—Zn2ii125.16 (4)Zn2ii—As2—Eu158.88 (4)
As3ii—Eu2—Zn2ii77.09 (3)Zn2i—As2—Eu158.88 (4)
Zn2i—Eu2—Zn2ii71.68 (4)Zn1—As2—Eu1136.67 (6)
As2—Eu2—Eu4121.41 (4)Eu2—As2—Eu173.68 (3)
As1—Eu2—Eu455.45 (3)Eu5i—As2—Eu1133.69 (2)
As5ii—Eu2—Eu4127.75 (3)Eu5ii—As2—Eu1133.69 (2)
As5i—Eu2—Eu4127.75 (3)Eu3xii—As2—Eu178.55 (3)
Zn1—Eu2—Eu463.59 (4)Zn1ii—As3—Zn1i114.49 (8)
As3i—Eu2—Eu455.54 (3)Zn1ii—As3—Eu472.10 (5)
As3ii—Eu2—Eu455.54 (3)Zn1i—As3—Eu472.10 (5)
Zn2i—Eu2—Eu4132.58 (3)Zn1ii—As3—Eu2i136.45 (6)
Zn2ii—Eu2—Eu4132.58 (3)Zn1i—As3—Eu2i64.95 (4)
As2—Eu2—Eu1v121.40 (3)Eu4—As3—Eu2i135.58 (2)
As1—Eu2—Eu1v61.74 (3)Zn1ii—As3—Eu2ii64.95 (4)
As5ii—Eu2—Eu1v53.77 (3)Zn1i—As3—Eu2ii136.45 (6)
As5i—Eu2—Eu1v53.77 (3)Eu4—As3—Eu2ii135.58 (2)
Zn1—Eu2—Eu1v179.22 (4)Eu2i—As3—Eu2ii86.09 (4)
As3i—Eu2—Eu1v132.06 (2)Zn1ii—As3—Eu4i152.71 (6)
As3ii—Eu2—Eu1v132.06 (2)Zn1i—As3—Eu4i76.44 (4)
Zn2i—Eu2—Eu1v95.05 (3)Eu4—As3—Eu4i89.20 (3)
Zn2ii—Eu2—Eu1v95.05 (3)Eu2i—As3—Eu4i70.69 (2)
Eu4—Eu2—Eu1v117.19 (3)Eu2ii—As3—Eu4i125.51 (5)
As2—Eu2—Eu160.49 (3)Zn1ii—As3—Eu4ii76.44 (4)
As1—Eu2—Eu1122.65 (3)Zn1i—As3—Eu4ii152.71 (6)
As5ii—Eu2—Eu151.43 (2)Eu4—As3—Eu4ii89.20 (3)
As5i—Eu2—Eu151.43 (2)Eu2i—As3—Eu4ii125.51 (5)
Zn1—Eu2—Eu1118.31 (4)Eu2ii—As3—Eu4ii70.69 (2)
As3i—Eu2—Eu1125.51 (3)Eu4i—As3—Eu4ii83.79 (4)
As3ii—Eu2—Eu1125.51 (3)Zn1ii—As3—Eu559.56 (4)
Zn2i—Eu2—Eu148.59 (2)Zn1i—As3—Eu559.56 (4)
Zn2ii—Eu2—Eu148.59 (2)Eu4—As3—Eu575.93 (3)
Eu4—Eu2—Eu1178.10 (2)Eu2i—As3—Eu591.36 (3)
Eu1v—Eu2—Eu160.91 (3)Eu2ii—As3—Eu591.36 (3)
As2vi—Eu3—As1169.05 (4)Eu4i—As3—Eu5135.93 (2)
As2vi—Eu3—As6iv93.68 (3)Eu4ii—As3—Eu5135.93 (2)
As1—Eu3—As6iv94.47 (4)Zn2—As4—Zn3118.37 (7)
As2vi—Eu3—As6iii93.68 (3)Zn2—As4—Eu1i67.91 (4)
As1—Eu3—As6iii94.47 (4)Zn3—As4—Eu1i69.09 (4)
As6iv—Eu3—As6iii83.84 (4)Zn2—As4—Eu1ii67.91 (4)
As2vi—Eu3—As4vii82.40 (3)Zn3—As4—Eu1ii69.09 (4)
As1—Eu3—As4vii89.39 (4)Eu1i—As4—Eu1ii88.62 (4)
As6iv—Eu3—As4vii176.07 (4)Zn2—As4—Eu6xiii136.452 (19)
As6iii—Eu3—As4vii96.65 (3)Zn3—As4—Eu6xiii71.71 (4)
As2vi—Eu3—As4viii82.40 (3)Eu1i—As4—Eu6xiii140.75 (5)
