organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(2,6-Pyridinedi­yl)di­quinoline

aLaboratorio de Química Industrial, CELAES, Facultad de Ciencias Químicas, UANL, Pedro de Alba S/N, 66451 San Nicolás de los Garza, N.L., Mexico, and bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, N.L., Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 3 February 2010; accepted 15 February 2010; online 20 February 2010)

The title mol­ecule, C23H15N3, is a terpyridine derivative resulting from the Friedländer annulation between 2,6-diacetyl­pyridine and N,N′-bis­(2-amino­benz­yl)ethyl­ene­di­amine. The asymmetric unit contains one half-mol­ecule, the complete mol­ecule being generated by a mirror plane (one N atom and one C atom lie on the plane). The mol­ecule, although aromatic, is deformed from planarity as a result of crystal packing forces: mol­ecules are stacked along the short c axis, with a short separation of 3.605 (1) Å between the mean planes. The bent mol­ecular shape is reflected in the dihedral angle of 16.10 (5)° between the essentially planar quinoline groups. In addition to ππ inter­actions, the crystal structure features weak inter-stack C—H⋯N contacts involving atoms of the central pyridine rings which lie in a common crystallographic m plane.

Related literature

For the synthesis and the coordination behavior of the title mol­ecule, see: Bertrand et al. (2009[Bertrand, H., Bombard, S., Monchaud, D., Talbot, E., Guédin, A., Mergny, J.-L., Grünert, R., Bednarski, P. J. & Teulade-Fichou, M.-P. (2009). Org. Biomol. Chem. 7, 2864-2871.]); Harris et al. (1969[Harris, C. M., Patil, H. R. H. & Sinn, E. (1969). Inorg. Chem. 8, 101-104.]); Klassen et al. (1975[Klassen, D. M., Hudson, C. W. & Shaddix, E. L. (1975). Inorg. Chem. 14, 2733-2736.]). For a terpyridine derivative closely related to the title mol­ecule, see: Sasaki et al. (1998[Sasaki, I., Daran, J. C., Aït-Haddou, H. & Balavoine, G. G. A. (1998). Inorg. Chem. Commun. 1, 354-357.]). For the Friedländer condensation as a tool for the preparation of quinolines, see: Da Costa et al. (2009[Da Costa, J. S., Pisoni, D. S., da Silva, C. B., Petzhold, C. L., Russowsky, D. & Ceschi, M. A. (2009). J. Braz. Chem. Soc. 20, 1448-1454.]); Sridharan et al. (2009[Sridharan, V., Ribelles, P., Ramos, Ma. T. & Menéndez, J. C. (2009). J. Org. Chem. 74, 5715-5718.]).

[Scheme 1]

Experimental

Crystal data
  • C23H15N3

  • Mr = 333.38

  • Orthorhombic, P n m a

  • a = 11.960 (2) Å

  • b = 34.509 (6) Å

  • c = 3.9509 (5) Å

  • V = 1630.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Siemens P4 diffractometer

  • 5603 measured reflections

  • 1469 independent reflections

  • 1032 reflections with I > 2σ(I)

  • Rint = 0.031

  • 2 standard reflections every 48 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.118

  • S = 1.02

  • 1469 reflections

  • 122 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯N1i 0.93 2.72 3.641 (3) 169
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

Thirty years after cisplatin was approved by the FDA for its use as a chemotherapy drug, studies regarding interactions between platinum-based complexes and basic sites in DNA remain actives. Recently, Bertrand et al. (2009) showed that PtII cationic complexes bearing 2,2':6',2"-terpyridine or a terpyridine derivative as ligand have the ability to platinate the human telomeric G-quadruplex. Interestingly, both the binding affinity and the platination activity seem to be determined by the extension of the aromatic surface of the terpyridine derivative. One of the ligands used in that work was 2,2'-(2,6-pyridinediyl)bis-quinoline, synthesized through the Friedländer condensation (Da Costa et al., 2009; Sridharan et al., 2009) between 2,6-diacetylpyridine and 2-nitrobenzaldehyde. We now report the crystal structure of this aromatic ligand.

The title terpyridine derivative was obtained as a by-product during the preparation of a macrocyclic ligand (see Experimental). More suitable synthesis are however available in the literature (Harris et al., 1969; Klassen et al., 1975; Bertrand et al., 2009). The molecule (Fig. 1) displays the crystallographic m symmetry, with atoms N1, C1 and H1A placed in the mirror planes normal to [010]. The molecular conformation observed in the solid-state is not suitable for coordination through the three N atoms: the quinoline N atoms are placed in a trans arrangement with respect to the central pyridine N atom, while a cis,cis conformation is required for the molecule to be a terdentate ligand. However, as invariably found in non-hindered terpyridine derivatives, aromatic fragments are free to rotate, for example about the C3—C4 bond in the case of the title molecule. Such a behavior has been reported, for example, for the coordination to RuII of a closely related terpyridine ligand, namely 2,6-bis(5,6,7,8-tetrahydroquinol-2-yl)pyridine (Sasaki et al., 1998).

Molecules are stacked along the short axis c, at a distance of 3.605 Å (separation between two mean planes passing through two neighboring molecules in the [001] direction, see Fig.2, inset). This short separation, although larger than that observed in graphite (ca. 3.36 Å), results in strong π···π interactions in the stacks, which, in turn, deform the molecules from planarity. The dihedral angle between the central pyridine ring and the quinoline substituent is 8.13 (8)°. The bent shape is also reflected in the dihedral angle between quinoline systems, 16.10 (5)° (Fig. 2, inset). Finally, the crystal structure is completed by weak intermolecular C—H···N contacts (Table 1 and Fig. 2), linking the stacks in the [100] direction.

Related literature top

For the synthesis and the coordination behavior of the title molecule, see: Bertrand et al. (2009); Harris et al. (1969); Klassen et al. (1975). For a terpyridine derivative closely related to the title molecule, see: Sasaki et al. (1998). For the Friedländer condensation as a tool for the preparation of quinolines, see: Da Costa et al. (2009); Sridharan et al. (2009).

Experimental top

A mixture of 305 mg of 2,6-diacetylpyridine and 823 mg of Ce(NO3)3.6H2O in methanol (25 ml) was refluxed for 30 min, followed by slow addition of a dissolution of N,N'-bis(2-aminobenzyl)ethylenediamine (530 mg in 25 ml methanol). The mixture was kept under these conditions for 3.5 h, and then cooled to room temperature, giving a red precipitate. After 1.5 month, the resulting solid was filtered, washed with cold methanol, diethyl ether, and air dried. Suitable single crystals were picked off from the solid. m.p. 495–497 K (lit. 500–501 K: Klassen et al., 1975).

Refinement top

All H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.93 Å. Isotropic displacement parameters for H atoms were calculated from displacements of parent C atoms: Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids at the 30% probability level for non-H atoms. Non-labeled atoms are generated by symmetry code x, 1/2-y, z.
[Figure 2] Fig. 2. A part of the crystal structure, viewed down c axis. Dashed lines represent non-bonding intermolecular contacts. The inset shows a part of a stack along [001]. Two least-squares planes are represented (red), which were computed using all atoms in each selected molecule (Macrae et al., 2008).
2,2'-(2,6-Pyridinediyl)diquinoline top
Crystal data top
C23H15N3Dx = 1.358 Mg m3
Mr = 333.38Melting point = 495–497 K
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 100 reflections
a = 11.960 (2) Åθ = 5.5–11.7°
b = 34.509 (6) ŵ = 0.08 mm1
c = 3.9509 (5) ÅT = 298 K
V = 1630.7 (5) Å3Plate, orange
Z = 40.40 × 0.20 × 0.10 mm
F(000) = 696
Data collection top
Siemens P4
diffractometer
Rint = 0.031
Radiation source: X-rayθmax = 25.1°, θmin = 2.4°
Graphite monochromatorh = 1414
ω scansk = 4141
5603 measured reflectionsl = 44
1469 independent reflections2 standard reflections every 48 reflections
1032 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.1644P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1469 reflectionsΔρmax = 0.16 e Å3
122 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXTL-Plus, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0069 (16)
Primary atom site location: structure-invariant direct methods
Crystal data top
C23H15N3V = 1630.7 (5) Å3
Mr = 333.38Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.960 (2) ŵ = 0.08 mm1
b = 34.509 (6) ÅT = 298 K
c = 3.9509 (5) Å0.40 × 0.20 × 0.10 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.031
5603 measured reflections2 standard reflections every 48 reflections
1469 independent reflections intensity decay: 1%
1032 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
1469 reflectionsΔρmin = 0.11 e Å3
122 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.05056 (13)0.25000.0324 (4)0.0465 (5)
C10.15745 (18)0.25000.2714 (6)0.0572 (6)
H1A0.22800.25000.37030.069*
C20.10509 (12)0.28415 (5)0.1980 (4)0.0539 (4)
H2A0.13880.30770.25060.065*
C30.00108 (11)0.28327 (4)0.0443 (4)0.0465 (4)
C40.05844 (12)0.32017 (4)0.0278 (4)0.0468 (4)
N50.00977 (10)0.35190 (4)0.0808 (3)0.0522 (4)
C60.06408 (13)0.38627 (4)0.0411 (4)0.0522 (4)
C70.01369 (16)0.42018 (5)0.1667 (5)0.0667 (5)
H7A0.05630.41880.26860.080*
C80.06583 (19)0.45476 (5)0.1410 (5)0.0752 (6)
H8A0.03190.47690.22790.090*
C90.17008 (19)0.45757 (5)0.0147 (5)0.0762 (6)
H9A0.20490.48160.03260.091*
C100.22110 (16)0.42554 (5)0.1402 (5)0.0660 (5)
H10A0.29070.42780.24370.079*
C110.16971 (13)0.38897 (4)0.1153 (4)0.0528 (4)
C120.21698 (13)0.35438 (4)0.2379 (4)0.0555 (4)
H12A0.28590.35490.34680.067*
C130.16215 (12)0.32044 (4)0.1973 (4)0.0511 (4)
H13A0.19250.29750.28040.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0355 (9)0.0555 (11)0.0484 (10)0.0000.0022 (8)0.000
C10.0364 (11)0.0734 (16)0.0619 (14)0.0000.0071 (11)0.000
C20.0404 (8)0.0637 (10)0.0576 (10)0.0072 (7)0.0014 (7)0.0021 (8)
C30.0361 (7)0.0586 (9)0.0448 (8)0.0043 (7)0.0045 (6)0.0018 (7)
C40.0395 (8)0.0554 (9)0.0456 (8)0.0054 (7)0.0048 (7)0.0030 (7)
N50.0442 (7)0.0569 (8)0.0555 (8)0.0078 (6)0.0016 (6)0.0002 (7)
C60.0506 (9)0.0563 (10)0.0498 (9)0.0089 (8)0.0066 (7)0.0027 (8)
C70.0688 (11)0.0654 (11)0.0659 (11)0.0147 (9)0.0013 (9)0.0016 (9)
C80.0985 (16)0.0599 (12)0.0672 (12)0.0145 (11)0.0066 (12)0.0053 (10)
C90.0981 (16)0.0617 (11)0.0687 (13)0.0086 (11)0.0121 (11)0.0025 (10)
C100.0672 (11)0.0673 (11)0.0635 (11)0.0064 (10)0.0044 (9)0.0083 (9)
C110.0522 (9)0.0561 (10)0.0501 (9)0.0020 (7)0.0060 (8)0.0062 (8)
C120.0443 (8)0.0648 (11)0.0575 (10)0.0031 (8)0.0032 (7)0.0078 (8)
C130.0426 (8)0.0545 (9)0.0561 (9)0.0077 (7)0.0033 (7)0.0043 (7)
Geometric parameters (Å, º) top
N1—C3i1.3383 (16)C7—C81.350 (2)
N1—C31.3383 (16)C7—H7A0.9300
C1—C21.3658 (18)C8—C91.394 (3)
C1—C2i1.3658 (18)C8—H8A0.9300
C1—H1A0.9300C9—C101.357 (2)
C2—C31.385 (2)C9—H9A0.9300
C2—H2A0.9300C10—C111.407 (2)
C3—C41.486 (2)C10—H10A0.9300
C4—N51.3123 (18)C11—C121.407 (2)
C4—C131.410 (2)C12—C131.352 (2)
N5—C61.3615 (19)C12—H12A0.9300
C6—C71.407 (2)C13—H13A0.9300
C6—C111.410 (2)
C3i—N1—C3118.13 (17)C6—C7—H7A119.6
C2—C1—C2i119.3 (2)C7—C8—C9120.52 (18)
C2—C1—H1A120.3C7—C8—H8A119.7
C2i—C1—H1A120.3C9—C8—H8A119.7
C1—C2—C3119.07 (15)C10—C9—C8120.48 (18)
C1—C2—H2A120.5C10—C9—H9A119.8
C3—C2—H2A120.5C8—C9—H9A119.8
N1—C3—C2122.20 (14)C9—C10—C11120.57 (18)
N1—C3—C4118.07 (13)C9—C10—H10A119.7
C2—C3—C4119.69 (13)C11—C10—H10A119.7
N5—C4—C13122.69 (14)C12—C11—C10124.15 (16)
N5—C4—C3116.09 (13)C12—C11—C6117.07 (14)
C13—C4—C3121.21 (13)C10—C11—C6118.78 (15)
C4—N5—C6118.54 (13)C13—C12—C11119.96 (14)
N5—C6—C7118.67 (15)C13—C12—H12A120.0
N5—C6—C11122.39 (14)C11—C12—H12A120.0
C7—C6—C11118.92 (15)C12—C13—C4119.27 (14)
C8—C7—C6120.72 (18)C12—C13—H13A120.4
C8—C7—H7A119.6C4—C13—H13A120.4
C2i—C1—C2—C31.4 (3)C6—C7—C8—C90.8 (3)
C3i—N1—C3—C20.1 (3)C7—C8—C9—C100.5 (3)
C3i—N1—C3—C4177.46 (10)C8—C9—C10—C110.0 (3)
C1—C2—C3—N10.6 (3)C9—C10—C11—C12179.83 (16)
C1—C2—C3—C4178.17 (16)C9—C10—C11—C60.3 (3)
N1—C3—C4—N5173.63 (14)N5—C6—C11—C121.3 (2)
C2—C3—C4—N54.0 (2)C7—C6—C11—C12179.88 (15)
N1—C3—C4—C135.2 (2)N5—C6—C11—C10178.75 (14)
C2—C3—C4—C13177.17 (14)C7—C6—C11—C100.0 (2)
C13—C4—N5—C63.0 (2)C10—C11—C12—C13178.88 (16)
C3—C4—N5—C6175.81 (13)C6—C11—C12—C131.2 (2)
C4—N5—C6—C7178.05 (14)C11—C12—C13—C40.8 (2)
C4—N5—C6—C110.7 (2)N5—C4—C13—C123.1 (2)
N5—C6—C7—C8178.24 (16)C3—C4—C13—C12175.65 (14)
C11—C6—C7—C80.6 (2)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N1ii0.932.723.641 (3)169
Symmetry code: (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC23H15N3
Mr333.38
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)11.960 (2), 34.509 (6), 3.9509 (5)
V3)1630.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5603, 1469, 1032
Rint0.031
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.02
No. of reflections1469
No. of parameters122
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.11

Computer programs: XSCANS (Siemens, 1996), SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N1i0.932.723.641 (3)168.8
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank FCQ-UANL (Project No. 03-6375-QMT-08-006) and PAICYT-UANL (Project No. CA-1260-06) for supporting this work.

References

First citationBertrand, H., Bombard, S., Monchaud, D., Talbot, E., Guédin, A., Mergny, J.-L., Grünert, R., Bednarski, P. J. & Teulade-Fichou, M.-P. (2009). Org. Biomol. Chem. 7, 2864–2871.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDa Costa, J. S., Pisoni, D. S., da Silva, C. B., Petzhold, C. L., Russowsky, D. & Ceschi, M. A. (2009). J. Braz. Chem. Soc. 20, 1448–1454.  CAS Google Scholar
First citationHarris, C. M., Patil, H. R. H. & Sinn, E. (1969). Inorg. Chem. 8, 101–104.  CrossRef CAS Web of Science Google Scholar
First citationKlassen, D. M., Hudson, C. W. & Shaddix, E. L. (1975). Inorg. Chem. 14, 2733–2736.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSasaki, I., Daran, J. C., Aït-Haddou, H. & Balavoine, G. G. A. (1998). Inorg. Chem. Commun. 1, 354–357.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSridharan, V., Ribelles, P., Ramos, Ma. T. & Menéndez, J. C. (2009). J. Org. Chem. 74, 5715–5718.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds