metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m334-m335

Tetra­kis(μ-4-methyl­benzoato-κ2O:O′)bis­­[(isonicotinamide-κN)copper(II)]

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, cDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 18 February 2010; accepted 19 February 2010; online 27 February 2010)

In the title centrosymmetric binuclear complex, [Cu2(C8H7O2)4(C6H6N2O)2], the Cu atoms [Cu⋯Cu = 2.6375 (6) Å] are bridged by four 4-methyl­benzoate (PMB) ligands. The four nearest O atoms around each CuII ion form a distorted square-planar arrangement, and the distorted square-pyramidal coordination is completed by the pyridine N atom of the isonicotinamide (INA) ligand. Each CuII ion is displaced by 0.2633 (1) Å from the plane of the four O atoms, with an average Cu—O distance of 1.974 (2) Å. The dihedral angles between carboxyl­ate groups and the adjacent benzene rings are 7.88 (19) and 9.68 (10)°, while the benzene rings are oriented at a dihedral angle of 85.90 (9)°. The pyridine ring is oriented at dihedral angles of 8.59 (7) and 83.89 (9)° with respect to the benzene rings. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. ππ contacts between the benzene rings and between the pyridine and benzene rings, [centroid–centroid distances = 3.563 (2) and 3.484 (2) Å, respectively] may further stabilize the crystal structure.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]), and for the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1995[Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.], 2009a[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955-m956.],b[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328-m1329.],c[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1582-m1583.]); Speier & Fulop (1989[Speier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331-2333.]); Usubaliev et al. (1980[Usubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091-1096.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H7O2)4(C6H6N2O)2]

  • Mr = 911.88

  • Monoclinic, P 21 /c

  • a = 11.2305 (2) Å

  • b = 23.4691 (4) Å

  • c = 8.0087 (1) Å

  • β = 102.128 (1)°

  • V = 2063.74 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 101 K

  • 0.30 × 0.24 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.735, Tmax = 0.862

  • 20056 measured reflections

  • 5101 independent reflections

  • 3629 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.087

  • S = 1.01

  • 5101 reflections

  • 281 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9733 (18)
Cu1—O2i 1.9703 (18)
Cu1—O3 1.9687 (18)
Cu1—O4 1.9836 (18)
Cu1—N1 2.161 (2)
Symmetry code: (i) -x+2, -y+2, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5ii 0.89 (3) 2.11 (3) 2.984 (3) 169 (3)
Symmetry code: (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a binuclear compound, consisting of two INA and four 4-methylbenzoate (PMB) ligands. The crystal structures of similar complexes of Cu2+ and Zn2+ ions, [Cu(C6H5COO)2(C5H5N)]2 (Usubaliev et al., 1980); [Cu(C6H5CO2)2(Py)]2 (Speier & Fulop, 1989), [Cu2(C6H5COO)4(C10H14N2O)2] (Hökelek et al., 1995), [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009a), [Zn2(C8H8NO2)4(C10H14N2O)2].2H2O (Hökelek et al., 2009b) and [Zn2(C9H10NO2)4(C10H14N2O)2] (Hökelek et al., 2009c) have also been reported. In these structures, the benzoate ion acts as a bidentate ligand.

The title dimeric complex, [Cu2(PMB)4(INA)2], has a centre of symmetry and two CuII ions are surrounded by four PMB groups and two INA ligands (Fig. 1). The INA ligands are coordinated to CuII ions through pyridine N atoms only. The PMB groups act as bridging ligands. The Cu···Cu' distance is 2.6375 (6) Å. The average Cu—O distance is 1.9740 (18) Å (Table 1), and four O atoms of the bridging PMB ligands around each CuII ion form a distorted square plane. The CuII ion lies 0.2633 (1) Å below the least-squares plane. The average O—Cu—O bond angle is 89.39 (8)°. A distorted square-pyramidal arrangement around each CuII ion is completed by the pyridine N atom of INA ligand at 2.162 (2) Å (Table 1) from the Cu atom. The N1—Cu1···Cu1' angle is 171.10 (6)° and the dihedral angle between plane through atoms Cu1, O1, O2, C1, Cu1', O1', O2', C1' and the plane through Cu1, O3, O4, C9, Cu1', O3', O4' and C9' atoms is 89.91 (9)°. The dihedral angles between the planar carboxylate groups [(O1/O2/C1) and (O3/O4/C9)] and the adjacent benzene rings A (C2—C7) and B (C10—C15) are 7.88 (19) and 9.68 (10) °, respectively, while that between rings A and B is A/B = 85.90 (9)°. Ring C (N1/C17—C21) is oriented with respect to rings A and B at dihedral angles A/C = 8.59 (7) and B/C = 83.89 (9) °.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contacts between the benzene rings and benzene and pyridine rings, Cg1—Cg1i and Cg3—Cg1ii, [symmetry codes (i): 1 - x, -y, 1 - z; (ii) x, y, z - 1, where Cg1 and Cg3 are centroids of the rings A (C2—C7) and C (N1/C17—C21)] may further stabilize the structure, with centroid-centroid distances of 3.563 (2) and 3.484 (2) Å, respectively.

Related literature top

For niacin, see: Krishnamachari (1974), and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1995, 2009a,b,c); Speier & Fulop (1989); Usubaliev et al. (1980).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.25 g, 5 mmol) in H2O (50 ml) and isonicotinamide (1.22 g, 10 mmol) in H2O (20 ml) with sodium 4-methylbenzoate (1.58 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving green single crystals.