As1—Eu3—As4viii89.39 (4)Eu1ii—As4—Eu6xiii79.23 (2)
As6iv—Eu3—As4viii96.65 (3)Zn2—As4—Eu6xiv136.452 (19)
As6iii—Eu3—As4viii176.07 (4)Zn3—As4—Eu6xiv71.71 (4)
As4vii—Eu3—As4viii82.59 (4)Eu1i—As4—Eu6xiv79.23 (2)
As2vi—Eu3—Zn2vii42.65 (3)Eu1ii—As4—Eu6xiv140.75 (5)
As1—Eu3—Zn2vii131.07 (3)Eu6xiii—As4—Eu6xiv86.96 (4)
As6iv—Eu3—Zn2vii133.76 (4)Zn2—As4—Eu3vii77.53 (4)
As6iii—Eu3—Zn2vii84.86 (3)Zn3—As4—Eu3vii137.37 (2)
As4vii—Eu3—Zn2vii42.58 (3)Eu1i—As4—Eu3vii144.88 (5)
As4viii—Eu3—Zn2vii92.03 (3)Eu1ii—As4—Eu3vii84.03 (2)
As2vi—Eu3—Zn2viii42.65 (3)Eu6xiii—As4—Eu3vii71.18 (3)
As1—Eu3—Zn2viii131.07 (3)Eu6xiv—As4—Eu3vii125.84 (5)
As6iv—Eu3—Zn2viii84.86 (3)Zn2—As4—Eu3viii77.53 (4)
As6iii—Eu3—Zn2viii133.76 (4)Zn3—As4—Eu3viii137.37 (2)
As4vii—Eu3—Zn2viii92.03 (3)Eu1i—As4—Eu3viii84.03 (2)
As4viii—Eu3—Zn2viii42.58 (3)Eu1ii—As4—Eu3viii144.88 (5)
Zn2vii—Eu3—Zn2viii71.56 (4)Eu6xiii—As4—Eu3viii125.84 (5)
As2vi—Eu3—Eu4136.26 (4)Eu6xiv—As4—Eu3viii71.18 (3)
As1—Eu3—Eu454.69 (3)Eu3vii—As4—Eu3viii82.59 (4)
As6iv—Eu3—Eu456.02 (2)As5xv—As5—Zn2111.14 (8)
As6iii—Eu3—Eu456.02 (2)As5xv—As5—Eu2ii134.67 (2)
As4vii—Eu3—Eu4127.36 (3)Zn2—As5—Eu2ii78.34 (4)
As4viii—Eu3—Eu4127.36 (3)As5xv—As5—Eu2i134.67 (2)
Zn2vii—Eu3—Eu4140.18 (2)Zn2—As5—Eu2i78.34 (4)
Zn2viii—Eu3—Eu4140.18 (2)Eu2ii—As5—Eu2i90.31 (4)
As2vi—Eu3—Eu6116.17 (3)As5xv—As5—Eu1xiv67.89 (4)
As1—Eu3—Eu652.87 (3)Zn2—As5—Eu1xiv136.08 (2)
As6iv—Eu3—Eu6129.57 (2)Eu2ii—As5—Eu1xiv135.55 (5)
As6iii—Eu3—Eu6129.57 (3)Eu2i—As5—Eu1xiv75.31 (3)
As4vii—Eu3—Eu652.74 (2)As5xv—As5—Eu1xiii67.89 (4)
As4viii—Eu3—Eu652.74 (2)Zn2—As5—Eu1xiii136.08 (2)
Zn2vii—Eu3—Eu690.98 (3)Eu2ii—As5—Eu1xiii75.31 (3)
Zn2viii—Eu3—Eu690.98 (3)Eu2i—As5—Eu1xiii135.55 (5)
Eu4—Eu3—Eu6107.57 (2)Eu1xiv—As5—Eu1xiii86.05 (4)
As2vi—Eu3—Eu1vi57.02 (3)As5xv—As5—Eu1ii66.79 (4)
As1—Eu3—Eu1vi112.03 (4)Zn2—As5—Eu1ii64.04 (4)
As6iv—Eu3—Eu1vi131.05 (2)Eu2ii—As5—Eu1ii80.29 (2)
As6iii—Eu3—Eu1vi131.05 (2)Eu2i—As5—Eu1ii142.30 (5)
As4vii—Eu3—Eu1vi46.18 (2)Eu1xiv—As5—Eu1ii134.68 (4)
