organic compounds
Carvedilol dihydrogen phosphate propan-2-ol solvate from powder diffraction data
aDepartment of Chemistry, Moscow State University, 119991 Moscow, Russian Federation, and bBION Ltd, 109 km., Kiev Highway, Obninsk 249032, Kaluga Region, Russian Federation
*Correspondence e-mail: vladimir@struct.chem.msu.ru
In the cation of the title compound, C24H27N2O4+·H2PO4−·C3H8O [systematic name: 3-(9H-carbazol-4-yloxy)-2-hydroxy-N-[2-(2-methoxyphenoxy)ethyl]propan-1-aminium dihydrogen phosphate propan-2-ol solvate], the mean planes of the tricyclic carbazole system and the benzene ring form a dihedral angle of 42.00 (16)°. In the classical intermolecular O—H⋯O and N—H⋯O hydrogen bonds link the cations, anions and solvent molecules into layers parallel to the ac plane.
Related literature
For details of the synthesis, see: Brook et al. (2005). For the indexing algorithm, see: Werner et al. (1985). For the crystal structures of carvedilol as a free base and a cation, see: Chen et al. (1998); Yathirajan et al. (2007); Chernyshev et al. (2009).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002); cell MRIA (Zlokazov & Chernyshev, 1992); data reduction: G670 Imaging Plate Guinier Camera Software; method used to solve structure: simulated annealing (Zhukov et al., 2001); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: MRIA and SHELXL97 (Sheldrick, 2008).
Supporting information
10.1107/S1600536810005349/ya2118sup1.cif
contains datablocks I, global. DOI:Rietveld powder data: contains datablock I. DOI: 10.1107/S1600536810005349/ya2118Isup2.rtv
Carvedilol dihydrogen phosphate hemihydrate (CDPH) was synthesized in accordance with the known procedure (Brook et al., 2005). Synthesis of carvedilol dihydrogen phosphate isopropanol solvate was carried out under stirring in round bottom four necked flask (0.5 L) equipped with thermometer and heated addition funnel. A hot solution (55-60°C) of CDPH (4 g, 8 mmol) in MeOH (70 ml) was placed in heated (60°C) addition funnel. Then this solution was added dropwise to isopropanol (250 ml) for 40 minutes at -20°C. The mixture was left to stand at -17°C for 20 h. The precipitate was filtered on suction funnel, washed with cooled (10°C) isopropanol (20 ml) and then dried under vacuum at 45°C for 17 h. Carvedilol dihydrogen phosphate isopropanol solvate (3.8 g, yield 95%) was obtained with purity of 99.8 % (measured with HPLC). IR-spectrum is shown on Fig. 2.
During the exposure, the specimen was spun in its plane to improve particle statistics. The triclinic
dimensions were determined with the indexing program TREOR (Werner et al., 1985), M20 = 43, using the first 30 peak positions. The structure of (I) was solved by simulated annealing procedure (Zhukov et al., 2001) and refined following the methodology described in (Chernyshev et al., 2009). All non-H atoms were isotropically refined. H atoms were placed in geometrically calculated positions (O—H 0.82 Å; N—H 0.86–0.90 Å; C—H 0.93–0.98 Å) and included in the in riding motion approximation [Uiso(H) = 1.2Ueq of the carrying atom (1.5Ueq for O-H and Me groups)]. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 3.Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002); cell
MRIA (Zlokazov & Chernyshev, 1992); data reduction: G670 Imaging Plate Guinier Camera Software (Huber, 2002); program(s) used to solve structure: simulated annealing (Zhukov et al., 2001); program(s) used to refine structure: MRIA (Zlokazov & Chernyshev, 1992); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I) with the atomic numbering and 50% displacement spheres. | |
Fig. 2. IR spectrum for (I). | |
Fig. 3. The Rietveld plot, showing the observed and difference profiles for (I). The reflection positions are shown above the difference profile. |
C24H27N2O4+·H2PO4−·C3H8O | Z = 2 |
Mr = 564.56 | F(000) = 600 |
Triclinic, P1 | Dx = 1.317 Mg m−3 |
a = 11.5516 (11) Å | Cu Kα1 radiation, λ = 1.54059 Å |
b = 16.6523 (19) Å | µ = 1.32 mm−1 |
c = 7.8643 (8) Å | T = 295 K |
α = 95.404 (15)° | Particle morphology: no specific habit |
β = 94.635 (16)° | light grey |
γ = 71.247 (14)° | flat_sheet, 15 × 1 mm |
V = 1424.1 (3) Å3 | Specimen preparation: Prepared at 295 K and 101 kPa |
G670 Guinier camera imaging plate diffractometer | Data collection mode: transmission |
Radiation source: line-focus sealed tube | Scan method: continuous |
Curved Germanium (111) monochromator | 2θmin = 3.50°, 2θmax = 85.00°, 2θstep = 0.01° |
Specimen mounting: thin layer in the specimen holder of the camera |
Refinement on Inet | Profile function: split-type pseudo-Voigt (Toraya, 1986) |
Least-squares matrix: full with fixed elements per cycle | 183 parameters |
Rp = 0.020 | 134 restraints |
Rwp = 0.026 | 0 constraints |
Rexp = 0.012 | H-atom parameters constrained |
RBragg = 0.051 | Weighting scheme based on measured s.u.'s |
χ2 = 4.516 | (Δ/σ)max = 0.002 |
8151 data points | Background function: Chebyshev polynomial up to the 5th order |
Excluded region(s): none | Preferred orientation correction: March-Dollase (Dollase, 1986); direction of preferred orientation 001, texture parameter r = 0.978(4). |
C24H27N2O4+·H2PO4−·C3H8O | γ = 71.247 (14)° |
Mr = 564.56 | V = 1424.1 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 11.5516 (11) Å | Cu Kα1 radiation, λ = 1.54059 Å |
b = 16.6523 (19) Å | µ = 1.32 mm−1 |
c = 7.8643 (8) Å | T = 295 K |
α = 95.404 (15)° | flat_sheet, 15 × 1 mm |
β = 94.635 (16)° |
G670 Guinier camera imaging plate diffractometer | Scan method: continuous |
Specimen mounting: thin layer in the specimen holder of the camera | 2θmin = 3.50°, 2θmax = 85.00°, 2θstep = 0.01° |
Data collection mode: transmission |
Rp = 0.020 | 8151 data points |
Rwp = 0.026 | 183 parameters |
Rexp = 0.012 | 134 restraints |
RBragg = 0.051 | H-atom parameters constrained |
χ2 = 4.516 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1569 (9) | 0.4372 (6) | 0.1923 (11) | 0.081 (5)* | |
H1A | 0.2323 | 0.3959 | 0.2322 | 0.097* | |
H1B | 0.1532 | 0.4318 | 0.0682 | 0.097* | |
C2 | 0.0481 (8) | 0.4175 (5) | 0.2558 (11) | 0.060 (4)* | |
H2 | 0.0602 | 0.4105 | 0.3790 | 0.072* | |
C3 | 0.0364 (9) | 0.3355 (5) | 0.1605 (11) | 0.075 (5)* | |
H3A | −0.0284 | 0.3196 | 0.2051 | 0.090* | |
H3B | 0.0184 | 0.3429 | 0.0393 | 0.090* | |
C4 | 0.1649 (9) | 0.1898 (5) | 0.1249 (12) | 0.074 (4)* | |
C5 | 0.0787 (9) | 0.1645 (6) | 0.0178 (11) | 0.082 (5)* | |
H5 | 0.0051 | 0.2044 | −0.0149 | 0.098* | |
C6 | 0.1032 (9) | 0.0783 (5) | −0.0411 (11) | 0.073 (5)* | |
H6 | 0.0436 | 0.0621 | −0.1089 | 0.087* | |
C7 | 0.2137 (9) | 0.0168 (6) | −0.0007 (13) | 0.081 (4)* | |
H7 | 0.2283 | −0.0400 | −0.0383 | 0.097* | |
C8 | 0.3021 (8) | 0.0440 (6) | 0.0988 (11) | 0.063 (4)* | |
N9 | 0.4179 (7) | −0.0027 (4) | 0.1591 (9) | 0.059 (3)* | |
H9 | 0.4523 | −0.0562 | 0.1356 | 0.071* | |
C10 | 0.4702 (9) | 0.0498 (6) | 0.2632 (11) | 0.078 (5)* | |
C11 | 0.5820 (9) | 0.0296 (6) | 0.3584 (12) | 0.077 (5)* | |
H11 | 0.6350 | −0.0259 | 0.3570 | 0.092* | |
C12 | 0.6116 (9) | 0.0955 (6) | 0.4557 (12) | 0.090 (5)* | |
H12 | 0.6876 | 0.0842 | 0.5148 | 0.108* | |
C13 | 0.5289 (9) | 0.1788 (6) | 0.4663 (12) | 0.077 (4)* | |
H13 | 0.5490 | 0.2209 | 0.5370 | 0.093* | |
C14 | 0.4171 (9) | 0.1988 (6) | 0.3720 (11) | 0.068 (4)* | |
H14 | 0.3638 | 0.2543 | 0.3766 | 0.082* | |
C15 | 0.3860 (8) | 0.1341 (5) | 0.2696 (11) | 0.062 (4)* | |
C16 | 0.2776 (9) | 0.1293 (5) | 0.1691 (12) | 0.073 (5)* | |
O17 | 0.1515 (5) | 0.2726 (4) | 0.1889 (7) | 0.070 (3)* | |
O18 | −0.0596 (6) | 0.4879 (4) | 0.2224 (7) | 0.079 (3)* | |
H18 | −0.1171 | 0.4835 | 0.2714 | 0.119* | |
N19 | 0.1589 (7) | 0.5250 (5) | 0.2533 (9) | 0.085 (4)* | |
H19A | 0.1570 | 0.5309 | 0.3680 | 0.102* | |
H19B | 0.0910 | 0.5632 | 0.2106 | 0.102* | |
C20 | 0.2692 (9) | 0.5444 (6) | 0.2024 (12) | 0.074 (4)* | |
H20A | 0.2722 | 0.5381 | 0.0788 | 0.089* | |
H20B | 0.3429 | 0.5043 | 0.2500 | 0.089* | |
C21 | 0.2643 (9) | 0.6346 (6) | 0.2664 (12) | 0.086 (5)* | |
H21A | 0.2850 | 0.6378 | 0.3883 | 0.103* | |
H21B | 0.3210 | 0.6529 | 0.2076 | 0.103* | |
O22 | 0.1417 (6) | 0.6860 (4) | 0.2302 (7) | 0.070 (3)* | |
C23 | 0.0870 (9) | 0.7546 (6) | 0.3420 (12) | 0.080 (5)* | |
C24 | −0.0359 (9) | 0.7649 (6) | 0.3745 (12) | 0.088 (5)* | |
C25 | −0.1014 (9) | 0.8340 (6) | 0.4794 (11) | 0.091 (5)* | |
H25 | −0.1817 | 0.8403 | 0.5024 | 0.109* | |
C26 | −0.0462 (9) | 0.8941 (6) | 0.5502 (12) | 0.079 (4)* | |
H26 | −0.0902 | 0.9404 | 0.6197 | 0.095* | |
C27 | 0.0740 (9) | 0.8846 (6) | 0.5168 (13) | 0.090 (5)* | |
H27 | 0.1095 | 0.9255 | 0.5613 | 0.108* | |
C28 | 0.1419 (9) | 0.8137 (6) | 0.4164 (12) | 0.089 (5)* | |
H28 | 0.2236 | 0.8060 | 0.3994 | 0.107* | |
O29 | −0.0815 (6) | 0.7013 (4) | 0.3012 (8) | 0.073 (3)* | |
C30 | −0.2122 (9) | 0.7240 (6) | 0.2683 (12) | 0.093 (5)* | |
H30A | −0.2328 | 0.6752 | 0.2179 | 0.140* | |
H30B | −0.2387 | 0.7686 | 0.1913 | 0.140* | |
H30C | −0.2521 | 0.7432 | 0.3739 | 0.140* | |
P31 | −0.3639 (3) | 0.52870 (19) | 0.3615 (4) | 0.0600 (14)* | |
O32 | −0.4390 (6) | 0.5878 (4) | 0.4988 (9) | 0.115 (3)* | |
H32 | −0.4775 | 0.5615 | 0.5402 | 0.173* | |
O33 | −0.4183 (6) | 0.4583 (4) | 0.3049 (8) | 0.101 (3)* | |
O34 | −0.2334 (7) | 0.4907 (4) | 0.4313 (8) | 0.127 (3)* | |
O35 | −0.3653 (6) | 0.5787 (4) | 0.2088 (8) | 0.092 (3)* | |
H35 | −0.4098 | 0.5644 | 0.1337 | 0.138* | |
O36 | −0.4622 (6) | 0.3709 (4) | 0.0315 (8) | 0.085 (3)* | |
H36 | −0.4178 | 0.3987 | 0.0706 | 0.128* | |
C37 | −0.4205 (9) | 0.2878 (6) | 0.0907 (12) | 0.089 (5)* | |
H37 | −0.4595 | 0.2880 | 0.1970 | 0.107* | |
C38 | −0.2846 (9) | 0.2616 (6) | 0.1240 (13) | 0.093 (5)* | |
H38A | −0.2642 | 0.3007 | 0.2095 | 0.140* | |
H38B | −0.2464 | 0.2619 | 0.0202 | 0.140* | |
H38C | −0.2561 | 0.2054 | 0.1635 | 0.140* | |
C39 | −0.4550 (10) | 0.2278 (6) | −0.0426 (13) | 0.105 (5)* | |
H39A | −0.5424 | 0.2455 | −0.0623 | 0.158* | |
H39B | −0.4272 | 0.1714 | −0.0037 | 0.158* | |
H39C | −0.4175 | 0.2280 | −0.1471 | 0.158* |
C1—N19 | 1.502 (12) | C20—H20A | 0.97 |
C1—C2 | 1.528 (15) | C20—H20B | 0.97 |
C1—H1A | 0.97 | C21—O22 | 1.421 (10) |
C1—H1B | 0.97 | C21—H21A | 0.97 |
C2—O18 | 1.435 (9) | C21—H21B | 0.97 |
C2—C3 | 1.533 (13) | O22—C23 | 1.383 (10) |
C2—H2 | 0.98 | C23—C28 | 1.395 (15) |
C3—O17 | 1.420 (10) | C23—C24 | 1.415 (15) |
C3—H3A | 0.97 | C24—O29 | 1.388 (13) |
C3—H3B | 0.97 | C24—C25 | 1.392 (12) |
C4—O17 | 1.387 (11) | C25—C26 | 1.402 (16) |
C4—C5 | 1.395 (14) | C25—H25 | 0.93 |
C4—C16 | 1.407 (12) | C26—C27 | 1.390 (15) |
C5—C6 | 1.410 (13) | C26—H26 | 0.93 |
C5—H5 | 0.93 | C27—C28 | 1.400 (12) |
C6—C7 | 1.390 (12) | C27—H27 | 0.93 |
C6—H6 | 0.93 | C28—H28 | 0.93 |
C7—C8 | 1.401 (14) | O29—C30 | 1.441 (12) |
C7—H7 | 0.93 | C30—H30A | 0.96 |
C8—N9 | 1.385 (10) | C30—H30B | 0.96 |
C8—C16 | 1.422 (12) | C30—H30C | 0.96 |
N9—C10 | 1.387 (13) | P31—O32 | 1.513 (7) |
N9—H9 | 0.86 | P31—O34 | 1.514 (8) |
C10—C11 | 1.398 (13) | P31—O33 | 1.516 (8) |
C10—C15 | 1.427 (11) | P31—O35 | 1.520 (7) |
C11—C12 | 1.395 (14) | O32—H32 | 0.82 |
C11—H11 | 0.93 | O35—H35 | 0.82 |
C12—C13 | 1.408 (12) | O36—C37 | 1.421 (11) |
C12—H12 | 0.93 | O36—H36 | 0.82 |
C13—C14 | 1.394 (13) | C37—C38 | 1.496 (14) |
C13—H13 | 0.93 | C37—C39 | 1.499 (14) |
C14—C15 | 1.406 (13) | C37—H37 | 0.98 |
C14—H14 | 0.93 | C38—H38A | 0.96 |
C15—C16 | 1.447 (14) | C38—H38B | 0.96 |
O18—H18 | 0.82 | C38—H38C | 0.96 |
N19—C20 | 1.503 (14) | C39—H39A | 0.96 |
N19—H19A | 0.90 | C39—H39B | 0.96 |
N19—H19B | 0.90 | C39—H39C | 0.96 |
C20—C21 | 1.523 (13) | ||
N19—C1—C2 | 112.3 (7) | N19—C20—C21 | 110.7 (7) |
N19—C1—H1A | 109.2 | N19—C20—H20A | 109.5 |
C2—C1—H1A | 109.2 | C21—C20—H20A | 109.5 |
N19—C1—H1B | 109.1 | N19—C20—H20B | 109.5 |
C2—C1—H1B | 109.1 | C21—C20—H20B | 109.5 |
H1A—C1—H1B | 107.9 | H20A—C20—H20B | 108.1 |
O18—C2—C1 | 107.6 (7) | O22—C21—C20 | 105.5 (8) |
O18—C2—C3 | 110.5 (7) | O22—C21—H21A | 110.6 |
C1—C2—C3 | 109.4 (7) | C20—C21—H21A | 110.7 |
O18—C2—H2 | 109.7 | O22—C21—H21B | 110.6 |
C1—C2—H2 | 109.7 | C20—C21—H21B | 110.6 |
C3—C2—H2 | 109.8 | H21A—C21—H21B | 108.7 |
O17—C3—C2 | 105.5 (7) | C23—O22—C21 | 119.7 (7) |
O17—C3—H3A | 110.6 | O22—C23—C28 | 125.2 (9) |
C2—C3—H3A | 110.6 | O22—C23—C24 | 115.2 (9) |
O17—C3—H3B | 110.6 | C28—C23—C24 | 119.6 (8) |
C2—C3—H3B | 110.7 | O29—C24—C25 | 124.2 (10) |
H3A—C3—H3B | 108.7 | O29—C24—C23 | 115.7 (7) |
O17—C4—C5 | 125.1 (7) | C25—C24—C23 | 120.0 (10) |
O17—C4—C16 | 115.3 (8) | C24—C25—C26 | 119.9 (10) |
C5—C4—C16 | 119.6 (8) | C24—C25—H25 | 120.1 |
C4—C5—C6 | 120.0 (8) | C26—C25—H25 | 120.0 |
C4—C5—H5 | 120.0 | C27—C26—C25 | 120.1 (8) |
C6—C5—H5 | 120.0 | C27—C26—H26 | 119.9 |
C7—C6—C5 | 122.1 (9) | C25—C26—H26 | 120.0 |
C7—C6—H6 | 119.0 | C26—C27—C28 | 120.3 (10) |
C5—C6—H6 | 119.0 | C26—C27—H27 | 119.9 |
C6—C7—C8 | 117.3 (9) | C28—C27—H27 | 119.9 |
C6—C7—H7 | 121.4 | C23—C28—C27 | 120.0 (10) |
C8—C7—H7 | 121.3 | C23—C28—H28 | 120.0 |
N9—C8—C7 | 129.6 (8) | C27—C28—H28 | 120.0 |
N9—C8—C16 | 108.1 (8) | C24—O29—C30 | 117.0 (7) |
C7—C8—C16 | 122.0 (8) | O29—C30—H30A | 109.5 |
C8—N9—C10 | 109.8 (7) | O29—C30—H30B | 109.5 |
C8—N9—H9 | 125.1 | H30A—C30—H30B | 109.5 |
C10—N9—H9 | 125.1 | O29—C30—H30C | 109.5 |
N9—C10—C11 | 129.7 (8) | H30A—C30—H30C | 109.5 |
N9—C10—C15 | 108.6 (8) | H30B—C30—H30C | 109.5 |
C11—C10—C15 | 121.6 (9) | O32—P31—O34 | 109.5 (4) |
C12—C11—C10 | 117.9 (8) | O32—P31—O33 | 109.8 (4) |
C12—C11—H11 | 121.1 | O34—P31—O33 | 109.7 (4) |
C10—C11—H11 | 121.1 | O32—P31—O35 | 109.2 (4) |
C11—C12—C13 | 121.3 (9) | O34—P31—O35 | 109.6 (5) |
C11—C12—H12 | 119.3 | O33—P31—O35 | 109.1 (4) |
C13—C12—H12 | 119.3 | P31—O32—H32 | 107 |
C14—C13—C12 | 120.7 (9) | P31—O35—H35 | 106 |
C14—C13—H13 | 119.6 | C37—O36—H36 | 111 |
C12—C13—H13 | 119.7 | O36—C37—C38 | 109.2 (9) |
C13—C14—C15 | 119.1 (8) | O36—C37—C39 | 108.8 (8) |
C13—C14—H14 | 120.4 | C38—C37—C39 | 110.6 (8) |
C15—C14—H14 | 120.4 | O36—C37—H37 | 109.4 |
C14—C15—C10 | 119.2 (8) | C38—C37—H37 | 109.4 |
C14—C15—C16 | 134.5 (7) | C39—C37—H37 | 109.4 |
C10—C15—C16 | 106.1 (8) | C37—C38—H38A | 109.5 |
C4—C16—C8 | 118.8 (9) | C37—C38—H38B | 109.5 |
C4—C16—C15 | 133.7 (8) | H38A—C38—H38B | 109.5 |
C8—C16—C15 | 107.3 (7) | C37—C38—H38C | 109.5 |
C4—O17—C3 | 118.1 (7) | H38A—C38—H38C | 109.4 |
C2—O18—H18 | 110 | H38B—C38—H38C | 109.5 |
C1—N19—C20 | 113.6 (7) | C37—C39—H39A | 109.5 |
C1—N19—H19A | 108.8 | C37—C39—H39B | 109.5 |
C20—N19—H19A | 108.9 | H39A—C39—H39B | 109.5 |
C1—N19—H19B | 108.9 | C37—C39—H39C | 109.5 |
C20—N19—H19B | 108.9 | H39A—C39—H39C | 109.5 |
H19A—N19—H19B | 107.7 | H39B—C39—H39C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O18—H18···O34 | 0.82 | 1.89 | 2.681 (10) | 165 |
N19—H19A···O34i | 0.90 | 1.75 | 2.568 (10) | 149 |
N19—H19B···O18 | 0.90 | 2.46 | 2.772 (11) | 101 |
N19—H19B···O22 | 0.90 | 2.29 | 2.646 (10) | 103 |
O32—H32···O33ii | 0.82 | 1.90 | 2.672 (10) | 156 |
O35—H35···O36iii | 0.82 | 1.99 | 2.619 (9) | 132 |
O36—H36···O33 | 0.82 | 2.00 | 2.590 (9) | 128 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x−1, −y+1, −z+1; (iii) −x−1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C24H27N2O4+·H2PO4−·C3H8O |
Mr | 564.56 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 11.5516 (11), 16.6523 (19), 7.8643 (8) |
α, β, γ (°) | 95.404 (15), 94.635 (16), 71.247 (14) |
V (Å3) | 1424.1 (3) |
Z | 2 |
Radiation type | Cu Kα1, λ = 1.54059 Å |
µ (mm−1) | 1.32 |
Specimen shape, size (mm) | Flat_sheet, 15 × 1 |
Data collection | |
Diffractometer | G670 Guinier camera imaging plate diffractometer |
Specimen mounting | Thin layer in the specimen holder of the camera |
Data collection mode | Transmission |
Scan method | Continuous |
2θ values (°) | 2θmin = 3.50 2θmax = 85.00 2θstep = 0.01 |
Refinement | |
R factors and goodness of fit | Rp = 0.020, Rwp = 0.026, Rexp = 0.012, RBragg = 0.051, χ2 = 4.516 |
No. of data points | 8151 |
No. of parameters | 183 |
No. of restraints | 134 |
H-atom treatment | H-atom parameters constrained |
Computer programs: G670 Imaging Plate Guinier Camera Software (Huber, 2002), simulated annealing (Zhukov et al., 2001), PLATON (Spek, 2009), MRIA (Zlokazov & Chernyshev, 1992) and SHELXL97 (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O18—H18···O34 | 0.82 | 1.89 | 2.681 (10) | 165 |
N19—H19A···O34i | 0.90 | 1.75 | 2.568 (10) | 149 |
N19—H19B···O18 | 0.90 | 2.46 | 2.772 (11) | 101 |
N19—H19B···O22 | 0.90 | 2.29 | 2.646 (10) | 103 |
O32—H32···O33ii | 0.82 | 1.90 | 2.672 (10) | 156 |
O35—H35···O36iii | 0.82 | 1.99 | 2.619 (9) | 132 |
O36—H36···O33 | 0.82 | 2.00 | 2.590 (9) | 128 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x−1, −y+1, −z+1; (iii) −x−1, −y+1, −z. |
Acknowledgements
VVC and YAV acknowledge the International Centre for Diffraction Data (ICDD) for supporting this study (grant No. GiA 03-06).
References
Brook, C. S., Chen, W., Dell'Orco, P. C., Katrincic, L. M., Lovet, A. M., Oh, C. K., Spoors, P. G. & Werner, C. (2005). US Patent 20050240027A1. Google Scholar
Chen, W.-M., Zeng, L.-M., Yu, K.-B. & Xu, J.-H. (1998). Jiegou Huaxue, 17, 325–328. CAS Google Scholar
Chernyshev, V. V., Machula, A. A., Kukushkin, S. Y. & Velikodny, Y. A. (2009). Acta Cryst. E65, o2020–o2021. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267–272. CrossRef CAS Web of Science IUCr Journals Google Scholar
Huber (2002). G670 Imaging Plate Guinier Camera Software. Huber Diffraktionstechnik GmbH, Rimsting, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Toraya, H. (1986). J. Appl. Cryst. 19, 440–447. CrossRef CAS Web of Science IUCr Journals Google Scholar
Werner, P.-E., Eriksson, L. & Westdahl, M. (1985). J. Appl. Cryst. 18, 367–370. CrossRef CAS Web of Science IUCr Journals Google Scholar
Yathirajan, H. S., Bindya, S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o542–o544. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5–9. Web of Science CrossRef CAS Google Scholar
Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447–451. CrossRef Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structures of two polymorphs of carvedilol free base (Chen et al., 1998; Yathirajan et al., 2007) and carvedilol dihydrogen phosphate hemihydrate Form I (Chernyshev et al., 2009) were recently reported. As a contribution to structural study of carvedilol, herewith we report the crystal structure of the title compound (I) (Fig. 1).
One of two amino H atoms (H19B) is involved in intramolecular N—H···O hydrogen bonds (Table 1), which influence the cation conformation. The mean planes of the tricyclic carbazole system and the benzene ring form a dihedral angle of 42.00 (16)°. In the crystal structure, the classical intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link cations, anions and solvent molecules into layers parallel to the ac plane.