organic compounds
2-Amino-3-ammoniopyridinium dichloride
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
The 5H9N32+·2Cl−, contains two diprotonated 2,3-diaminopyridine cations and four chloride anions. In the the anions and cations are connected by intermolecular N—H⋯Cl and C—H⋯Cl hydrogen bonds, forming a three-dimensional network. The is further stabilized by π–π interactions between pyridinium rings [centroid–centroid distance = 3.695 (1) Å].
of the title compound, CRelated literature
For background to the chemistry of substituted pyridines and chloride anions, see: Pozharski et al. (1997); Katritzky et al. (1996); Abu Zuhri & Cox (1989); De Cires-Mejias et al. (2004); Sessler et al. (2003). For related structures, see: Fun & Balasubramani (2009); Balasubramani & Fun (2009a,b). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810003624/wn2374sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810003624/wn2374Isup2.hkl
To a hot methanol solution (20 ml) of 2,3-diaminopyridine (27 mg, Aldrich) was added a few drops of hydrochloric acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared from the mother liquor after a few days.
All the H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.82 (2) - 0.93 (3) Å, C—H = 0.93 (2) - 1.00 (2) Å].
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. | |
Fig. 2. The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) networks. |
C5H9N32+·2Cl− | F(000) = 752 |
Mr = 182.05 | Dx = 1.529 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4939 reflections |
a = 10.9770 (2) Å | θ = 2.4–31.0° |
b = 12.5175 (2) Å | µ = 0.75 mm−1 |
c = 11.6520 (2) Å | T = 100 K |
β = 98.979 (1)° | Block, brown |
V = 1581.42 (5) Å3 | 0.34 × 0.32 × 0.13 mm |
Z = 8 |
Bruker APEX DUO CCD area-detector diffractometer | 5736 independent reflections |
Radiation source: fine-focus sealed tube | 4042 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ϕ and ω scans | θmax = 32.6°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −16→15 |
Tmin = 0.787, Tmax = 0.907 | k = −18→18 |
22610 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0489P)2 + 0.1879P] where P = (Fo2 + 2Fc2)/3 |
5736 reflections | (Δ/σ)max = 0.001 |
253 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C5H9N32+·2Cl− | V = 1581.42 (5) Å3 |
Mr = 182.05 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.9770 (2) Å | µ = 0.75 mm−1 |
b = 12.5175 (2) Å | T = 100 K |
c = 11.6520 (2) Å | 0.34 × 0.32 × 0.13 mm |
β = 98.979 (1)° |
Bruker APEX DUO CCD area-detector diffractometer | 5736 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4042 reflections with I > 2σ(I) |
Tmin = 0.787, Tmax = 0.907 | Rint = 0.035 |
22610 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.109 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.44 e Å−3 |
5736 reflections | Δρmin = −0.22 e Å−3 |
253 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.28885 (4) | 0.19696 (4) | 0.71503 (3) | 0.03796 (11) | |
Cl2 | 1.04311 (4) | 0.14551 (4) | 0.94363 (3) | 0.03993 (12) | |
Cl3 | 0.78343 (4) | 0.38414 (4) | 0.69663 (3) | 0.04112 (12) | |
Cl4 | 0.47897 (4) | 0.81032 (4) | 0.52864 (3) | 0.04069 (12) | |
N1 | 0.77439 (14) | −0.16705 (12) | 0.55300 (12) | 0.0311 (3) | |
N2 | 0.89490 (15) | −0.10343 (15) | 0.77888 (13) | 0.0415 (4) | |
N3 | 0.94910 (13) | 0.05666 (13) | 0.70138 (12) | 0.0364 (3) | |
C1 | 0.94453 (17) | 0.13025 (16) | 0.61525 (17) | 0.0413 (4) | |
C2 | 0.88294 (17) | 0.10955 (15) | 0.50822 (16) | 0.0408 (4) | |
C3 | 0.82455 (15) | 0.01104 (14) | 0.48808 (13) | 0.0323 (3) | |
C4 | 0.82915 (13) | −0.06214 (12) | 0.57545 (12) | 0.0255 (3) | |
C5 | 0.89151 (13) | −0.03864 (13) | 0.68821 (12) | 0.0279 (3) | |
N4 | 0.49075 (14) | 0.64395 (13) | 0.29409 (13) | 0.0327 (3) | |
N5 | 0.62585 (16) | 0.59088 (15) | 0.52171 (13) | 0.0409 (4) | |
N6 | 0.70640 (13) | 0.44374 (12) | 0.44118 (12) | 0.0345 (3) | |
C6 | 0.71801 (16) | 0.37487 (15) | 0.35421 (16) | 0.0384 (4) | |
C7 | 0.65521 (16) | 0.39087 (15) | 0.24616 (15) | 0.0366 (4) | |
C8 | 0.57784 (15) | 0.48000 (14) | 0.22721 (13) | 0.0315 (3) | |
C9 | 0.56779 (13) | 0.54973 (13) | 0.31554 (12) | 0.0269 (3) | |
C10 | 0.63317 (13) | 0.53062 (13) | 0.42861 (12) | 0.0276 (3) | |
H1A | 0.9841 (18) | 0.1899 (18) | 0.6438 (18) | 0.054 (6)* | |
H2A | 0.8819 (18) | 0.1582 (18) | 0.4467 (18) | 0.051 (6)* | |
H3A | 0.7863 (16) | −0.0052 (15) | 0.4205 (15) | 0.032 (5)* | |
H6A | 0.7766 (17) | 0.3164 (17) | 0.3824 (17) | 0.051 (6)* | |
H7A | 0.6660 (17) | 0.3404 (17) | 0.1831 (16) | 0.045 (5)* | |
H8A | 0.5334 (16) | 0.4917 (14) | 0.1540 (14) | 0.031 (4)* | |
H1N1 | 0.8271 (19) | −0.2160 (18) | 0.5682 (17) | 0.048 (6)* | |
H2N1 | 0.744 (2) | −0.1729 (19) | 0.480 (2) | 0.063 (7)* | |
H3N1 | 0.705 (2) | −0.1742 (19) | 0.5822 (19) | 0.063 (7)* | |
H1N2 | 0.845 (2) | −0.160 (2) | 0.779 (2) | 0.058 (7)* | |
H2N2 | 0.9324 (19) | −0.0897 (18) | 0.8401 (18) | 0.051 (6)* | |
H1N3 | 0.9858 (19) | 0.0747 (18) | 0.7650 (18) | 0.051 (6)* | |
H1N4 | 0.414 (2) | 0.6363 (17) | 0.3130 (17) | 0.053 (6)* | |
H2N4 | 0.531 (2) | 0.700 (2) | 0.336 (2) | 0.080 (8)* | |
H3N4 | 0.4843 (19) | 0.6587 (18) | 0.224 (2) | 0.055 (6)* | |
H1N5 | 0.578 (2) | 0.650 (2) | 0.5188 (19) | 0.057 (7)* | |
H2N5 | 0.6724 (18) | 0.5757 (16) | 0.5834 (17) | 0.042 (5)* | |
H1N6 | 0.7491 (19) | 0.4214 (18) | 0.5080 (19) | 0.055 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0468 (2) | 0.0417 (3) | 0.02393 (17) | −0.00571 (18) | 0.00127 (15) | −0.00426 (15) |
Cl2 | 0.0490 (2) | 0.0429 (3) | 0.02580 (18) | −0.00792 (19) | −0.00072 (16) | −0.00412 (16) |
Cl3 | 0.0343 (2) | 0.0577 (3) | 0.02968 (19) | −0.00126 (19) | −0.00008 (15) | 0.00466 (17) |
Cl4 | 0.0431 (2) | 0.0488 (3) | 0.02839 (19) | 0.0020 (2) | −0.00015 (15) | −0.00488 (17) |
N1 | 0.0352 (7) | 0.0293 (8) | 0.0280 (7) | −0.0041 (6) | 0.0027 (6) | −0.0052 (5) |
N2 | 0.0442 (8) | 0.0546 (11) | 0.0233 (7) | −0.0027 (8) | −0.0026 (6) | 0.0061 (6) |
N3 | 0.0359 (7) | 0.0422 (9) | 0.0292 (7) | −0.0067 (6) | −0.0008 (6) | −0.0108 (6) |
C1 | 0.0418 (10) | 0.0318 (10) | 0.0498 (10) | −0.0081 (8) | 0.0052 (8) | −0.0057 (8) |
C2 | 0.0479 (10) | 0.0317 (10) | 0.0419 (9) | 0.0011 (8) | 0.0043 (8) | 0.0066 (7) |
C3 | 0.0362 (8) | 0.0341 (9) | 0.0243 (7) | 0.0026 (7) | −0.0023 (6) | 0.0007 (6) |
C4 | 0.0270 (7) | 0.0254 (8) | 0.0235 (6) | 0.0011 (6) | 0.0026 (5) | −0.0035 (5) |
C5 | 0.0255 (7) | 0.0347 (9) | 0.0230 (6) | 0.0019 (6) | 0.0027 (5) | −0.0032 (6) |
N4 | 0.0298 (7) | 0.0355 (8) | 0.0310 (7) | 0.0013 (6) | −0.0010 (6) | 0.0030 (6) |
N5 | 0.0486 (9) | 0.0462 (10) | 0.0264 (7) | −0.0019 (8) | 0.0008 (6) | −0.0056 (6) |
N6 | 0.0358 (7) | 0.0369 (8) | 0.0282 (6) | 0.0015 (6) | −0.0027 (5) | 0.0064 (6) |
C6 | 0.0371 (9) | 0.0325 (10) | 0.0448 (9) | 0.0042 (8) | 0.0043 (7) | 0.0038 (7) |
C7 | 0.0433 (9) | 0.0323 (10) | 0.0347 (8) | −0.0041 (8) | 0.0079 (7) | −0.0036 (7) |
C8 | 0.0343 (8) | 0.0340 (9) | 0.0250 (7) | −0.0056 (7) | 0.0007 (6) | 0.0004 (6) |
C9 | 0.0255 (7) | 0.0286 (8) | 0.0256 (6) | −0.0034 (6) | 0.0012 (5) | 0.0041 (6) |
C10 | 0.0276 (7) | 0.0302 (8) | 0.0242 (6) | −0.0045 (6) | 0.0021 (5) | 0.0021 (6) |
N1—C4 | 1.451 (2) | N4—C9 | 1.450 (2) |
N1—H1N1 | 0.84 (2) | N4—H1N4 | 0.91 (2) |
N1—H2N1 | 0.87 (2) | N4—H2N4 | 0.93 (3) |
N1—H3N1 | 0.89 (2) | N4—H3N4 | 0.83 (2) |
N2—C5 | 1.328 (2) | N5—C10 | 1.334 (2) |
N2—H1N2 | 0.89 (2) | N5—H1N5 | 0.90 (2) |
N2—H2N2 | 0.78 (2) | N5—H2N5 | 0.84 (2) |
N3—C5 | 1.348 (2) | N6—C10 | 1.347 (2) |
N3—C1 | 1.357 (2) | N6—C6 | 1.351 (2) |
N3—H1N3 | 0.82 (2) | N6—H1N6 | 0.89 (2) |
C1—C2 | 1.348 (3) | C6—C7 | 1.353 (2) |
C1—H1A | 0.90 (2) | C6—H6A | 1.00 (2) |
C2—C3 | 1.393 (3) | C7—C8 | 1.399 (2) |
C2—H2A | 0.94 (2) | C7—H7A | 0.99 (2) |
C3—C4 | 1.365 (2) | C8—C9 | 1.367 (2) |
C3—H3A | 0.857 (17) | C8—H8A | 0.926 (16) |
C4—C5 | 1.4145 (19) | C9—C10 | 1.4188 (19) |
C4—N1—H1N1 | 111.6 (14) | C9—N4—H1N4 | 114.2 (14) |
C4—N1—H2N1 | 109.7 (16) | C9—N4—H2N4 | 108.0 (15) |
H1N1—N1—H2N1 | 106.9 (19) | H1N4—N4—H2N4 | 110 (2) |
C4—N1—H3N1 | 112.3 (16) | C9—N4—H3N4 | 107.9 (15) |
H1N1—N1—H3N1 | 117 (2) | H1N4—N4—H3N4 | 108.9 (18) |
H2N1—N1—H3N1 | 98.5 (19) | H2N4—N4—H3N4 | 108 (2) |
C5—N2—H1N2 | 122.6 (15) | C10—N5—H1N5 | 122.7 (14) |
C5—N2—H2N2 | 122.3 (16) | C10—N5—H2N5 | 117.7 (14) |
H1N2—N2—H2N2 | 114 (2) | H1N5—N5—H2N5 | 119 (2) |
C5—N3—C1 | 123.65 (14) | C10—N6—C6 | 123.92 (14) |
C5—N3—H1N3 | 120.3 (16) | C10—N6—H1N6 | 125.0 (14) |
C1—N3—H1N3 | 116.0 (16) | C6—N6—H1N6 | 110.9 (14) |
C2—C1—N3 | 120.59 (17) | N6—C6—C7 | 120.63 (17) |
C2—C1—H1A | 130.1 (14) | N6—C6—H6A | 110.7 (12) |
N3—C1—H1A | 109.2 (14) | C7—C6—H6A | 128.7 (12) |
C1—C2—C3 | 118.52 (17) | C6—C7—C8 | 118.28 (16) |
C1—C2—H2A | 121.7 (13) | C6—C7—H7A | 119.6 (11) |
C3—C2—H2A | 119.7 (13) | C8—C7—H7A | 122.1 (11) |
C4—C3—C2 | 120.41 (15) | C9—C8—C7 | 120.58 (14) |
C4—C3—H3A | 118.8 (13) | C9—C8—H8A | 120.0 (11) |
C2—C3—H3A | 120.8 (13) | C7—C8—H8A | 119.4 (11) |
C3—C4—C5 | 120.64 (14) | C8—C9—C10 | 120.20 (15) |
C3—C4—N1 | 120.47 (13) | C8—C9—N4 | 120.20 (13) |
C5—C4—N1 | 118.84 (13) | C10—C9—N4 | 119.61 (14) |
N2—C5—N3 | 119.72 (15) | N5—C10—N6 | 118.62 (15) |
N2—C5—C4 | 124.16 (16) | N5—C10—C9 | 125.02 (16) |
N3—C5—C4 | 116.12 (14) | N6—C10—C9 | 116.36 (14) |
C5—N3—C1—C2 | −1.9 (3) | C10—N6—C6—C7 | 0.6 (3) |
N3—C1—C2—C3 | −0.2 (3) | N6—C6—C7—C8 | −0.3 (3) |
C1—C2—C3—C4 | 0.5 (3) | C6—C7—C8—C9 | 1.0 (2) |
C2—C3—C4—C5 | 1.0 (2) | C7—C8—C9—C10 | −1.9 (2) |
C2—C3—C4—N1 | −176.49 (16) | C7—C8—C9—N4 | 177.80 (15) |
C1—N3—C5—N2 | −176.12 (17) | C6—N6—C10—N5 | 177.71 (16) |
C1—N3—C5—C4 | 3.3 (2) | C6—N6—C10—C9 | −1.4 (2) |
C3—C4—C5—N2 | 176.56 (16) | C8—C9—C10—N5 | −177.02 (15) |
N1—C4—C5—N2 | −5.9 (2) | N4—C9—C10—N5 | 3.3 (2) |
C3—C4—C5—N3 | −2.8 (2) | C8—C9—C10—N6 | 2.0 (2) |
N1—C4—C5—N3 | 174.72 (14) | N4—C9—C10—N6 | −177.64 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···Cl2i | 0.84 (2) | 2.26 (2) | 3.081 (2) | 164.4 (18) |
N1—H2N1···Cl1ii | 0.87 (2) | 2.27 (2) | 3.114 (1) | 167 (2) |
N1—H3N1···Cl4iii | 0.89 (2) | 2.47 (2) | 3.223 (2) | 143.2 (18) |
N2—H1N2···Cl1iv | 0.90 (2) | 2.32 (2) | 3.219 (2) | 177.6 (16) |
N2—H2N2···Cl2v | 0.79 (2) | 2.59 (2) | 3.242 (2) | 142 (2) |
N3—H1N3···Cl2 | 0.82 (2) | 2.26 (2) | 3.060 (2) | 166 (2) |
N4—H1N4···Cl3vi | 0.91 (2) | 2.17 (2) | 3.049 (2) | 163.2 (17) |
N4—H2N4···Cl4 | 0.93 (2) | 2.77 (2) | 3.454 (2) | 131.5 (17) |
N4—H2N4···Cl1vi | 0.93 (2) | 2.51 (2) | 3.148 (2) | 126.4 (18) |
N4—H3N4···Cl4vii | 0.83 (2) | 2.30 (2) | 3.128 (2) | 175 (2) |
N5—H1N5···Cl4 | 0.91 (2) | 2.29 (2) | 3.193 (2) | 172.0 (18) |
N5—H2N5···Cl1viii | 0.84 (2) | 2.77 (2) | 3.340 (2) | 126.6 (17) |
N6—H1N6···Cl3 | 0.89 (2) | 2.22 (2) | 3.057 (1) | 156.6 (19) |
C7—H7A···Cl4ix | 0.99 (2) | 2.745 (19) | 3.459 (2) | 129.4 (14) |
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+1, −y, −z+1; (iii) x, y−1, z; (iv) −x+1, y−1/2, −z+3/2; (v) −x+2, −y, −z+2; (vi) −x+1, −y+1, −z+1; (vii) x, −y+3/2, z−1/2; (viii) −x+1, y+1/2, −z+3/2; (ix) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H9N32+·2Cl− |
Mr | 182.05 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 10.9770 (2), 12.5175 (2), 11.6520 (2) |
β (°) | 98.979 (1) |
V (Å3) | 1581.42 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.75 |
Crystal size (mm) | 0.34 × 0.32 × 0.13 |
Data collection | |
Diffractometer | Bruker APEX DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.787, 0.907 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22610, 5736, 4042 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.757 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.109, 1.03 |
No. of reflections | 5736 |
No. of parameters | 253 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.44, −0.22 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···Cl2i | 0.84 (2) | 2.26 (2) | 3.081 (2) | 164.4 (18) |
N1—H2N1···Cl1ii | 0.87 (2) | 2.27 (2) | 3.114 (1) | 167 (2) |
N1—H3N1···Cl4iii | 0.89 (2) | 2.47 (2) | 3.223 (2) | 143.2 (18) |
N2—H1N2···Cl1iv | 0.90 (2) | 2.32 (2) | 3.219 (2) | 177.6 (16) |
N2—H2N2···Cl2v | 0.79 (2) | 2.59 (2) | 3.242 (2) | 142 (2) |
N3—H1N3···Cl2 | 0.82 (2) | 2.26 (2) | 3.060 (2) | 166 (2) |
N4—H1N4···Cl3vi | 0.91 (2) | 2.17 (2) | 3.049 (2) | 163.2 (17) |
N4—H2N4···Cl4 | 0.93 (2) | 2.77 (2) | 3.454 (2) | 131.5 (17) |
N4—H2N4···Cl1vi | 0.93 (2) | 2.51 (2) | 3.148 (2) | 126.4 (18) |
N4—H3N4···Cl4vii | 0.83 (2) | 2.30 (2) | 3.128 (2) | 175 (2) |
N5—H1N5···Cl4 | 0.91 (2) | 2.29 (2) | 3.193 (2) | 172.0 (18) |
N5—H2N5···Cl1viii | 0.84 (2) | 2.77 (2) | 3.340 (2) | 126.6 (17) |
N6—H1N6···Cl3 | 0.89 (2) | 2.22 (2) | 3.057 (1) | 156.6 (19) |
C7—H7A···Cl4ix | 0.99 (2) | 2.745 (19) | 3.459 (2) | 129.4 (14) |
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+1, −y, −z+1; (iii) x, y−1, z; (iv) −x+1, y−1/2, −z+3/2; (v) −x+2, −y, −z+2; (vi) −x+1, −y+1, −z+1; (vii) x, −y+3/2, z−1/2; (viii) −x+1, y+1/2, −z+3/2; (ix) −x+1, y−1/2, −z+1/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Abu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta, 11, 277–283 CrossRef Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Balasubramani, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1511–o1512. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Balasubramani, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o1519. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
De Cires-Mejias, C., Tanase, S., Reedijk, J., Gonzalez-Vilchez, F., Vilaplana, R., Mills, A. M., Kooijman, H. & Spek, A. L. (2004). Inorg. Chim. Acta, 357, 1494–1498. Web of Science CSD CrossRef CAS Google Scholar
Fun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1496–o1497. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley. Google Scholar
Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press. Google Scholar
Sessler, J.-L., Camiolo, S. & Gale, P.-A. (2003). Coord. Chem. Rev. 240, 17-55. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). In particular, diaminopyridines play an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). The coordination chemistry of anions is a fast-growing area of supramolecular chemistry. Moreover, Cl anions have been successfully used to assemble double-helical motifs of various molecules containing aromatic groups, with stacking within the helices (Sessler et al., 2003). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2,3-diaminopyridinium 4-hydroxybenzoate (Fun & Balasubramani, 2009), 2,3-diaminopyridinium 4-nitrobenzoate (Balasubramani & Fun, 2009a) and 2,3-diaminopyridinium benzoate (Balasubramani & Fun, 2009b) have recently been reported by us. In the hope of studying some interesting hydrogen-bonding interactions, the title compound was synthesized. Its molecular and crystal structure is presented here.
The asymmetric unit of the title compound (Fig. 1) consists of two diprotonated 2,3-diaminopyridine cations and four chloride anions. In the 2,3-diaminopyridinium cations, protonation at atoms N3 and N6 has led to slight increases in the C1—N3—C5 and C6—N6—C10 angles to 123.65 (14)° and 123.92 (14)°, respectively, compared to those of an unprotonated structure (De Cires-Mejias et al., 2004). The bond lengths (Allen et al., 1987) and angles are normal .
In the crystal structure (Fig. 2), the anions and cations are connected by intermolecular N—H···Cl and C—H···Cl hydrogen bonds, forming a three-dimensional network. The crystal structure is further stabilized by π···π interactions between the pyridinium rings (N3/C1–C5) [centroid-to-centroid (2-x, -y, 1-z) distance = 3.695 (1) Å].