As4viii—Eu3—Eu1vi46.18 (2)Eu1xiii—As5—Eu1ii77.25 (3)
Zn2vii—Eu3—Eu1vi46.56 (2)As5xv—As5—Eu1i66.79 (4)
Zn2viii—Eu3—Eu1vi46.56 (2)Zn2—As5—Eu1i64.04 (4)
Eu4—Eu3—Eu1vi166.72 (2)Eu2ii—As5—Eu1i142.30 (5)
Eu6—Eu3—Eu1vi59.155 (18)Eu2i—As5—Eu1i80.29 (2)
As2vi—Eu3—Eu3ix90.0Eu1xiv—As5—Eu1i77.25 (3)
As1—Eu3—Eu3ix90.0Eu1xiii—As5—Eu1i134.68 (4)
As6iv—Eu3—Eu3ix48.08 (2)Eu1ii—As5—Eu1i85.21 (4)
As6iii—Eu3—Eu3ix131.919 (19)Zn1xv—As6—Eu5xiv66.73 (4)
As4vii—Eu3—Eu3ix131.297 (19)Zn1xv—As6—Eu5xiii66.73 (4)
As4viii—Eu3—Eu3ix48.705 (19)Eu5xiv—As6—Eu5xiii86.72 (4)
Zn2vii—Eu3—Eu3ix125.780 (18)Zn1xv—As6—Eu3xiii134.69 (3)
Zn2viii—Eu3—Eu3ix54.221 (18)Eu5xiv—As6—Eu3xiii152.24 (5)
Eu4—Eu3—Eu3ix90.0Eu5xiii—As6—Eu3xiii88.14 (3)
Eu6—Eu3—Eu3ix90.001 (1)Zn1xv—As6—Eu3xiv134.69 (3)
Eu1vi—Eu3—Eu3ix90.0Eu5xiv—As6—Eu3xiv88.14 (3)
As3—Eu4—As1179.95 (4)Eu5xiii—As6—Eu3xiv152.24 (5)
As3—Eu4—As3i90.81 (3)Eu3xiii—As6—Eu3xiv83.84 (4)
As1—Eu4—As3i89.23 (3)Zn1xv—As6—Eu4xiv69.45 (4)
As3—Eu4—As3ii90.81 (3)Eu5xiv—As6—Eu4xiv79.41 (2)
As1—Eu4—As3ii89.23 (3)Eu5xiii—As6—Eu4xiv136.02 (5)
As3i—Eu4—As3ii83.79 (4)Eu3xiii—As6—Eu4xiv121.64 (4)
As3—Eu4—As6iii87.04 (3)Eu3xiv—As6—Eu4xiv69.23 (3)
As1—Eu4—As6iii92.92 (3)Zn1xv—As6—Eu4xiii69.45 (4)
As3i—Eu4—As6iii177.74 (4)Eu5xiv—As6—Eu4xiii136.02 (5)
As3ii—Eu4—As6iii96.93 (3)Eu5xiii—As6—Eu4xiii79.41 (2)
As3—Eu4—As6iv87.04 (3)Eu3xiii—As6—Eu4xiii69.23 (3)
As1—Eu4—As6iv92.92 (3)Eu3xiv—As6—Eu4xiii121.64 (4)
As3i—Eu4—As6iv96.93 (3)Eu4xiv—As6—Eu4xiii82.28 (4)
As3ii—Eu4—As6iv177.74 (4)Zn1xv—As6—Eu5x119.13 (6)
As6iii—Eu4—As6iv82.28 (4)Eu5xiv—As6—Eu5x70.08 (3)
As3—Eu4—Zn1i46.61 (3)Eu5xiii—As6—Eu5x70.08 (3)
As1—Eu4—Zn1i133.37 (3)Eu3xiii—As6—Eu5x82.52 (3)
As3i—Eu4—Zn1i80.44 (3)Eu3xiv—As6—Eu5x82.52 (3)
As3ii—Eu4—Zn1i133.75 (4)Eu4xiv—As6—Eu5x138.84 (2)
As6iii—Eu4—Zn1i97.56 (4)Eu4xiii—As6—Eu5x138.844 (19)
As6iv—Eu4—Zn1i44.49 (3)As6xv—Zn1—As3ii119.71 (4)
As3—Eu4—Zn1ii46.61 (3)As6xv—Zn1—As3i119.71 (4)
As1—Eu4—Zn1ii133.37 (3)As3ii—Zn1—As3i114.49 (8)
As3i—Eu4—Zn1ii133.75 (4)As6xv—Zn1—As2101.21 (7)
As3ii—Eu4—Zn1ii80.44 (3)As3ii—Zn1—As296.70 (5)
As6iii—Eu4—Zn1ii44.49 (3)As3i—Zn1—As296.70 (5)
As6iv—Eu4—Zn1ii97.56 (4)As6xv—Zn1—Eu2160.40 (7)
Zn1i—Eu4—Zn1ii79.91 (4)As3ii—Zn1—Eu266.80 (4)
As3—Eu4—Zn178.17 (4)As3i—Zn1—Eu266.80 (4)
As1—Eu4—Zn1101.88 (4)As2—Zn1—Eu259.19 (5)
As3i—Eu4—Zn143.49 (2)As6xv—Zn1—Eu5i66.21 (4)
As3ii—Eu4—Zn143.49 (2)As3ii—Zn1—Eu5i155.11 (7)
As6iii—Eu4—Zn1136.45 (2)As3i—Zn1—Eu5i75.93 (4)
As6iv—Eu4—Zn1136.45 (2)As2—Zn1—Eu5i58.81 (3)
Zn1i—Eu4—Zn1101.07 (4)Eu2—Zn1—Eu5i100.14 (4)
Zn1ii—Eu4—Zn1101.07 (4)As6xv—Zn1—Eu5ii66.21 (4)
As3—Eu4—Eu3126.04 (3)As3ii—Zn1—Eu5ii75.93 (4)
As1—Eu4—Eu353.92 (3)As3i—Zn1—Eu5ii155.11 (7)
As3i—Eu4—Eu3126.41 (3)As2—Zn1—Eu5ii58.81 (3)
As3ii—Eu4—Eu3126.41 (3)Eu2—Zn1—Eu5ii100.14 (4)
As6iii—Eu4—Eu354.74 (3)Eu5i—Zn1—Eu5ii86.29 (5)
As6iv—Eu4—Eu354.74 (3)As6xv—Zn1—Eu4i66.06 (4)
Zn1i—Eu4—Eu397.42 (3)As3ii—Zn1—Eu4i126.86 (7)
Zn1ii—Eu4—Eu397.42 (3)As3i—Zn1—Eu4i61.30 (4)
Zn1—Eu4—Eu3155.80 (3)As2—Zn1—Eu4i135.80 (3)
As3—Eu4—Eu2128.52 (4)Eu2—Zn1—Eu4i126.90 (4)
As1—Eu4—Eu251.53 (3)Eu5i—Zn1—Eu4i78.03 (3)
As3i—Eu4—Eu253.77 (2)Eu5ii—Zn1—Eu4i132.14 (5)
As3ii—Eu4—Eu253.77 (2)As6xv—Zn1—Eu4ii66.06 (4)
As6iii—Eu4—Eu2128.31 (3)As3ii—Zn1—Eu4ii61.30 (4)
As6iv—Eu4—Eu2128.31 (3)As3i—Zn1—Eu4ii126.86 (7)
Zn1i—Eu4—Eu2133.94 (3)As2—Zn1—Eu4ii135.80 (3)
Zn1ii—Eu4—Eu2133.94 (3)Eu2—Zn1—Eu4ii126.90 (4)
Zn1—Eu4—Eu250.35 (3)Eu5i—Zn1—Eu4ii132.14 (5)
Eu3—Eu4—Eu2105.44 (3)Eu5ii—Zn1—Eu4ii78.03 (3)
As3—Eu4—Eu557.03 (3)Eu4i—Zn1—Eu4ii79.91 (4)
As1—Eu4—Eu5122.92 (3)As6xv—Zn1—Eu4133.54 (7)
As3i—Eu4—Eu5129.20 (3)As3ii—Zn1—Eu460.08 (4)
As3ii—Eu4—Eu5129.20 (3)As3i—Zn1—Eu460.08 (4)
As6iii—Eu4—Eu548.82 (2)As2—Zn1—Eu4125.24 (6)
As6iv—Eu4—Eu548.82 (2)Eu2—Zn1—Eu466.06 (3)
Zn1i—Eu4—Eu548.77 (3)Eu5i—Zn1—Eu4135.94 (3)
Zn1ii—Eu4—Eu548.77 (3)Eu5ii—Zn1—Eu4135.94 (3)
Zn1—Eu4—Eu5135.20 (3)Eu4i—Zn1—Eu478.93 (4)
Eu3—Eu4—Eu569.01 (3)Eu4ii—Zn1—Eu478.93 (4)
Eu2—Eu4—Eu5174.45 (2)As2ii—Zn2—As2i117.66 (8)
As2i—Eu5—As2ii91.69 (4)As2ii—Zn2—As4109.99 (5)
As2i—Eu5—As6iii159.31 (4)As2i—Zn2—As4109.99 (5)
As2ii—Eu5—As6iii87.15 (3)As2ii—Zn2—As5105.73 (5)
As2i—Eu5—As6iv87.15 (3)As2i—Zn2—As5105.73 (5)
As2ii—Eu5—As6iv159.31 (4)As4—Zn2—As5107.07 (7)
As6iii—Eu5—As6iv86.72 (4)As2ii—Zn2—Eu1i163.56 (6)
As2i—Eu5—Zn1i57.36 (4)As2i—Zn2—Eu1i78.43 (3)
As2ii—Eu5—Zn1i116.22 (4)As4—Zn2—Eu1i64.00 (4)
As6iii—Eu5—Zn1i104.95 (4)As5—Zn2—Eu1i64.16 (4)
As6iv—Eu5—Zn1i47.06 (4)As2ii—Zn2—Eu1ii78.43 (3)
As2i—Eu5—Zn1ii116.22 (4)As2i—Zn2—Eu1ii163.56 (6)
As2ii—Eu5—Zn1ii57.36 (4)As4—Zn2—Eu1ii64.00 (4)
As6iii—Eu5—Zn1ii47.06 (4)As5—Zn2—Eu1ii64.16 (4)
As6iv—Eu5—Zn1ii104.95 (4)Eu1i—Zn2—Eu1ii85.31 (4)
Zn1i—Eu5—Zn1ii86.29 (5)As2ii—Zn2—Eu559.05 (4)
As2i—Eu5—Zn245.98 (2)As2i—Zn2—Eu559.05 (4)
As2ii—Eu5—Zn245.98 (2)As4—Zn2—Eu5124.90 (7)
As6iii—Eu5—Zn2131.21 (3)As5—Zn2—Eu5128.03 (6)
As6iv—Eu5—Zn2131.21 (3)Eu1i—Zn2—Eu5137.32 (2)
Zn1i—Eu5—Zn288.91 (4)Eu1ii—Zn2—Eu5137.32 (2)
Zn1ii—Eu5—Zn288.91 (4)As2ii—Zn2—Eu2i114.49 (6)
As2i—Eu5—As6x90.74 (3)As2i—Zn2—Eu2i54.02 (4)
As2ii—Eu5—As6x90.74 (3)As4—Zn2—Eu2i134.91 (4)
As6iii—Eu5—As6x109.93 (3)As5—Zn2—Eu2i53.97 (3)
As6iv—Eu5—As6x109.93 (3)Eu1i—Zn2—Eu2i71.18 (3)
Zn1i—Eu5—As6x136.67 (2)Eu1ii—Zn2—Eu2i118.09 (5)
Zn1ii—Eu5—As6x136.67 (2)Eu5—Zn2—Eu2i85.58 (3)
Zn2—Eu5—As6x87.06 (4)As2ii—Zn2—Eu2ii54.02 (4)
As2i—Eu5—As377.76 (3)As2i—Zn2—Eu2ii114.49 (6)
As2ii—Eu5—As377.76 (3)As4—Zn2—Eu2ii134.91 (4)
As6iii—Eu5—As381.81 (3)As5—Zn2—Eu2ii53.97 (3)
As6iv—Eu5—As381.81 (3)Eu1i—Zn2—Eu2ii118.09 (5)
Zn1i—Eu5—As344.51 (2)Eu1ii—Zn2—Eu2ii71.18 (3)
Zn1ii—Eu5—As344.51 (2)Eu5—Zn2—Eu2ii85.58 (3)
Zn2—Eu5—As376.28 (4)Eu2i—Zn2—Eu2ii71.68 (4)
As6x—Eu5—As3163.35 (4)As2ii—Zn2—Eu3vii54.79 (4)
As2i—Eu5—Eu5vii142.36 (4)As2i—Zn2—Eu3vii115.09 (6)
As2ii—Eu5—Eu5vii88.30 (3)As4—Zn2—Eu3vii59.89 (4)
As6iii—Eu5—Eu5vii58.29 (3)As5—Zn2—Eu3vii139.18 (3)
As6iv—Eu5—Eu5vii105.11 (4)Eu1i—Zn2—Eu3vii123.56 (5)
Zn1i—Eu5—Eu5vii150.85 (4)Eu1ii—Zn2—Eu3vii76.14 (3)
Zn1ii—Eu5—Eu5vii95.17 (3)Eu5—Zn2—Eu3vii76.36 (3)
Zn2—Eu5—Eu5vii120.20 (3)Eu2i—Zn2—Eu3vii161.91 (5)
As6x—Eu5—Eu5vii51.63 (3)Eu2ii—Zn2—Eu3vii105.42 (2)
As3—Eu5—Eu5vii138.43 (2)As2ii—Zn2—Eu3viii115.09 (6)
As2i—Eu5—Eu5viii88.30 (3)As2i—Zn2—Eu3viii54.79 (4)
As2ii—Eu5—Eu5viii142.36 (4)As4—Zn2—Eu3viii59.89 (4)
As6iii—Eu5—Eu5viii105.11 (4)As5—Zn2—Eu3viii139.18 (3)
As6iv—Eu5—Eu5viii58.29 (3)Eu1i—Zn2—Eu3viii76.14 (3)
Zn1i—Eu5—Eu5viii95.17 (3)Eu1ii—Zn2—Eu3viii123.56 (5)
Zn1ii—Eu5—Eu5viii150.85 (4)Eu5—Zn2—Eu3viii76.36 (3)
Zn2—Eu5—Eu5viii120.20 (3)Eu2i—Zn2—Eu3viii105.42 (2)
As6x—Eu5—Eu5viii51.63 (3)Eu2ii—Zn2—Eu3viii161.91 (5)
As3—Eu5—Eu5viii138.43 (2)Eu3vii—Zn2—Eu3viii71.56 (4)
Eu5vii—Eu5—Eu5viii69.86 (3)As1xiv—Zn3—As1xiii123.84 (9)
As2i—Eu5—Eu4109.95 (3)As1xiv—Zn3—As4114.73 (5)
As2ii—Eu5—Eu4109.95 (3)As1xiii—Zn3—As4114.73 (5)
As6iii—Eu5—Eu451.77 (2)As1xiv—Zn3—Eu1ii154.86 (7)
As6iv—Eu5—Eu451.77 (2)As1xiii—Zn3—Eu1ii75.26 (4)
Zn1i—Eu5—Eu453.21 (3)As4—Zn3—Eu1ii61.51 (4)
Zn1ii—Eu5—Eu453.21 (3)As1xiv—Zn3—Eu1i75.26 (4)
Zn2—Eu5—Eu4123.33 (4)As1xiii—Zn3—Eu1i154.86 (7)
As6x—Eu5—Eu4149.61 (3)As4—Zn3—Eu1i61.51 (4)
As3—Eu5—Eu447.04 (3)Eu1ii—Zn3—Eu1i82.18 (4)
Eu5vii—Eu5—Eu4105.33 (3)As1xiv—Zn3—Eu6xiii129.29 (7)
Eu5viii—Eu5—Eu4105.33 (3)As1xiii—Zn3—Eu6xiii61.33 (4)
As1xi—Eu6—As1180.0As4—Zn3—Eu6xiii60.50 (3)
As1xi—Eu6—As4vii87.28 (3)Eu1ii—Zn3—Eu6xiii72.57 (3)
As1—Eu6—As4vii92.72 (3)Eu1i—Zn3—Eu6xiii121.98 (5)
As1xi—Eu6—As4iv92.72 (3)As1xiv—Zn3—Eu6xiv61.33 (4)
As1—Eu6—As4iv87.28 (3)As1xiii—Zn3—Eu6xiv129.29 (7)
As4vii—Eu6—As4iv180.00 (5)As4—Zn3—Eu6xiv60.50 (3)
As1xi—Eu6—As4viii87.28 (3)Eu1ii—Zn3—Eu6xiv121.98 (5)
As1—Eu6—As4viii92.72 (3)Eu1i—Zn3—Eu6xiv72.57 (3)
As4vii—Eu6—As4viii86.96 (4)Eu6xiii—Zn3—Eu6xiv78.21 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z+1; (iii) x1/2, y1/2, z; (iv) x1/2, y+1/2, z; (v) x, y, z+1; (vi) x, y, z1; (vii) x+1/2, y1/2, z; (viii) x+1/2, y+1/2, z; (ix) x, y+1, z; (x) x+1, y, z; (xi) x, y, z; (xii) x, y, z+1; (xiii) x+1/2, y1/2, z; (xiv) x+1/2, y+1/2, z; (xv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaEu11Zn6As12
Mr2962.82
Crystal system, space groupMonoclinic, C2/m
Temperature (K)200
a, b, c (Å)30.310 (8), 4.3318 (11), 11.774 (3)
β (°) 109.746 (4)
V3)1455.0 (7)
Z2
Radiation typeMo Kα
µ (mm1)41.68
Crystal size (mm)0.07 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.161, 0.256
No. of measured, independent and
observed [I > 2σ(I)] reflections
7178, 1796, 1498
Rint0.042
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.062, 1.01
No. of reflections1796
No. of parameters90
w = 1/[σ2(Fo2) + (0.0242P)2 + 16.9522P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.70, 1.74

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was funded by the University of Delaware and the Petroleum Research Fund (ACS-PRF).

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPark, S.-M. & Kim, S.-J. (2004). J. Solid State Chem. 177, 3418–3422.  Web of Science CrossRef CAS Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, NY: Cornell University Press.  Google Scholar
First citationRotter, M., Tegel, M. & Johrendt, D. (2008). Phys. Rev. Lett. 101, 107006.  Web of Science CrossRef PubMed Google Scholar
First citationSaparov, B., Bobev, S., Ozbay, A. & Nowak, E. R. (2008a). J. Solid State Chem. 181, 2690–2696.  Web of Science CrossRef CAS Google Scholar
First citationSaparov, B., He, H., Zhang, H., Greene, R. & Bobev, S. (2010). Dalton Trans. pp. 1063–1070.  Web of Science CSD CrossRef Google Scholar
First citationSaparov, B., Xia, S.-Q. & Bobev, S. (2008b). Inorg. Chem. 47, 11237–11244.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSnyder, G. J. & Toberer, E. S. (2008). Nat. Mater. 7, 105–114.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, S.-Q. & Bobev, S. (2007a). J. Am. Chem. Soc. 129, 4049–4057.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, S.-Q. & Bobev, S. (2007b). J. Am. Chem. Soc. 129, 10011–10018.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, S.-Q. & Bobev, S. (2008a). Inorg. Chem. 47, 1919–1921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, S.-Q. & Bobev, S. (2008b). J. Comput. Chem. 29, 2125–2133.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds