organic compounds
2,2′-(2,6-Pyridinediyl)diquinoline
aLaboratorio de Química Industrial, CELAES, Facultad de Ciencias Químicas, UANL, Pedro de Alba S/N, 66451 San Nicolás de los Garza, N.L., Mexico, and bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, N.L., Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com
The title molecule, C23H15N3, is a terpyridine derivative resulting from the Friedländer between 2,6-diacetylpyridine and N,N′-bis(2-aminobenzyl)ethylenediamine. The contains one half-molecule, the complete molecule being generated by a mirror plane (one N atom and one C atom lie on the plane). The molecule, although aromatic, is deformed from planarity as a result of crystal packing forces: molecules are stacked along the short c axis, with a short separation of 3.605 (1) Å between the mean planes. The bent molecular shape is reflected in the dihedral angle of 16.10 (5)° between the essentially planar quinoline groups. In addition to π⋯π interactions, the features weak inter-stack C—H⋯N contacts involving atoms of the central pyridine rings which lie in a common crystallographic m plane.
Related literature
For the synthesis and the coordination behavior of the title molecule, see: Bertrand et al. (2009); Harris et al. (1969); Klassen et al. (1975). For a terpyridine derivative closely related to the title molecule, see: Sasaki et al. (1998). For the Friedländer condensation as a tool for the preparation of quinolines, see: Da Costa et al. (2009); Sridharan et al. (2009).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: XSCANS (Siemens, 1996); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL-Plus.
Supporting information
10.1107/S1600536810006033/xu2726sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810006033/xu2726Isup2.hkl
A mixture of 305 mg of 2,6-diacetylpyridine and 823 mg of Ce(NO3)3.6H2O in methanol (25 ml) was refluxed for 30 min, followed by slow addition of a dissolution of N,N'-bis(2-aminobenzyl)ethylenediamine (530 mg in 25 ml methanol). The mixture was kept under these conditions for 3.5 h, and then cooled to room temperature, giving a red precipitate. After 1.5 month, the resulting solid was filtered, washed with cold methanol, diethyl ether, and air dried. Suitable single crystals were picked off from the solid. m.p. 495–497 K (lit. 500–501 K: Klassen et al., 1975).
All H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.93 Å. Isotropic displacement parameters for H atoms were calculated from displacements of parent C atoms: Uiso(H) = 1.2Ueq(C).
Data collection: XSCANS (Siemens, 1996); cell
XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).C23H15N3 | Dx = 1.358 Mg m−3 |
Mr = 333.38 | Melting point = 495–497 K |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 100 reflections |
a = 11.960 (2) Å | θ = 5.5–11.7° |
b = 34.509 (6) Å | µ = 0.08 mm−1 |
c = 3.9509 (5) Å | T = 298 K |
V = 1630.7 (5) Å3 | Plate, orange |
Z = 4 | 0.40 × 0.20 × 0.10 mm |
F(000) = 696 |
Siemens P4 diffractometer | Rint = 0.031 |
Radiation source: X-ray | θmax = 25.1°, θmin = 2.4° |
Graphite monochromator | h = −14→14 |
ω scans | k = −41→41 |
5603 measured reflections | l = −4→4 |
1469 independent reflections | 2 standard reflections every 48 reflections |
1032 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0614P)2 + 0.1644P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
1469 reflections | Δρmax = 0.16 e Å−3 |
122 parameters | Δρmin = −0.11 e Å−3 |
0 restraints | Extinction correction: SHELXTL-Plus, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 constraints | Extinction coefficient: 0.0069 (16) |
Primary atom site location: structure-invariant direct methods |
C23H15N3 | V = 1630.7 (5) Å3 |
Mr = 333.38 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 11.960 (2) Å | µ = 0.08 mm−1 |
b = 34.509 (6) Å | T = 298 K |
c = 3.9509 (5) Å | 0.40 × 0.20 × 0.10 mm |
Siemens P4 diffractometer | Rint = 0.031 |
5603 measured reflections | 2 standard reflections every 48 reflections |
1469 independent reflections | intensity decay: 1% |
1032 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.16 e Å−3 |
1469 reflections | Δρmin = −0.11 e Å−3 |
122 parameters |
x | y | z | Uiso*/Ueq | ||
N1 | 0.05056 (13) | 0.2500 | 0.0324 (4) | 0.0465 (5) | |
C1 | −0.15745 (18) | 0.2500 | −0.2714 (6) | 0.0572 (6) | |
H1A | −0.2280 | 0.2500 | −0.3703 | 0.069* | |
C2 | −0.10509 (12) | 0.28415 (5) | −0.1980 (4) | 0.0539 (4) | |
H2A | −0.1388 | 0.3077 | −0.2506 | 0.065* | |
C3 | −0.00108 (11) | 0.28327 (4) | −0.0443 (4) | 0.0465 (4) | |
C4 | 0.05844 (12) | 0.32017 (4) | 0.0278 (4) | 0.0468 (4) | |
N5 | 0.00977 (10) | 0.35190 (4) | −0.0808 (3) | 0.0522 (4) | |
C6 | 0.06408 (13) | 0.38627 (4) | −0.0411 (4) | 0.0522 (4) | |
C7 | 0.01369 (16) | 0.42018 (5) | −0.1667 (5) | 0.0667 (5) | |
H7A | −0.0563 | 0.4188 | −0.2686 | 0.080* | |
C8 | 0.06583 (19) | 0.45476 (5) | −0.1410 (5) | 0.0752 (6) | |
H8A | 0.0319 | 0.4769 | −0.2279 | 0.090* | |
C9 | 0.17008 (19) | 0.45757 (5) | 0.0147 (5) | 0.0762 (6) | |
H9A | 0.2049 | 0.4816 | 0.0326 | 0.091* | |
C10 | 0.22110 (16) | 0.42554 (5) | 0.1402 (5) | 0.0660 (5) | |
H10A | 0.2907 | 0.4278 | 0.2437 | 0.079* | |
C11 | 0.16971 (13) | 0.38897 (4) | 0.1153 (4) | 0.0528 (4) | |
C12 | 0.21698 (13) | 0.35438 (4) | 0.2379 (4) | 0.0555 (4) | |
H12A | 0.2859 | 0.3549 | 0.3468 | 0.067* | |
C13 | 0.16215 (12) | 0.32044 (4) | 0.1973 (4) | 0.0511 (4) | |
H13A | 0.1925 | 0.2975 | 0.2804 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0355 (9) | 0.0555 (11) | 0.0484 (10) | 0.000 | 0.0022 (8) | 0.000 |
C1 | 0.0364 (11) | 0.0734 (16) | 0.0619 (14) | 0.000 | −0.0071 (11) | 0.000 |
C2 | 0.0404 (8) | 0.0637 (10) | 0.0576 (10) | 0.0072 (7) | −0.0014 (7) | −0.0021 (8) |
C3 | 0.0361 (7) | 0.0586 (9) | 0.0448 (8) | 0.0043 (7) | 0.0045 (6) | −0.0018 (7) |
C4 | 0.0395 (8) | 0.0554 (9) | 0.0456 (8) | 0.0054 (7) | 0.0048 (7) | −0.0030 (7) |
N5 | 0.0442 (7) | 0.0569 (8) | 0.0555 (8) | 0.0078 (6) | 0.0016 (6) | −0.0002 (7) |
C6 | 0.0506 (9) | 0.0563 (10) | 0.0498 (9) | 0.0089 (8) | 0.0066 (7) | −0.0027 (8) |
C7 | 0.0688 (11) | 0.0654 (11) | 0.0659 (11) | 0.0147 (9) | 0.0013 (9) | 0.0016 (9) |
C8 | 0.0985 (16) | 0.0599 (12) | 0.0672 (12) | 0.0145 (11) | 0.0066 (12) | 0.0053 (10) |
C9 | 0.0981 (16) | 0.0617 (11) | 0.0687 (13) | −0.0086 (11) | 0.0121 (11) | −0.0025 (10) |
C10 | 0.0672 (11) | 0.0673 (11) | 0.0635 (11) | −0.0064 (10) | 0.0044 (9) | −0.0083 (9) |
C11 | 0.0522 (9) | 0.0561 (10) | 0.0501 (9) | 0.0020 (7) | 0.0060 (8) | −0.0062 (8) |
C12 | 0.0443 (8) | 0.0648 (11) | 0.0575 (10) | 0.0031 (8) | −0.0032 (7) | −0.0078 (8) |
C13 | 0.0426 (8) | 0.0545 (9) | 0.0561 (9) | 0.0077 (7) | −0.0033 (7) | −0.0043 (7) |
N1—C3i | 1.3383 (16) | C7—C8 | 1.350 (2) |
N1—C3 | 1.3383 (16) | C7—H7A | 0.9300 |
C1—C2 | 1.3658 (18) | C8—C9 | 1.394 (3) |
C1—C2i | 1.3658 (18) | C8—H8A | 0.9300 |
C1—H1A | 0.9300 | C9—C10 | 1.357 (2) |
C2—C3 | 1.385 (2) | C9—H9A | 0.9300 |
C2—H2A | 0.9300 | C10—C11 | 1.407 (2) |
C3—C4 | 1.486 (2) | C10—H10A | 0.9300 |
C4—N5 | 1.3123 (18) | C11—C12 | 1.407 (2) |
C4—C13 | 1.410 (2) | C12—C13 | 1.352 (2) |
N5—C6 | 1.3615 (19) | C12—H12A | 0.9300 |
C6—C7 | 1.407 (2) | C13—H13A | 0.9300 |
C6—C11 | 1.410 (2) | ||
C3i—N1—C3 | 118.13 (17) | C6—C7—H7A | 119.6 |
C2—C1—C2i | 119.3 (2) | C7—C8—C9 | 120.52 (18) |
C2—C1—H1A | 120.3 | C7—C8—H8A | 119.7 |
C2i—C1—H1A | 120.3 | C9—C8—H8A | 119.7 |
C1—C2—C3 | 119.07 (15) | C10—C9—C8 | 120.48 (18) |
C1—C2—H2A | 120.5 | C10—C9—H9A | 119.8 |
C3—C2—H2A | 120.5 | C8—C9—H9A | 119.8 |
N1—C3—C2 | 122.20 (14) | C9—C10—C11 | 120.57 (18) |
N1—C3—C4 | 118.07 (13) | C9—C10—H10A | 119.7 |
C2—C3—C4 | 119.69 (13) | C11—C10—H10A | 119.7 |
N5—C4—C13 | 122.69 (14) | C12—C11—C10 | 124.15 (16) |
N5—C4—C3 | 116.09 (13) | C12—C11—C6 | 117.07 (14) |
C13—C4—C3 | 121.21 (13) | C10—C11—C6 | 118.78 (15) |
C4—N5—C6 | 118.54 (13) | C13—C12—C11 | 119.96 (14) |
N5—C6—C7 | 118.67 (15) | C13—C12—H12A | 120.0 |
N5—C6—C11 | 122.39 (14) | C11—C12—H12A | 120.0 |
C7—C6—C11 | 118.92 (15) | C12—C13—C4 | 119.27 (14) |
C8—C7—C6 | 120.72 (18) | C12—C13—H13A | 120.4 |
C8—C7—H7A | 119.6 | C4—C13—H13A | 120.4 |
C2i—C1—C2—C3 | −1.4 (3) | C6—C7—C8—C9 | −0.8 (3) |
C3i—N1—C3—C2 | 0.1 (3) | C7—C8—C9—C10 | 0.5 (3) |
C3i—N1—C3—C4 | −177.46 (10) | C8—C9—C10—C11 | 0.0 (3) |
C1—C2—C3—N1 | 0.6 (3) | C9—C10—C11—C12 | 179.83 (16) |
C1—C2—C3—C4 | 178.17 (16) | C9—C10—C11—C6 | −0.3 (3) |
N1—C3—C4—N5 | 173.63 (14) | N5—C6—C11—C12 | −1.3 (2) |
C2—C3—C4—N5 | −4.0 (2) | C7—C6—C11—C12 | 179.88 (15) |
N1—C3—C4—C13 | −5.2 (2) | N5—C6—C11—C10 | 178.75 (14) |
C2—C3—C4—C13 | 177.17 (14) | C7—C6—C11—C10 | 0.0 (2) |
C13—C4—N5—C6 | 3.0 (2) | C10—C11—C12—C13 | −178.88 (16) |
C3—C4—N5—C6 | −175.81 (13) | C6—C11—C12—C13 | 1.2 (2) |
C4—N5—C6—C7 | 178.05 (14) | C11—C12—C13—C4 | 0.8 (2) |
C4—N5—C6—C11 | −0.7 (2) | N5—C4—C13—C12 | −3.1 (2) |
N5—C6—C7—C8 | −178.24 (16) | C3—C4—C13—C12 | 175.65 (14) |
C11—C6—C7—C8 | 0.6 (2) |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···N1ii | 0.93 | 2.72 | 3.641 (3) | 169 |
Symmetry code: (ii) x−1/2, −y+1/2, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C23H15N3 |
Mr | 333.38 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 298 |
a, b, c (Å) | 11.960 (2), 34.509 (6), 3.9509 (5) |
V (Å3) | 1630.7 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.40 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5603, 1469, 1032 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.118, 1.02 |
No. of reflections | 1469 |
No. of parameters | 122 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.11 |
Computer programs: XSCANS (Siemens, 1996), SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···N1i | 0.93 | 2.72 | 3.641 (3) | 168.8 |
Symmetry code: (i) x−1/2, −y+1/2, −z−1/2. |
Acknowledgements
The authors thank FCQ-UANL (Project No. 03-6375-QMT-08-006) and PAICYT-UANL (Project No. CA-1260-06) for supporting this work.
References
Bertrand, H., Bombard, S., Monchaud, D., Talbot, E., Guédin, A., Mergny, J.-L., Grünert, R., Bednarski, P. J. & Teulade-Fichou, M.-P. (2009). Org. Biomol. Chem. 7, 2864–2871. Web of Science CrossRef PubMed CAS Google Scholar
Da Costa, J. S., Pisoni, D. S., da Silva, C. B., Petzhold, C. L., Russowsky, D. & Ceschi, M. A. (2009). J. Braz. Chem. Soc. 20, 1448–1454. CAS Google Scholar
Harris, C. M., Patil, H. R. H. & Sinn, E. (1969). Inorg. Chem. 8, 101–104. CrossRef CAS Web of Science Google Scholar
Klassen, D. M., Hudson, C. W. & Shaddix, E. L. (1975). Inorg. Chem. 14, 2733–2736. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sasaki, I., Daran, J. C., Aït-Haddou, H. & Balavoine, G. G. A. (1998). Inorg. Chem. Commun. 1, 354–357. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Sridharan, V., Ribelles, P., Ramos, Ma. T. & Menéndez, J. C. (2009). J. Org. Chem. 74, 5715–5718. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thirty years after cisplatin was approved by the FDA for its use as a chemotherapy drug, studies regarding interactions between platinum-based complexes and basic sites in DNA remain actives. Recently, Bertrand et al. (2009) showed that PtII cationic complexes bearing 2,2':6',2"-terpyridine or a terpyridine derivative as ligand have the ability to platinate the human telomeric G-quadruplex. Interestingly, both the binding affinity and the platination activity seem to be determined by the extension of the aromatic surface of the terpyridine derivative. One of the ligands used in that work was 2,2'-(2,6-pyridinediyl)bis-quinoline, synthesized through the Friedländer condensation (Da Costa et al., 2009; Sridharan et al., 2009) between 2,6-diacetylpyridine and 2-nitrobenzaldehyde. We now report the crystal structure of this aromatic ligand.
The title terpyridine derivative was obtained as a by-product during the preparation of a macrocyclic ligand (see Experimental). More suitable synthesis are however available in the literature (Harris et al., 1969; Klassen et al., 1975; Bertrand et al., 2009). The molecule (Fig. 1) displays the crystallographic m symmetry, with atoms N1, C1 and H1A placed in the mirror planes normal to [010]. The molecular conformation observed in the solid-state is not suitable for coordination through the three N atoms: the quinoline N atoms are placed in a trans arrangement with respect to the central pyridine N atom, while a cis,cis conformation is required for the molecule to be a terdentate ligand. However, as invariably found in non-hindered terpyridine derivatives, aromatic fragments are free to rotate, for example about the C3—C4 bond in the case of the title molecule. Such a behavior has been reported, for example, for the coordination to RuII of a closely related terpyridine ligand, namely 2,6-bis(5,6,7,8-tetrahydroquinol-2-yl)pyridine (Sasaki et al., 1998).
Molecules are stacked along the short axis c, at a distance of 3.605 Å (separation between two mean planes passing through two neighboring molecules in the [001] direction, see Fig.2, inset). This short separation, although larger than that observed in graphite (ca. 3.36 Å), results in strong π···π interactions in the stacks, which, in turn, deform the molecules from planarity. The dihedral angle between the central pyridine ring and the quinoline substituent is 8.13 (8)°. The bent shape is also reflected in the dihedral angle between quinoline systems, 16.10 (5)° (Fig. 2, inset). Finally, the crystal structure is completed by weak intermolecular C—H···N contacts (Table 1 and Fig. 2), linking the stacks in the [100] direction.