Refinement top

Atoms H2A and H2B (for NH2) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.95 and 0.98 Å, for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. Primed atoms are generated by the symmetry operator: (') 2-x, 2-y, 2-z.
Tetrakis(µ-4-methylbenzoato-κ2O:O')bis[(isonicotinamide- κN)copper(II)] top
Crystal data top
[Cu2(C8H7O2)4(C6H6N2O)2]F(000) = 940
Mr = 911.88Dx = 1.467 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3119 reflections
a = 11.2305 (2) Åθ = 2.5–25.4°
b = 23.4691 (4) ŵ = 1.10 mm1
c = 8.0087 (1) ÅT = 101 K
β = 102.128 (1)°Block, green
V = 2063.74 (6) Å30.30 × 0.24 × 0.14 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5101 independent reflections
Radiation source: fine-focus sealed tube3629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1411
Tmin = 0.735, Tmax = 0.862k = 3131
20056 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0224P)2 + 2.5778P]
where P = (Fo2 + 2Fc2)/3
5101 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Cu2(C8H7O2)4(C6H6N2O)2]V = 2063.74 (6) Å3
Mr = 911.88Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.2305 (2) ŵ = 1.10 mm1
b = 23.4691 (4) ÅT = 101 K
c = 8.0087 (1) Å0.30 × 0.24 × 0.14 mm
β = 102.128 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5101 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3629 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.862Rint = 0.062
20056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.47 e Å3
5101 reflectionsΔρmin = 0.70 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.95060 (3)0.966319 (13)1.09852 (4)0.01099 (9)
O10.81764 (18)0.95045 (8)0.9002 (2)0.0191 (4)
O20.90275 (17)1.00855 (8)0.7371 (2)0.0168 (4)
O31.04702 (19)0.90818 (8)1.0089 (2)0.0203 (4)
O40.86037 (17)1.03478 (8)1.1481 (2)0.0180 (4)
O50.70039 (18)0.75397 (8)1.5592 (2)0.0183 (4)
N10.8976 (2)0.90548 (9)1.2719 (3)0.0139 (5)
N20.7819 (3)0.81071 (11)1.7825 (3)0.0200 (6)
H2A0.752 (3)0.7887 (13)1.854 (4)0.022 (8)*
H2B0.818 (3)0.8419 (16)1.818 (4)0.047 (12)*
C10.8203 (3)0.97549 (10)0.7606 (3)0.0130 (5)
C20.7165 (2)0.96483 (11)0.6131 (3)0.0122 (5)
C30.6147 (2)0.93399 (11)0.6322 (3)0.0138 (6)
H30.60950.91960.74130.017*
C40.5205 (3)0.92415 (11)0.4928 (3)0.0148 (6)
H40.45080.90340.50770.018*
C50.5265 (3)0.94428 (11)0.3308 (3)0.0147 (6)
C60.6286 (3)0.97476 (11)0.3131 (3)0.0159 (6)
H60.63440.98850.20350.019*
C70.7225 (2)0.98563 (10)0.4518 (3)0.0128 (5)
H70.79111.00720.43710.015*
C80.4259 (3)0.93213 (12)0.1789 (3)0.0221 (6)
H8A0.35160.92190.21790.033*
H8B0.44980.90050.11320.033*
H8C0.41060.96610.10640.033*
C91.1213 (2)0.91754 (11)0.9141 (3)0.0133 (5)
C101.1926 (3)0.86716 (11)0.8745 (3)0.0142 (6)
C111.1638 (3)0.81263 (11)0.9227 (3)0.0188 (6)
H111.09710.80750.97700.023*
C121.2313 (3)0.76602 (12)0.8923 (3)0.0224 (7)
H121.20900.72910.92320.027*
C131.3314 (3)0.77232 (12)0.8172 (3)0.0206 (6)
C141.3589 (3)0.82663 (12)0.7674 (3)0.0203 (6)
H141.42640.83180.71460.024*
C151.2897 (3)0.87351 (11)0.7932 (3)0.0176 (6)
H151.30870.91010.75520.021*
C161.4105 (3)0.72204 (13)0.7957 (4)0.0284 (7)
H16A1.36060.68740.77800.043*
H16B1.47480.71770.89850.043*
H16C1.44730.72830.69670.043*
C170.7944 (2)0.87572 (10)1.2239 (3)0.0134 (5)
H170.75010.87961.10960.016*
C180.7487 (2)0.83964 (11)1.3316 (3)0.0124 (5)
H180.67570.81881.29160.015*
C190.8121 (2)0.83446 (10)1.4999 (3)0.0127 (5)
C200.9206 (3)0.86403 (11)1.5496 (3)0.0170 (6)
H200.96740.86041.66260.020*
C210.9600 (3)0.89878 (11)1.4330 (3)0.0152 (6)
H211.03460.91881.46830.018*
C220.7601 (3)0.79620 (11)1.6172 (3)0.0142 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01279 (18)0.01089 (15)0.00968 (13)0.00136 (15)0.00323 (11)0.00055 (13)
O10.0192 (11)0.0233 (11)0.0133 (9)0.0080 (9)0.0000 (8)0.0042 (7)
O20.0154 (11)0.0202 (10)0.0137 (8)0.0071 (8)0.0003 (7)0.0035 (7)
O30.0299 (13)0.0129 (9)0.0236 (10)0.0023 (9)0.0177 (9)0.0009 (8)
O40.0208 (11)0.0142 (9)0.0221 (9)0.0023 (9)0.0116 (8)0.0033 (8)
O50.0255 (12)0.0147 (10)0.0160 (9)0.0046 (9)0.0077 (8)0.0016 (7)
N10.0156 (13)0.0140 (11)0.0130 (10)0.0012 (10)0.0050 (9)0.0011 (8)
N20.0348 (17)0.0132 (12)0.0140 (11)0.0057 (12)0.0094 (11)0.0010 (9)
C10.0174 (15)0.0085 (13)0.0143 (11)0.0016 (11)0.0058 (10)0.0026 (9)
C20.0137 (14)0.0096 (11)0.0128 (11)0.0027 (11)0.0018 (9)0.0023 (10)
C30.0153 (16)0.0133 (13)0.0141 (12)0.0024 (11)0.0061 (10)0.0007 (10)
C40.0127 (15)0.0136 (13)0.0179 (12)0.0008 (11)0.0028 (11)0.0016 (10)
C50.0161 (16)0.0110 (12)0.0162 (12)0.0039 (11)0.0011 (10)0.0026 (10)
C60.0218 (16)0.0124 (13)0.0138 (11)0.0015 (11)0.0045 (11)0.0006 (10)
C70.0144 (15)0.0103 (12)0.0150 (12)0.0002 (11)0.0062 (10)0.0001 (9)
C80.0226 (18)0.0209 (15)0.0198 (13)0.0015 (13)0.0026 (12)0.0029 (11)
C90.0125 (15)0.0159 (13)0.0099 (11)0.0029 (11)0.0013 (10)0.0023 (9)
C100.0161 (16)0.0154 (13)0.0104 (11)0.0002 (11)0.0013 (10)0.0003 (10)
C110.0192 (17)0.0180 (14)0.0195 (13)0.0011 (12)0.0049 (11)0.0025 (11)
C120.0265 (19)0.0149 (14)0.0241 (14)0.0034 (13)0.0017 (12)0.0022 (11)
C130.0245 (18)0.0209 (15)0.0149 (13)0.0078 (13)0.0009 (11)0.0017 (11)
C140.0202 (17)0.0247 (16)0.0171 (13)0.0041 (13)0.0063 (11)0.0008 (11)
C150.0222 (17)0.0136 (13)0.0160 (12)0.0004 (12)0.0016 (11)0.0003 (10)
C160.036 (2)0.0219 (16)0.0264 (15)0.0131 (14)0.0043 (14)0.0000 (12)
C170.0183 (16)0.0113 (12)0.0110 (11)0.0004 (11)0.0036 (10)0.0014 (9)
C180.0138 (15)0.0112 (12)0.0130 (11)0.0006 (11)0.0049 (10)0.0026 (10)
C190.0177 (16)0.0093 (12)0.0127 (11)0.0007 (11)0.0065 (10)0.0005 (9)
C200.0202 (17)0.0189 (14)0.0108 (11)0.0003 (12)0.0003 (10)0.0026 (10)
C210.0140 (15)0.0152 (13)0.0160 (12)0.0036 (11)0.0026 (10)0.0002 (10)
C220.0186 (16)0.0134 (13)0.0118 (12)0.0009 (12)0.0060 (11)0.0033 (10)
Geometric parameters (Å, º) top
Cu1—Cu1i2.6375 (6)C8—H8A0.9800
Cu1—O11.9733 (18)C8—H8B0.9800
Cu1—O2i1.9703 (18)C8—H8C0.9800
Cu1—O31.9687 (18)C9—O4i1.259 (3)
Cu1—O41.9836 (18)C9—C101.499 (4)
Cu1—N12.161 (2)C10—C111.394 (4)
O1—C11.269 (3)C10—C151.390 (4)
O2—Cu1i1.9703 (18)C11—C121.381 (4)
O2—C11.252 (3)C11—H110.9500
O3—C91.259 (3)C12—C131.389 (4)
O4—C9i1.259 (3)C12—H120.9500
O5—C221.232 (3)C13—C141.389 (4)
N1—C171.338 (3)C13—C161.508 (4)
N1—C211.342 (3)C14—C151.387 (4)
N2—C221.339 (3)C14—H140.9500
N2—H2A0.89 (3)C15—H150.9500
N2—H2B0.85 (4)C16—H16A0.9800
C1—C21.497 (3)C16—H16B0.9800
C2—C31.388 (4)C16—H16C0.9800
C2—C71.397 (3)C17—C181.382 (3)
C3—C41.387 (4)C17—H170.9500
C3—H30.9500C18—C191.391 (3)
C4—C51.395 (3)C18—H180.9500
C4—H40.9500C19—C201.387 (4)
C5—C61.384 (4)C19—C221.503 (3)
C5—C81.503 (4)C20—C211.381 (3)
C6—C71.385 (4)C20—H200.9500
C6—H60.9500C21—H210.9500
C7—H70.9500
O1—Cu1—Cu1i88.51 (5)H8A—C8—H8B109.5
O1—Cu1—O488.96 (8)H8A—C8—H8C109.5
O1—Cu1—N197.37 (8)H8B—C8—H8C109.5
O2i—Cu1—Cu1i79.79 (5)O3—C9—O4i125.3 (2)
O2i—Cu1—O1168.28 (7)O3—C9—C10116.2 (2)
O2i—Cu1—O490.82 (8)O4i—C9—C10118.6 (2)
O2i—Cu1—N194.19 (8)C11—C10—C9120.0 (2)
O3—Cu1—Cu1i82.21 (5)C15—C10—C9121.4 (2)
O3—Cu1—O187.53 (8)C15—C10—C11118.6 (3)
O3—Cu1—O2i90.25 (8)C10—C11—H11119.6
O3—Cu1—O4167.82 (7)C12—C11—C10120.7 (3)
O3—Cu1—N191.34 (8)C12—C11—H11119.6
O4—Cu1—Cu1i86.04 (5)C11—C12—C13121.1 (3)
O4—Cu1—N1100.68 (8)C11—C12—H12119.5
N1—Cu1—Cu1i171.10 (6)C13—C12—H12119.5
C1—O1—Cu1117.87 (17)C12—C13—C16121.0 (3)
C1—O2—Cu1i128.72 (16)C14—C13—C12118.1 (3)
C9—O3—Cu1125.69 (17)C14—C13—C16120.9 (3)
C9i—O4—Cu1120.50 (17)C13—C14—H14119.3
C17—N1—Cu1119.94 (16)C15—C14—C13121.3 (3)
C17—N1—C21117.5 (2)C15—C14—H14119.3
C21—N1—Cu1122.42 (18)C10—C15—H15119.9
C22—N2—H2A118 (2)C14—C15—C10120.2 (3)
C22—N2—H2B121 (2)C14—C15—H15119.9
H2A—N2—H2B120 (3)C13—C16—H16A109.5
O1—C1—C2117.3 (2)C13—C16—H16B109.5
O2—C1—O1125.1 (2)C13—C16—H16C109.5
O2—C1—C2117.6 (2)H16A—C16—H16B109.5
C3—C2—C1121.6 (2)H16A—C16—H16C109.5
C3—C2—C7119.1 (2)H16B—C16—H16C109.5
C7—C2—C1119.4 (2)N1—C17—C18123.6 (2)
C2—C3—H3119.9N1—C17—H17118.2
C4—C3—C2120.3 (2)C18—C17—H17118.2
C4—C3—H3119.9C17—C18—C19118.5 (2)
C3—C4—C5121.0 (3)C17—C18—H18120.7
C3—C4—H4119.5C19—C18—H18120.7
C5—C4—H4119.5C18—C19—C22118.1 (2)
C4—C5—C8120.9 (3)C20—C19—C18118.3 (2)
C6—C5—C4118.2 (2)C20—C19—C22123.6 (2)
C6—C5—C8120.9 (2)C19—C20—H20120.4
C5—C6—C7121.4 (2)C21—C20—C19119.3 (2)
C5—C6—H6119.3C21—C20—H20120.4
C7—C6—H6119.3N1—C21—C20122.8 (3)
C2—C7—H7120.0N1—C21—H21118.6
C6—C7—C2120.0 (2)C20—C21—H21118.6
C6—C7—H7120.0O5—C22—N2123.4 (2)
C5—C8—H8A109.5O5—C22—C19119.8 (2)
C5—C8—H8B109.5N2—C22—C19116.9 (2)
C5—C8—H8C109.5
Cu1i—Cu1—O1—C11.45 (18)O2—C1—C2—C78.2 (4)
O2i—Cu1—O1—C14.4 (5)C1—C2—C3—C4179.2 (2)
O3—Cu1—O1—C183.72 (19)C7—C2—C3—C40.1 (4)
O4—Cu1—O1—C184.61 (19)C1—C2—C7—C6178.2 (2)
N1—Cu1—O1—C1174.75 (19)C3—C2—C7—C60.9 (4)
Cu1i—Cu1—O3—C95.3 (2)C2—C3—C4—C50.8 (4)
O1—Cu1—O3—C994.1 (2)C3—C4—C5—C60.5 (4)
O2i—Cu1—O3—C974.4 (2)C3—C4—C5—C8178.2 (2)
O4—Cu1—O3—C920.7 (5)C4—C5—C6—C70.5 (4)
N1—Cu1—O3—C9168.6 (2)C8—C5—C6—C7179.2 (2)
Cu1i—Cu1—O4—C9i2.61 (18)C5—C6—C7—C21.2 (4)
O1—Cu1—O4—C9i91.19 (19)O3—C9—C10—C118.4 (4)
O2i—Cu1—O4—C9i77.09 (19)O3—C9—C10—C15170.2 (2)
O3—Cu1—O4—C9i17.9 (5)O4i—C9—C10—C11171.8 (2)
N1—Cu1—O4—C9i171.51 (19)O4i—C9—C10—C159.6 (4)
O1—Cu1—N1—C174.4 (2)C9—C10—C11—C12177.8 (2)
O1—Cu1—N1—C21179.6 (2)C15—C10—C11—C120.8 (4)
O2i—Cu1—N1—C17177.58 (19)C9—C10—C15—C14176.1 (2)
O2i—Cu1—N1—C212.4 (2)C11—C10—C15—C142.6 (4)
O3—Cu1—N1—C1792.1 (2)C10—C11—C12—C131.7 (4)
O3—Cu1—N1—C2192.7 (2)C11—C12—C13—C142.5 (4)
O4—Cu1—N1—C1785.95 (19)C11—C12—C13—C16175.5 (3)
O4—Cu1—N1—C2189.3 (2)C12—C13—C14—C150.8 (4)
Cu1—O1—C1—O22.0 (3)C16—C13—C14—C15177.3 (3)
Cu1—O1—C1—C2177.69 (16)C13—C14—C15—C101.8 (4)
Cu1i—O2—C1—O11.3 (4)N1—C17—C18—C191.0 (4)
Cu1i—O2—C1—C2178.39 (16)C17—C18—C19—C202.6 (4)
Cu1—O3—C9—O4i5.1 (4)C17—C18—C19—C22178.6 (2)
Cu1—O3—C9—C10174.71 (16)C18—C19—C20—C212.1 (4)
Cu1—N1—C17—C18174.35 (19)C22—C19—C20—C21179.1 (2)
C21—N1—C17—C181.1 (4)C18—C19—C22—O530.9 (4)
Cu1—N1—C21—C20173.7 (2)C18—C19—C22—N2148.8 (3)
C17—N1—C21—C201.6 (4)C20—C19—C22—O5147.9 (3)
O1—C1—C2—C37.0 (4)C20—C19—C22—N232.4 (4)
O1—C1—C2—C7172.1 (2)C19—C20—C21—N10.1 (4)
O2—C1—C2—C3172.7 (2)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5ii0.89 (3)2.11 (3)2.984 (3)169 (3)
Symmetry code: (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C8H7O2)4(C6H6N2O)2]
Mr911.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)101
a, b, c (Å)11.2305 (2), 23.4691 (4), 8.0087 (1)
β (°) 102.128 (1)
V3)2063.74 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.30 × 0.24 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.735, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
20056, 5101, 3629
Rint0.062
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.087, 1.01
No. of reflections5101
No. of parameters281
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.70

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—O11.9733 (18)Cu1—O41.9836 (18)
Cu1—O2i1.9703 (18)Cu1—N12.161 (2)
Cu1—O31.9687 (18)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5ii0.89 (3)2.11 (3)2.984 (3)169 (3)
Symmetry code: (ii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 108 T657).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1582–m1583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955–m956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328–m1329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpeier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331–2333.  CSD CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsubaliev, B. T., Movsumov, E. M., Musaev, F. N., Nadzhafov, G. N., Amiraslanov, I. R. & Mamedov, Kh. S. (1980). Koord. Khim. 6, 1091–1096.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m334-m335
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds