organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Carvedilol di­hydrogen phosphate propan-2-ol solvate from powder diffraction data

aDepartment of Chemistry, Moscow State University, 119991 Moscow, Russian Federation, and bBION Ltd, 109 km., Kiev Highway, Obninsk 249032, Kaluga Region, Russian Federation
*Correspondence e-mail: vladimir@struct.chem.msu.ru

(Received 4 February 2010; accepted 9 February 2010; online 13 February 2010)

In the cation of the title compound, C24H27N2O4+·H2PO4·C3H8O [systematic name: 3-(9H-carbazol-4-yl­oxy)-2-hydr­oxy-N-[2-(2-methoxy­phen­oxy)eth­yl]propan-1-aminium dihydro­gen phosphate propan-2-ol solvate], the mean planes of the tricyclic carbazole system and the benzene ring form a dihedral angle of 42.00 (16)°. In the crystal structure, classical inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the cations, anions and solvent mol­ecules into layers parallel to the ac plane.

Related literature

For details of the synthesis, see: Brook et al. (2005[Brook, C. S., Chen, W., Dell'Orco, P. C., Katrincic, L. M., Lovet, A. M., Oh, C. K., Spoors, P. G. & Werner, C. (2005). US Patent 20050240027A1.]). For the indexing algorithm, see: Werner et al. (1985[Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367-370.]). For the crystal structures of carvedilol as a free base and a cation, see: Chen et al. (1998[Chen, W.-M., Zeng, L.-M., Yu, K.-B. & Xu, J.-H. (1998). Jiegou Huaxue, 17, 325-328.]); Yathirajan et al. (2007[Yathirajan, H. S., Bindya, S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o542-o544.]); Chernyshev et al. (2009[Chernyshev, V. V., Machula, A. A., Kukushkin, S. Y. & Velikodny, Y. A. (2009). Acta Cryst. E65, o2020-o2021.]).

[Scheme 1]

Experimental

Crystal data
  • C24H27N2O4+·H2PO4·C3H8O

  • Mr = 564.56

  • Triclinic, [P \overline 1]

  • a = 11.5516 (11) Å

  • b = 16.6523 (19) Å

  • c = 7.8643 (8) Å

  • α = 95.404 (15)°

  • β = 94.635 (16)°

  • γ = 71.247 (14)°

  • V = 1424.1 (3) Å3

  • Z = 2

  • Cu Kα1 radiation, λ = 1.54059 Å

  • μ = 1.32 mm−1

  • T = 295 K

  • flat_sheet, 15 × 1 mm

Data collection
  • G670 Guinier camera imaging plate diffractometer

  • Specimen mounting: thin layer in the specimen holder of the camera

  • Data collection mode: transmission

  • Scan method: continuous

  • 2θmin = 3.50°, 2θmax = 85.00°, 2θstep = 0.01°

Refinement
  • Rp = 0.020

  • Rwp = 0.026

  • Rexp = 0.012

  • RBragg = 0.051

  • χ2 = 4.516

  • 8151 data points

  • 183 parameters

  • 134 restraints

  • H-atom parameters constrained

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O18—H18⋯O34 0.82 1.89 2.681 (10) 165
N19—H19A⋯O34i 0.90 1.75 2.568 (10) 149
N19—H19B⋯O18 0.90 2.46 2.772 (11) 101
N19—H19B⋯O22 0.90 2.29 2.646 (10) 103
O32—H32⋯O33ii 0.82 1.90 2.672 (10) 156
O35—H35⋯O36iii 0.82 1.99 2.619 (9) 132
O36—H36⋯O33 0.82 2.00 2.590 (9) 128
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x-1, -y+1, -z+1; (iii) -x-1, -y+1, -z.

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002[Huber (2002). G670 Imaging Plate Guinier Camera Software. Huber Diffraktionstechnik GmbH, Rimsting, Germany.]); cell refinement: MRIA (Zlokazov & Chernyshev, 1992[Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447-451.]); data reduction: G670 Imaging Plate Guinier Camera Software; method used to solve structure: simulated annealing (Zhukov et al., 2001[Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5-9.]); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: MRIA and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The crystal structures of two polymorphs of carvedilol free base (Chen et al., 1998; Yathirajan et al., 2007) and carvedilol dihydrogen phosphate hemihydrate Form I (Chernyshev et al., 2009) were recently reported. As a contribution to structural study of carvedilol, herewith we report the crystal structure of the title compound (I) (Fig. 1).

One of two amino H atoms (H19B) is involved in intramolecular N—H···O hydrogen bonds (Table 1), which influence the cation conformation. The mean planes of the tricyclic carbazole system and the benzene ring form a dihedral angle of 42.00 (16)°. In the crystal structure, the classical intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link cations, anions and solvent molecules into layers parallel to the ac plane.

Related literature top

For details of the synthesis, see: Brook et al. (2005). For the indexing algorithm, see: Werner et al. (1985). For the crystal structures of carvedilol as a free base and a cation, see: Chen et al. (1998); Yathirajan et al. (2007); Chernyshev et al. (2009).

Experimental top

Carvedilol dihydrogen phosphate hemihydrate (CDPH) was synthesized in accordance with the known procedure (Brook et al., 2005). Synthesis of carvedilol dihydrogen phosphate isopropanol solvate was carried out under stirring in round bottom four necked flask (0.5 L) equipped with thermometer and heated addition funnel. A hot solution (55-60°C) of CDPH (4 g, 8 mmol) in MeOH (70 ml) was placed in heated (60°C) addition funnel. Then this solution was added dropwise to isopropanol (250 ml) for 40 minutes at -20°C. The mixture was left to stand at -17°C for 20 h. The precipitate was filtered on suction funnel, washed with cooled (10°C) isopropanol (20 ml) and then dried under vacuum at 45°C for 17 h. Carvedilol dihydrogen phosphate isopropanol solvate (3.8 g, yield 95%) was obtained with purity of 99.8 % (measured with HPLC). IR-spectrum is shown on Fig. 2.

Refinement top

During the exposure, the specimen was spun in its plane to improve particle statistics. The triclinic unit cell dimensions were determined with the indexing program TREOR (Werner et al., 1985), M20 = 43, using the first 30 peak positions. The structure of (I) was solved by simulated annealing procedure (Zhukov et al., 2001) and refined following the methodology described in (Chernyshev et al., 2009). All non-H atoms were isotropically refined. H atoms were placed in geometrically calculated positions (O—H 0.82 Å; N—H 0.86–0.90 Å; C—H 0.93–0.98 Å) and included in the refinement in riding motion approximation [Uiso(H) = 1.2Ueq of the carrying atom (1.5Ueq for O-H and Me groups)]. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 3.

Computing details top

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002); cell refinement: MRIA (Zlokazov & Chernyshev, 1992); data reduction: G670 Imaging Plate Guinier Camera Software (Huber, 2002); program(s) used to solve structure: simulated annealing (Zhukov et al., 2001); program(s) used to refine structure: MRIA (Zlokazov & Chernyshev, 1992); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atomic numbering and 50% displacement spheres.
[Figure 2] Fig. 2. IR spectrum for (I).
[Figure 3] Fig. 3. The Rietveld plot, showing the observed and difference profiles for (I). The reflection positions are shown above the difference profile.
3-(9H-carbazol-4-yloxy)-2-hydroxy-N-[2-(2- methoxyphenoxy)ethyl]propan-1-aminium dihydrogen phosphate propan-2-ol solvate top
Crystal data top
C24H27N2O4+·H2PO4·C3H8OZ = 2
Mr = 564.56F(000) = 600
Triclinic, P1Dx = 1.317 Mg m3
a = 11.5516 (11) ÅCu Kα1 radiation, λ = 1.54059 Å
b = 16.6523 (19) ŵ = 1.32 mm1
c = 7.8643 (8) ÅT = 295 K
α = 95.404 (15)°Particle morphology: no specific habit
β = 94.635 (16)°light grey
γ = 71.247 (14)°flat_sheet, 15 × 1 mm
V = 1424.1 (3) Å3Specimen preparation: Prepared at 295 K and 101 kPa
Data collection top
G670 Guinier camera imaging plate
diffractometer
Data collection mode: transmission
Radiation source: line-focus sealed tubeScan method: continuous
Curved Germanium (111) monochromator2θmin = 3.50°, 2θmax = 85.00°, 2θstep = 0.01°
Specimen mounting: thin layer in the specimen holder of the camera
Refinement top
Refinement on InetProfile function: split-type pseudo-Voigt (Toraya, 1986)
Least-squares matrix: full with fixed elements per cycle183 parameters
Rp = 0.020134 restraints
Rwp = 0.0260 constraints
Rexp = 0.012H-atom parameters constrained
RBragg = 0.051Weighting scheme based on measured s.u.'s
χ2 = 4.516(Δ/σ)max = 0.002
8151 data pointsBackground function: Chebyshev polynomial up to the 5th order
Excluded region(s): nonePreferred orientation correction: March-Dollase (Dollase, 1986); direction of preferred orientation 001, texture parameter r = 0.978(4).
Crystal data top
C24H27N2O4+·H2PO4·C3H8Oγ = 71.247 (14)°
Mr = 564.56V = 1424.1 (3) Å3
Triclinic, P1Z = 2
a = 11.5516 (11) ÅCu Kα1 radiation, λ = 1.54059 Å
b = 16.6523 (19) ŵ = 1.32 mm1
c = 7.8643 (8) ÅT = 295 K
α = 95.404 (15)°flat_sheet, 15 × 1 mm
β = 94.635 (16)°
Data collection top
G670 Guinier camera imaging plate
diffractometer
Scan method: continuous
Specimen mounting: thin layer in the specimen holder of the camera2θmin = 3.50°, 2θmax = 85.00°, 2θstep = 0.01°
Data collection mode: transmission
Refinement top
Rp = 0.0208151 data points
Rwp = 0.026183 parameters
Rexp = 0.012134 restraints
RBragg = 0.051H-atom parameters constrained
χ2 = 4.516
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1569 (9)0.4372 (6)0.1923 (11)0.081 (5)*
H1A0.23230.39590.23220.097*
H1B0.15320.43180.06820.097*
C20.0481 (8)0.4175 (5)0.2558 (11)0.060 (4)*
H20.06020.41050.37900.072*
C30.0364 (9)0.3355 (5)0.1605 (11)0.075 (5)*
H3A0.02840.31960.20510.090*
H3B0.01840.34290.03930.090*
C40.1649 (9)0.1898 (5)0.1249 (12)0.074 (4)*
C50.0787 (9)0.1645 (6)0.0178 (11)0.082 (5)*
H50.00510.20440.01490.098*
C60.1032 (9)0.0783 (5)0.0411 (11)0.073 (5)*
H60.04360.06210.10890.087*
C70.2137 (9)0.0168 (6)0.0007 (13)0.081 (4)*
H70.22830.04000.03830.097*
C80.3021 (8)0.0440 (6)0.0988 (11)0.063 (4)*
N90.4179 (7)0.0027 (4)0.1591 (9)0.059 (3)*
H90.45230.05620.13560.071*
C100.4702 (9)0.0498 (6)0.2632 (11)0.078 (5)*
C110.5820 (9)0.0296 (6)0.3584 (12)0.077 (5)*
H110.63500.02590.35700.092*
C120.6116 (9)0.0955 (6)0.4557 (12)0.090 (5)*
H120.68760.08420.51480.108*
C130.5289 (9)0.1788 (6)0.4663 (12)0.077 (4)*
H130.54900.22090.53700.093*
C140.4171 (9)0.1988 (6)0.3720 (11)0.068 (4)*
H140.36380.25430.37660.082*
C150.3860 (8)0.1341 (5)0.2696 (11)0.062 (4)*
C160.2776 (9)0.1293 (5)0.1691 (12)0.073 (5)*
O170.1515 (5)0.2726 (4)0.1889 (7)0.070 (3)*
O180.0596 (6)0.4879 (4)0.2224 (7)0.079 (3)*
H180.11710.48350.27140.119*
N190.1589 (7)0.5250 (5)0.2533 (9)0.085 (4)*
H19A0.15700.53090.36800.102*
H19B0.09100.56320.21060.102*
C200.2692 (9)0.5444 (6)0.2024 (12)0.074 (4)*
H20A0.27220.53810.07880.089*
H20B0.34290.50430.25000.089*
C210.2643 (9)0.6346 (6)0.2664 (12)0.086 (5)*
H21A0.28500.63780.38830.103*
H21B0.32100.65290.20760.103*
O220.1417 (6)0.6860 (4)0.2302 (7)0.070 (3)*
C230.0870 (9)0.7546 (6)0.3420 (12)0.080 (5)*
C240.0359 (9)0.7649 (6)0.3745 (12)0.088 (5)*
C250.1014 (9)0.8340 (6)0.4794 (11)0.091 (5)*
H250.18170.84030.50240.109*
C260.0462 (9)0.8941 (6)0.5502 (12)0.079 (4)*
H260.09020.94040.61970.095*
C270.0740 (9)0.8846 (6)0.5168 (13)0.090 (5)*
H270.10950.92550.56130.108*
C280.1419 (9)0.8137 (6)0.4164 (12)0.089 (5)*
H280.22360.80600.39940.107*
O290.0815 (6)0.7013 (4)0.3012 (8)0.073 (3)*
C300.2122 (9)0.7240 (6)0.2683 (12)0.093 (5)*
H30A0.23280.67520.21790.140*
H30B0.23870.76860.19130.140*
H30C0.25210.74320.37390.140*
P310.3639 (3)0.52870 (19)0.3615 (4)0.0600 (14)*
O320.4390 (6)0.5878 (4)0.4988 (9)0.115 (3)*
H320.47750.56150.54020.173*
O330.4183 (6)0.4583 (4)0.3049 (8)0.101 (3)*
O340.2334 (7)0.4907 (4)0.4313 (8)0.127 (3)*
O350.3653 (6)0.5787 (4)0.2088 (8)0.092 (3)*
H350.40980.56440.13370.138*
O360.4622 (6)0.3709 (4)0.0315 (8)0.085 (3)*
H360.41780.39870.07060.128*
C370.4205 (9)0.2878 (6)0.0907 (12)0.089 (5)*
H370.45950.28800.19700.107*
C380.2846 (9)0.2616 (6)0.1240 (13)0.093 (5)*
H38A0.26420.30070.20950.140*
H38B0.24640.26190.02020.140*
H38C0.25610.20540.16350.140*
C390.4550 (10)0.2278 (6)0.0426 (13)0.105 (5)*
H39A0.54240.24550.06230.158*
H39B0.42720.17140.00370.158*
H39C0.41750.22800.14710.158*
Geometric parameters (Å, º) top
C1—N191.502 (12)C20—H20A0.97
C1—C21.528 (15)C20—H20B0.97
C1—H1A0.97C21—O221.421 (10)
C1—H1B0.97C21—H21A0.97
C2—O181.435 (9)C21—H21B0.97
C2—C31.533 (13)O22—C231.383 (10)
C2—H20.98C23—C281.395 (15)
C3—O171.420 (10)C23—C241.415 (15)
C3—H3A0.97C24—O291.388 (13)
C3—H3B0.97C24—C251.392 (12)
C4—O171.387 (11)C25—C261.402 (16)
C4—C51.395 (14)C25—H250.93
C4—C161.407 (12)C26—C271.390 (15)
C5—C61.410 (13)C26—H260.93
C5—H50.93C27—C281.400 (12)
C6—C71.390 (12)C27—H270.93
C6—H60.93C28—H280.93
C7—C81.401 (14)O29—C301.441 (12)
C7—H70.93C30—H30A0.96
C8—N91.385 (10)C30—H30B0.96
C8—C161.422 (12)C30—H30C0.96
N9—C101.387 (13)P31—O321.513 (7)
N9—H90.86P31—O341.514 (8)
C10—C111.398 (13)P31—O331.516 (8)
C10—C151.427 (11)P31—O351.520 (7)
C11—C121.395 (14)O32—H320.82
C11—H110.93O35—H350.82
C12—C131.408 (12)O36—C371.421 (11)
C12—H120.93O36—H360.82
C13—C141.394 (13)C37—C381.496 (14)
C13—H130.93C37—C391.499 (14)
C14—C151.406 (13)C37—H370.98
C14—H140.93C38—H38A0.96
C15—C161.447 (14)C38—H38B0.96
O18—H180.82C38—H38C0.96
N19—C201.503 (14)C39—H39A0.96
N19—H19A0.90C39—H39B0.96
N19—H19B0.90C39—H39C0.96
C20—C211.523 (13)
N19—C1—C2112.3 (7)N19—C20—C21110.7 (7)
N19—C1—H1A109.2N19—C20—H20A109.5
C2—C1—H1A109.2C21—C20—H20A109.5
N19—C1—H1B109.1N19—C20—H20B109.5
C2—C1—H1B109.1C21—C20—H20B109.5
H1A—C1—H1B107.9H20A—C20—H20B108.1
O18—C2—C1107.6 (7)O22—C21—C20105.5 (8)
O18—C2—C3110.5 (7)O22—C21—H21A110.6
C1—C2—C3109.4 (7)C20—C21—H21A110.7
O18—C2—H2109.7O22—C21—H21B110.6
C1—C2—H2109.7C20—C21—H21B110.6
C3—C2—H2109.8H21A—C21—H21B108.7
O17—C3—C2105.5 (7)C23—O22—C21119.7 (7)
O17—C3—H3A110.6O22—C23—C28125.2 (9)
C2—C3—H3A110.6O22—C23—C24115.2 (9)
O17—C3—H3B110.6C28—C23—C24119.6 (8)
C2—C3—H3B110.7O29—C24—C25124.2 (10)
H3A—C3—H3B108.7O29—C24—C23115.7 (7)
O17—C4—C5125.1 (7)C25—C24—C23120.0 (10)
O17—C4—C16115.3 (8)C24—C25—C26119.9 (10)
C5—C4—C16119.6 (8)C24—C25—H25120.1
C4—C5—C6120.0 (8)C26—C25—H25120.0
C4—C5—H5120.0C27—C26—C25120.1 (8)
C6—C5—H5120.0C27—C26—H26119.9
C7—C6—C5122.1 (9)C25—C26—H26120.0
C7—C6—H6119.0C26—C27—C28120.3 (10)
C5—C6—H6119.0C26—C27—H27119.9
C6—C7—C8117.3 (9)C28—C27—H27119.9
C6—C7—H7121.4C23—C28—C27120.0 (10)
C8—C7—H7121.3C23—C28—H28120.0
N9—C8—C7129.6 (8)C27—C28—H28120.0
N9—C8—C16108.1 (8)C24—O29—C30117.0 (7)
C7—C8—C16122.0 (8)O29—C30—H30A109.5
C8—N9—C10109.8 (7)O29—C30—H30B109.5
C8—N9—H9125.1H30A—C30—H30B109.5
C10—N9—H9125.1O29—C30—H30C109.5
N9—C10—C11129.7 (8)H30A—C30—H30C109.5
N9—C10—C15108.6 (8)H30B—C30—H30C109.5
C11—C10—C15121.6 (9)O32—P31—O34109.5 (4)
C12—C11—C10117.9 (8)O32—P31—O33109.8 (4)
C12—C11—H11121.1O34—P31—O33109.7 (4)
C10—C11—H11121.1O32—P31—O35109.2 (4)
C11—C12—C13121.3 (9)O34—P31—O35109.6 (5)
C11—C12—H12119.3O33—P31—O35109.1 (4)
C13—C12—H12119.3P31—O32—H32107
C14—C13—C12120.7 (9)P31—O35—H35106
C14—C13—H13119.6C37—O36—H36111
C12—C13—H13119.7O36—C37—C38109.2 (9)
C13—C14—C15119.1 (8)O36—C37—C39108.8 (8)
C13—C14—H14120.4C38—C37—C39110.6 (8)
C15—C14—H14120.4O36—C37—H37109.4
C14—C15—C10119.2 (8)C38—C37—H37109.4
C14—C15—C16134.5 (7)C39—C37—H37109.4
C10—C15—C16106.1 (8)C37—C38—H38A109.5
C4—C16—C8118.8 (9)C37—C38—H38B109.5
C4—C16—C15133.7 (8)H38A—C38—H38B109.5
C8—C16—C15107.3 (7)C37—C38—H38C109.5
C4—O17—C3118.1 (7)H38A—C38—H38C109.4
C2—O18—H18110H38B—C38—H38C109.5
C1—N19—C20113.6 (7)C37—C39—H39A109.5
C1—N19—H19A108.8C37—C39—H39B109.5
C20—N19—H19A108.9H39A—C39—H39B109.5
C1—N19—H19B108.9C37—C39—H39C109.5
C20—N19—H19B108.9H39A—C39—H39C109.5
H19A—N19—H19B107.7H39B—C39—H39C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18···O340.821.892.681 (10)165
N19—H19A···O34i0.901.752.568 (10)149
N19—H19B···O180.902.462.772 (11)101
N19—H19B···O220.902.292.646 (10)103
O32—H32···O33ii0.821.902.672 (10)156
O35—H35···O36iii0.821.992.619 (9)132
O36—H36···O330.822.002.590 (9)128
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+1, z+1; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H27N2O4+·H2PO4·C3H8O
Mr564.56
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)11.5516 (11), 16.6523 (19), 7.8643 (8)
α, β, γ (°)95.404 (15), 94.635 (16), 71.247 (14)
V3)1424.1 (3)
Z2
Radiation typeCu Kα1, λ = 1.54059 Å
µ (mm1)1.32
Specimen shape, size (mm)Flat_sheet, 15 × 1
Data collection
DiffractometerG670 Guinier camera imaging plate
diffractometer
Specimen mountingThin layer in the specimen holder of the camera
Data collection modeTransmission
Scan methodContinuous
2θ values (°)2θmin = 3.50 2θmax = 85.00 2θstep = 0.01
Refinement
R factors and goodness of fitRp = 0.020, Rwp = 0.026, Rexp = 0.012, RBragg = 0.051, χ2 = 4.516
No. of data points8151
No. of parameters183
No. of restraints134
H-atom treatmentH-atom parameters constrained

Computer programs: G670 Imaging Plate Guinier Camera Software (Huber, 2002), simulated annealing (Zhukov et al., 2001), PLATON (Spek, 2009), MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18···O340.821.892.681 (10)165
N19—H19A···O34i0.901.752.568 (10)149
N19—H19B···O180.902.462.772 (11)101
N19—H19B···O220.902.292.646 (10)103
O32—H32···O33ii0.821.902.672 (10)156
O35—H35···O36iii0.821.992.619 (9)132
O36—H36···O330.822.002.590 (9)128
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+1, z+1; (iii) x1, y+1, z.
 

Acknowledgements

VVC and YAV acknowledge the Inter­national Centre for Diffraction Data (ICDD) for supporting this study (grant No. GiA 03-06).

References

First citationBrook, C. S., Chen, W., Dell'Orco, P. C., Katrincic, L. M., Lovet, A. M., Oh, C. K., Spoors, P. G. & Werner, C. (2005). US Patent 20050240027A1.  Google Scholar
First citationChen, W.-M., Zeng, L.-M., Yu, K.-B. & Xu, J.-H. (1998). Jiegou Huaxue, 17, 325–328.  CAS Google Scholar
First citationChernyshev, V. V., Machula, A. A., Kukushkin, S. Y. & Velikodny, Y. A. (2009). Acta Cryst. E65, o2020–o2021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuber (2002). G670 Imaging Plate Guinier Camera Software. Huber Diffraktionstechnik GmbH, Rimsting, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToraya, H. (1986). J. Appl. Cryst. 19, 440–447.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWerner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367–370.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYathirajan, H. S., Bindya, S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o542–o544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5–9.  Web of Science CrossRef CAS Google Scholar
First citationZlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447–451.  CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds