organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o513-o514

2-Amino-3-ammonio­pyridinium dichloride

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 26 January 2010; accepted 29 January 2010; online 3 February 2010)

The asymmetric unit of the title compound, C5H9N32+·2Cl, contains two diprotonated 2,3-diamino­pyridine cations and four chloride anions. In the crystal structure, the anions and cations are connected by inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds, forming a three-dimensional network. The crystal structure is further stabilized by ππ inter­actions between pyridinium rings [centroid–centroid distance = 3.695 (1) Å].

Related literature

For background to the chemistry of substituted pyridines and chloride anions, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]); Abu Zuhri & Cox (1989[Abu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta, 11, 277-283]); De Cires-Mejias et al. (2004[De Cires-Mejias, C., Tanase, S., Reedijk, J., Gonzalez-Vilchez, F., Vilaplana, R., Mills, A. M., Kooijman, H. & Spek, A. L. (2004). Inorg. Chim. Acta, 357, 1494-1498.]); Sessler et al. (2003[Sessler, J.-L., Camiolo, S. & Gale, P.-A. (2003). Coord. Chem. Rev. 240, 17-55.]). For related structures, see: Fun & Balasubramani (2009[Fun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1496-o1497.]); Balasubramani & Fun (2009a[Balasubramani, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1511-o1512.],b[Balasubramani, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o1519.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H9N32+·2Cl

  • Mr = 182.05

  • Monoclinic, P 21 /c

  • a = 10.9770 (2) Å

  • b = 12.5175 (2) Å

  • c = 11.6520 (2) Å

  • β = 98.979 (1)°

  • V = 1581.42 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 100 K

  • 0.34 × 0.32 × 0.13 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.787, Tmax = 0.907

  • 22610 measured reflections

  • 5736 independent reflections

  • 4042 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.109

  • S = 1.03

  • 5736 reflections

  • 253 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯Cl2i 0.84 (2) 2.26 (2) 3.081 (2) 164.4 (18)
N1—H2N1⋯Cl1ii 0.87 (2) 2.27 (2) 3.114 (1) 167 (2)
N1—H3N1⋯Cl4iii 0.89 (2) 2.47 (2) 3.223 (2) 143.2 (18)
N2—H1N2⋯Cl1iv 0.90 (2) 2.32 (2) 3.219 (2) 177.6 (16)
N2—H2N2⋯Cl2v 0.79 (2) 2.59 (2) 3.242 (2) 142 (2)
N3—H1N3⋯Cl2 0.82 (2) 2.26 (2) 3.060 (2) 166 (2)
N4—H1N4⋯Cl3vi 0.91 (2) 2.17 (2) 3.049 (2) 163.2 (17)
N4—H2N4⋯Cl4 0.93 (2) 2.77 (2) 3.454 (2) 131.5 (17)
N4—H2N4⋯Cl1vi 0.93 (2) 2.51 (2) 3.148 (2) 126.4 (18)
N4—H3N4⋯Cl4vii 0.83 (2) 2.30 (2) 3.128 (2) 175 (2)
N5—H1N5⋯Cl4 0.91 (2) 2.29 (2) 3.193 (2) 172.0 (18)
N5—H2N5⋯Cl1viii 0.84 (2) 2.77 (2) 3.340 (2) 126.6 (17)
N6—H1N6⋯Cl3 0.89 (2) 2.22 (2) 3.057 (1) 156.6 (19)
C7—H7A⋯Cl4ix 0.99 (2) 2.745 (19) 3.459 (2) 129.4 (14)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1; (iii) x, y-1, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+2, -y, -z+2; (vi) -x+1, -y+1, -z+1; (vii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (viii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ix) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). In particular, diaminopyridines play an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). The coordination chemistry of anions is a fast-growing area of supramolecular chemistry. Moreover, Cl anions have been successfully used to assemble double-helical motifs of various molecules containing aromatic groups, with stacking within the helices (Sessler et al., 2003). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2,3-diaminopyridinium 4-hydroxybenzoate (Fun & Balasubramani, 2009), 2,3-diaminopyridinium 4-nitrobenzoate (Balasubramani & Fun, 2009a) and 2,3-diaminopyridinium benzoate (Balasubramani & Fun, 2009b) have recently been reported by us. In the hope of studying some interesting hydrogen-bonding interactions, the title compound was synthesized. Its molecular and crystal structure is presented here.

The asymmetric unit of the title compound (Fig. 1) consists of two diprotonated 2,3-diaminopyridine cations and four chloride anions. In the 2,3-diaminopyridinium cations, protonation at atoms N3 and N6 has led to slight increases in the C1—N3—C5 and C6—N6—C10 angles to 123.65 (14)° and 123.92 (14)°, respectively, compared to those of an unprotonated structure (De Cires-Mejias et al., 2004). The bond lengths (Allen et al., 1987) and angles are normal .

In the crystal structure (Fig. 2), the anions and cations are connected by intermolecular N—H···Cl and C—H···Cl hydrogen bonds, forming a three-dimensional network. The crystal structure is further stabilized by π···π interactions between the pyridinium rings (N3/C1–C5) [centroid-to-centroid (2-x, -y, 1-z) distance = 3.695 (1) Å].

Related literature top

For background to the chemistry of substituted pyridines and chloride anions, see: Pozharski et al. (1997); Katritzky et al. (1996); Abu Zuhri & Cox (1989); De Cires-Mejias et al. (2004); Sessler et al. (2003). For related structures, see: Fun & Balasubramani (2009); Balasubramani & Fun (2009a,b). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a hot methanol solution (20 ml) of 2,3-diaminopyridine (27 mg, Aldrich) was added a few drops of hydrochloric acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

Refinement top

All the H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.82 (2) - 0.93 (3) Å, C—H = 0.93 (2) - 1.00 (2) Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) networks.
2-Amino-3-ammoniopyridinium dichloride top
Crystal data top
C5H9N32+·2ClF(000) = 752
Mr = 182.05Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4939 reflections
a = 10.9770 (2) Åθ = 2.4–31.0°
b = 12.5175 (2) ŵ = 0.75 mm1
c = 11.6520 (2) ÅT = 100 K
β = 98.979 (1)°Block, brown
V = 1581.42 (5) Å30.34 × 0.32 × 0.13 mm
Z = 8
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5736 independent reflections
Radiation source: fine-focus sealed tube4042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 32.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1615
Tmin = 0.787, Tmax = 0.907k = 1818
22610 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.1879P]
where P = (Fo2 + 2Fc2)/3
5736 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C5H9N32+·2ClV = 1581.42 (5) Å3
Mr = 182.05Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.9770 (2) ŵ = 0.75 mm1
b = 12.5175 (2) ÅT = 100 K
c = 11.6520 (2) Å0.34 × 0.32 × 0.13 mm
β = 98.979 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5736 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4042 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.907Rint = 0.035
22610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.44 e Å3
5736 reflectionsΔρmin = 0.22 e Å3
253 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28885 (4)0.19696 (4)0.71503 (3)0.03796 (11)
Cl21.04311 (4)0.14551 (4)0.94363 (3)0.03993 (12)
Cl30.78343 (4)0.38414 (4)0.69663 (3)0.04112 (12)
Cl40.47897 (4)0.81032 (4)0.52864 (3)0.04069 (12)
N10.77439 (14)0.16705 (12)0.55300 (12)0.0311 (3)
N20.89490 (15)0.10343 (15)0.77888 (13)0.0415 (4)
N30.94910 (13)0.05666 (13)0.70138 (12)0.0364 (3)
C10.94453 (17)0.13025 (16)0.61525 (17)0.0413 (4)
C20.88294 (17)0.10955 (15)0.50822 (16)0.0408 (4)
C30.82455 (15)0.01104 (14)0.48808 (13)0.0323 (3)
C40.82915 (13)0.06214 (12)0.57545 (12)0.0255 (3)
C50.89151 (13)0.03864 (13)0.68821 (12)0.0279 (3)
N40.49075 (14)0.64395 (13)0.29409 (13)0.0327 (3)
N50.62585 (16)0.59088 (15)0.52171 (13)0.0409 (4)
N60.70640 (13)0.44374 (12)0.44118 (12)0.0345 (3)
C60.71801 (16)0.37487 (15)0.35421 (16)0.0384 (4)
C70.65521 (16)0.39087 (15)0.24616 (15)0.0366 (4)
C80.57784 (15)0.48000 (14)0.22721 (13)0.0315 (3)
C90.56779 (13)0.54973 (13)0.31554 (12)0.0269 (3)
C100.63317 (13)0.53062 (13)0.42861 (12)0.0276 (3)
H1A0.9841 (18)0.1899 (18)0.6438 (18)0.054 (6)*
H2A0.8819 (18)0.1582 (18)0.4467 (18)0.051 (6)*
H3A0.7863 (16)0.0052 (15)0.4205 (15)0.032 (5)*
H6A0.7766 (17)0.3164 (17)0.3824 (17)0.051 (6)*
H7A0.6660 (17)0.3404 (17)0.1831 (16)0.045 (5)*
H8A0.5334 (16)0.4917 (14)0.1540 (14)0.031 (4)*
H1N10.8271 (19)0.2160 (18)0.5682 (17)0.048 (6)*
H2N10.744 (2)0.1729 (19)0.480 (2)0.063 (7)*
H3N10.705 (2)0.1742 (19)0.5822 (19)0.063 (7)*
H1N20.845 (2)0.160 (2)0.779 (2)0.058 (7)*
H2N20.9324 (19)0.0897 (18)0.8401 (18)0.051 (6)*
H1N30.9858 (19)0.0747 (18)0.7650 (18)0.051 (6)*
H1N40.414 (2)0.6363 (17)0.3130 (17)0.053 (6)*
H2N40.531 (2)0.700 (2)0.336 (2)0.080 (8)*
H3N40.4843 (19)0.6587 (18)0.224 (2)0.055 (6)*
H1N50.578 (2)0.650 (2)0.5188 (19)0.057 (7)*
H2N50.6724 (18)0.5757 (16)0.5834 (17)0.042 (5)*
H1N60.7491 (19)0.4214 (18)0.5080 (19)0.055 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0468 (2)0.0417 (3)0.02393 (17)0.00571 (18)0.00127 (15)0.00426 (15)
Cl20.0490 (2)0.0429 (3)0.02580 (18)0.00792 (19)0.00072 (16)0.00412 (16)
Cl30.0343 (2)0.0577 (3)0.02968 (19)0.00126 (19)0.00008 (15)0.00466 (17)
Cl40.0431 (2)0.0488 (3)0.02839 (19)0.0020 (2)0.00015 (15)0.00488 (17)
N10.0352 (7)0.0293 (8)0.0280 (7)0.0041 (6)0.0027 (6)0.0052 (5)
N20.0442 (8)0.0546 (11)0.0233 (7)0.0027 (8)0.0026 (6)0.0061 (6)
N30.0359 (7)0.0422 (9)0.0292 (7)0.0067 (6)0.0008 (6)0.0108 (6)
C10.0418 (10)0.0318 (10)0.0498 (10)0.0081 (8)0.0052 (8)0.0057 (8)
C20.0479 (10)0.0317 (10)0.0419 (9)0.0011 (8)0.0043 (8)0.0066 (7)
C30.0362 (8)0.0341 (9)0.0243 (7)0.0026 (7)0.0023 (6)0.0007 (6)
C40.0270 (7)0.0254 (8)0.0235 (6)0.0011 (6)0.0026 (5)0.0035 (5)
C50.0255 (7)0.0347 (9)0.0230 (6)0.0019 (6)0.0027 (5)0.0032 (6)
N40.0298 (7)0.0355 (8)0.0310 (7)0.0013 (6)0.0010 (6)0.0030 (6)
N50.0486 (9)0.0462 (10)0.0264 (7)0.0019 (8)0.0008 (6)0.0056 (6)
N60.0358 (7)0.0369 (8)0.0282 (6)0.0015 (6)0.0027 (5)0.0064 (6)
C60.0371 (9)0.0325 (10)0.0448 (9)0.0042 (8)0.0043 (7)0.0038 (7)
C70.0433 (9)0.0323 (10)0.0347 (8)0.0041 (8)0.0079 (7)0.0036 (7)
C80.0343 (8)0.0340 (9)0.0250 (7)0.0056 (7)0.0007 (6)0.0004 (6)
C90.0255 (7)0.0286 (8)0.0256 (6)0.0034 (6)0.0012 (5)0.0041 (6)
C100.0276 (7)0.0302 (8)0.0242 (6)0.0045 (6)0.0021 (5)0.0021 (6)
Geometric parameters (Å, º) top
N1—C41.451 (2)N4—C91.450 (2)
N1—H1N10.84 (2)N4—H1N40.91 (2)
N1—H2N10.87 (2)N4—H2N40.93 (3)
N1—H3N10.89 (2)N4—H3N40.83 (2)
N2—C51.328 (2)N5—C101.334 (2)
N2—H1N20.89 (2)N5—H1N50.90 (2)
N2—H2N20.78 (2)N5—H2N50.84 (2)
N3—C51.348 (2)N6—C101.347 (2)
N3—C11.357 (2)N6—C61.351 (2)
N3—H1N30.82 (2)N6—H1N60.89 (2)
C1—C21.348 (3)C6—C71.353 (2)
C1—H1A0.90 (2)C6—H6A1.00 (2)
C2—C31.393 (3)C7—C81.399 (2)
C2—H2A0.94 (2)C7—H7A0.99 (2)
C3—C41.365 (2)C8—C91.367 (2)
C3—H3A0.857 (17)C8—H8A0.926 (16)
C4—C51.4145 (19)C9—C101.4188 (19)
C4—N1—H1N1111.6 (14)C9—N4—H1N4114.2 (14)
C4—N1—H2N1109.7 (16)C9—N4—H2N4108.0 (15)
H1N1—N1—H2N1106.9 (19)H1N4—N4—H2N4110 (2)
C4—N1—H3N1112.3 (16)C9—N4—H3N4107.9 (15)
H1N1—N1—H3N1117 (2)H1N4—N4—H3N4108.9 (18)
H2N1—N1—H3N198.5 (19)H2N4—N4—H3N4108 (2)
C5—N2—H1N2122.6 (15)C10—N5—H1N5122.7 (14)
C5—N2—H2N2122.3 (16)C10—N5—H2N5117.7 (14)
H1N2—N2—H2N2114 (2)H1N5—N5—H2N5119 (2)
C5—N3—C1123.65 (14)C10—N6—C6123.92 (14)
C5—N3—H1N3120.3 (16)C10—N6—H1N6125.0 (14)
C1—N3—H1N3116.0 (16)C6—N6—H1N6110.9 (14)
C2—C1—N3120.59 (17)N6—C6—C7120.63 (17)
C2—C1—H1A130.1 (14)N6—C6—H6A110.7 (12)
N3—C1—H1A109.2 (14)C7—C6—H6A128.7 (12)
C1—C2—C3118.52 (17)C6—C7—C8118.28 (16)
C1—C2—H2A121.7 (13)C6—C7—H7A119.6 (11)
C3—C2—H2A119.7 (13)C8—C7—H7A122.1 (11)
C4—C3—C2120.41 (15)C9—C8—C7120.58 (14)
C4—C3—H3A118.8 (13)C9—C8—H8A120.0 (11)
C2—C3—H3A120.8 (13)C7—C8—H8A119.4 (11)
C3—C4—C5120.64 (14)C8—C9—C10120.20 (15)
C3—C4—N1120.47 (13)C8—C9—N4120.20 (13)
C5—C4—N1118.84 (13)C10—C9—N4119.61 (14)
N2—C5—N3119.72 (15)N5—C10—N6118.62 (15)
N2—C5—C4124.16 (16)N5—C10—C9125.02 (16)
N3—C5—C4116.12 (14)N6—C10—C9116.36 (14)
C5—N3—C1—C21.9 (3)C10—N6—C6—C70.6 (3)
N3—C1—C2—C30.2 (3)N6—C6—C7—C80.3 (3)
C1—C2—C3—C40.5 (3)C6—C7—C8—C91.0 (2)
C2—C3—C4—C51.0 (2)C7—C8—C9—C101.9 (2)
C2—C3—C4—N1176.49 (16)C7—C8—C9—N4177.80 (15)
C1—N3—C5—N2176.12 (17)C6—N6—C10—N5177.71 (16)
C1—N3—C5—C43.3 (2)C6—N6—C10—C91.4 (2)
C3—C4—C5—N2176.56 (16)C8—C9—C10—N5177.02 (15)
N1—C4—C5—N25.9 (2)N4—C9—C10—N53.3 (2)
C3—C4—C5—N32.8 (2)C8—C9—C10—N62.0 (2)
N1—C4—C5—N3174.72 (14)N4—C9—C10—N6177.64 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl2i0.84 (2)2.26 (2)3.081 (2)164.4 (18)
N1—H2N1···Cl1ii0.87 (2)2.27 (2)3.114 (1)167 (2)
N1—H3N1···Cl4iii0.89 (2)2.47 (2)3.223 (2)143.2 (18)
N2—H1N2···Cl1iv0.90 (2)2.32 (2)3.219 (2)177.6 (16)
N2—H2N2···Cl2v0.79 (2)2.59 (2)3.242 (2)142 (2)
N3—H1N3···Cl20.82 (2)2.26 (2)3.060 (2)166 (2)
N4—H1N4···Cl3vi0.91 (2)2.17 (2)3.049 (2)163.2 (17)
N4—H2N4···Cl40.93 (2)2.77 (2)3.454 (2)131.5 (17)
N4—H2N4···Cl1vi0.93 (2)2.51 (2)3.148 (2)126.4 (18)
N4—H3N4···Cl4vii0.83 (2)2.30 (2)3.128 (2)175 (2)
N5—H1N5···Cl40.91 (2)2.29 (2)3.193 (2)172.0 (18)
N5—H2N5···Cl1viii0.84 (2)2.77 (2)3.340 (2)126.6 (17)
N6—H1N6···Cl30.89 (2)2.22 (2)3.057 (1)156.6 (19)
C7—H7A···Cl4ix0.99 (2)2.745 (19)3.459 (2)129.4 (14)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x+1, y1/2, z+3/2; (v) x+2, y, z+2; (vi) x+1, y+1, z+1; (vii) x, y+3/2, z1/2; (viii) x+1, y+1/2, z+3/2; (ix) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H9N32+·2Cl
Mr182.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.9770 (2), 12.5175 (2), 11.6520 (2)
β (°) 98.979 (1)
V3)1581.42 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.34 × 0.32 × 0.13
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.787, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
22610, 5736, 4042
Rint0.035
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.109, 1.03
No. of reflections5736
No. of parameters253
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl2i0.84 (2)2.26 (2)3.081 (2)164.4 (18)
N1—H2N1···Cl1ii0.87 (2)2.27 (2)3.114 (1)167 (2)
N1—H3N1···Cl4iii0.89 (2)2.47 (2)3.223 (2)143.2 (18)
N2—H1N2···Cl1iv0.90 (2)2.32 (2)3.219 (2)177.6 (16)
N2—H2N2···Cl2v0.79 (2)2.59 (2)3.242 (2)142 (2)
N3—H1N3···Cl20.82 (2)2.26 (2)3.060 (2)166 (2)
N4—H1N4···Cl3vi0.91 (2)2.17 (2)3.049 (2)163.2 (17)
N4—H2N4···Cl40.93 (2)2.77 (2)3.454 (2)131.5 (17)
N4—H2N4···Cl1vi0.93 (2)2.51 (2)3.148 (2)126.4 (18)
N4—H3N4···Cl4vii0.83 (2)2.30 (2)3.128 (2)175 (2)
N5—H1N5···Cl40.91 (2)2.29 (2)3.193 (2)172.0 (18)
N5—H2N5···Cl1viii0.84 (2)2.77 (2)3.340 (2)126.6 (17)
N6—H1N6···Cl30.89 (2)2.22 (2)3.057 (1)156.6 (19)
C7—H7A···Cl4ix0.99 (2)2.745 (19)3.459 (2)129.4 (14)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x+1, y1/2, z+3/2; (v) x+2, y, z+2; (vi) x+1, y+1, z+1; (vii) x, y+3/2, z1/2; (viii) x+1, y+1/2, z+3/2; (ix) x+1, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAbu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta, 11, 277–283  CrossRef Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBalasubramani, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1511–o1512.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBalasubramani, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o1519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDe Cires-Mejias, C., Tanase, S., Reedijk, J., Gonzalez-Vilchez, F., Vilaplana, R., Mills, A. M., Kooijman, H. & Spek, A. L. (2004). Inorg. Chim. Acta, 357, 1494–1498.  Web of Science CSD CrossRef CAS Google Scholar
First citationFun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1496–o1497.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSessler, J.-L., Camiolo, S. & Gale, P.-A. (2003). Coord. Chem. Rev. 240, 17-55.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o513-o514
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds