metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m249-m250

Bis(2,3,5,6-tetra-2-pyridylpyrazine-κ3N2,N1,N6)iron(II) bis­­(dicyanamidate) 4.5-hydrate

aDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain, bDepartamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain, and cDepartamento de Química Inorgánica, Facultad de Farmacia, Universidad del País Vasco, Apdo. 450, E-01080 Vitoria, Spain
*Correspondence e-mail: gotzon.madariaga@ehu.es

(Received 13 December 2009; accepted 27 January 2010; online 3 February 2010)

In the title compound, [Fe(C24H16N6)2][N(CN)2]2·4.5H2O, the central iron(II) ion is hexa­coordinated by six N atoms of two tridentate 2,3,5,6-tetra-2-pyridylpyrazine (tppz) ligands. Two dicyanamide anions [dca or N(CN)2] act as counter-ions, and 4.5 water mol­ecules act as solvation agents. The structure contains isolated cationic iron(II)–tppz complexes and the final neutrality is obtained with the two dicyanamide anions. One of the dicyanamide anions and a water mol­ecule are disordered with an occupancy ratio of 0.614 (8):0.386 (8). O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds involving dca, water and tppz mol­ecules are observed.

Related literature

For related structures including [M(II)(tppz)2]2+ cations, see: Ruminski & Kiplinger (1990[Ruminski, R. R. & Kiplinger, J. L. (1990). Inorg. Chem. 29, 4581-4584.]); Arana et al. (1992[Arana, C., Yan, S., Keshavarz, K. M., Potes, K. T. & Abruña, H. D. (1992). Inorg. Chem. 31, 3680-3682.]); Allis et al. (2004[Allis, D. G., Burkholder, E. & Zubieta, J. (2004). Polyhedron, 23, 1145-1152.]); Burkholder & Zubieta (2004[Burkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 1229-1235.]); Lainé et al. (1995[Lainé, P., Gourdon, A. & Launay, J. P. (1995). Inorg. Chem. 34, 5156-5165.]). For the application of a [Co(II)(tppz)2]2+ complex as a homogeneous catalyst, see: Königstein & Bauer (1994[Königstein, C. & Bauer, R. (1994). Hydrogen Energy Progress X (Proc. 10th World Hydrogen Energy Conf.), Vol. 2, edited by D. L. Block & T. N. Veziroğlu, pp. 717-725. Coral Gables: International Association for Hydrogen Energy.], 1997[Königstein, C. & Bauer, R. (1997). Int. J. Hydrogen Ener. 22, 471-474.]). For dicyanamido (dca) anions, see: He et al. (2002[He, Y., Kou, H.-Z., Zhou, B. C., Xiong, M., Wang, R.-J. & Li, Y. (2002). Acta Cryst. E58, m389-m391.]). Some H-atom positions were calculated using HYDROGEN (Nardelli, 1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C24H16N6)2](C2N3)2·4.5H2O

  • Mr = 1045.88

  • Monoclinic, P 21 /c

  • a = 13.9216 (7) Å

  • b = 18.9271 (9) Å

  • c = 19.1425 (9) Å

  • β = 97.017 (4)°

  • V = 5006.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.1 × 0.1 × 0.01 mm

Data collection
  • Oxford Diffraction Xcalibur 2 diffractometer

  • 51234 measured reflections

  • 15912 independent reflections

  • 8433 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.168

  • S = 1.02

  • 15912 reflections

  • 779 parameters

  • 135 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯N13i 0.84 (2) 2.17 (3) 2.862 (5) 139 (3)
O1W—H12W⋯N12i 0.86 (2) 1.98 (2) 2.830 (4) 173 (3)
O2W—H21W⋯N15 0.85 (3) 2.16 (4) 2.903 (6) 146 (3)
O2W—H22W⋯O1W 0.86 (3) 1.96 (3) 2.785 (4) 160 (4)
O3W—H31W⋯N10 0.86 (11) 2.32 (13) 2.909 (10) 126 (11)
O3W—H32W⋯O5WAii 0.86 (12) 2.29 (15) 2.87 (2) 126 (15)
O3W—H32W⋯O4W 0.86 (12) 2.11 (18) 2.46 (3) 104 (13)
O3W—H32W⋯O4Wii 0.86 (12) 2.41 (12) 3.24 (3) 162 (15)
O4W—H41W⋯O5WA 0.85 (7) 1.95 (9) 2.72 (4) 153 (17)
O5WA—H52A⋯N16A 0.85 (4) 2.19 (4) 2.92 (2) 143 (7)
O5WB—H51B⋯N6 0.85 (11) 2.52 (12) 3.188 (8) 136 (13)
O5WB—H52B⋯N16B 0.86 (8) 2.22 (7) 3.057 (18) 164 (10)
C8—H8⋯O4Wiii 0.93 2.45 3.349 (16) 162
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There is a noticeable number of investigations of transition metal complexes containing the ligand tppz, as these materials may possess desirable magnetic properties. The ligand tppz allows to synthesize extended conjugated systems where the (usually antiferro-) magnetic interactions are propagated through the tppz ligand itself. The combination of divalent cations of the second half of the transition series with the ligand tppz gives coordination cations of the type [MII(tppz)2]2+, where the terminal nitrogen atoms of one extreme of the tppz ligand are directed towards the metallic atoms and the corresponding N atoms of the other extreme remain uncoordinated (Lainé et al., 1995). tppz ligands are part of other FeII (Allis et al., 2004, Arana et al., 1992, Ruminski & Kiplinger, 1990), ZnII (Burkholder & Zubieta, 2004) and CoII (Königstein & Bauer, 1994, Königstein & Bauer, 1997) compounds.

We here report the crystal structure of a new compound, [Fe(C24H16N6)2](N(CN)2)2.4.5H2O, which is made up of FeII cations coordinated to six nitrogen atoms of two tridentate tppz ligands. These monomeric entities reach neutrality with two dicyanamido (dca) anions (He et al., 2002) and 4.5 molecules of water act as solvent agents (see Fig. 1). The coordinated nitrogen atoms of each tppz are in the same plane. The Fe2+cation has a distorted octahedral environment, in which the bonds to the two pyrazine nitrogen atoms (Fe1—N2 and Fe1—N8) are significantly shorter than the bonds to the pyridyl nitrogen atoms (Fe1—N1, Fe1—N3, Fe1—N7 and Fe1—N9). The N—Fe1—N angles involving the atoms of the equatorial plane with respect to the short axis differ remarkably from the ideal octahedral values, the Fe1 atom does not deviate significantly [-0.0035 (3) Å] from the average plane.

The individual pyridyl rings are planar (maximum average displacement with respect to the plane of the ring, 0.026 Å), while the two pyrazine rings are significantly puckered. Nitrogen atoms of the non-coordinated pyridyl rings of the two tppz ligands point to the ligand metalated side instead of the free nitrogen atom of the pyrazine ring. These structural features of the coordinated tppz ligand would account for its tendency to adopt bis-chelation in this type of complexes. Weak π-π interactions appear to occur due to overlap between pyridyl rings in the range 3.693 (2) Å to 3.9109 (13) Å, corresponding to the distances between the centroids of the rings labelled by N6 and N10iv (iv= 1 + x,y,z) and N7 and N7v (v= 1 - x,-y,-z), respectively.

The crystal packing of the bulky building block units leaves cavities of approximately 250 Å3 where water molecules and dca anions are located (Fig. 2). The low density of the material reflects this open structure. One of the two crystallographically independent dca molecules is well defined. These ordered dca molecules, connected by water, form infinite chains aligned in the average along the c axis interconnecting the tppz ligands. The remainder of the dca anions and the water solvate molecules are disordered. They occupy large voids and contribute to link the tppz ligands by way of the N10 atoms (see Fig. 3). The second dicyanamide anions and a water molecule show a highly correlated disorder. Each of the disordered dca moieties (A and B) is bonded to the corresponding OW5 atom. These assemblies establish H bonds to O3W and the tppz ligands through N6 and C8 atoms. Additional plausible H bonds [generated by Mercury (Macrae et al., 2006) but not tabulated owing to large D···A or H···A distances] involving the disordered O5W-dca groups appear in Fig. 3.

Related literature top

For related structures including [M(II)(tppz)2]2+ cations, see: Ruminski & Kiplinger (1990); Arana et al. (1992); Allis et al. (2004); Burkholder & Zubieta (2004); Lainé et al. (1995). For the application of a [Co(II)(tppz)2]2+ complex as a homogeneus catalyst, see: Königstein & Bauer (1994, 1997). For dicyanamido (dca) anions, see: He et al. (2002). Some H-atom positions were calculated using HYDROGEN (Nardelli, 1999).

Experimental top

Crystals of [Fe(C24H16N6)2](N(CN)2)2.4.5H2O were prepared by mixing an acetonitrile solution (10 ml) of FeCl2.4H2O (99.4 mg, 0.50 mmol) and another acetonitrile solution (10 ml) of 2,3,5,6-tetra-2-pyridylpirazine (97.1 mg, 0.25 mmol). After vigorous stirring of about 30 minutes at a temperature of 303 K, an aqua/acetonitrile (50%) solution (10 ml) of sodium dicyanamide (111.3 mg, 1.25 mmol) was added. The resultant solution was stirred at 313 K for 25 minutes and at 298 K for the following two days. Then the orange precipitate that did form was filtered off. After evaporation of the mother liquor, dark purple prismatic crystals suitable for X-ray diffraction measurements formed. These crystals were found to be stable to X-ray exposure. The thermogravimetric analysis (Fig. 4) shows water loss at 373 K (7.8%Δm; theor.: 7.8%Δm) equivalent to 4.5 water molecules in agreement with the chemical analysis based on C (61.3%; theor.: 59.7%), N (24.7%; theor.: 24.1%) and H (4.0%; theor.: 3.6%). The IR spectrum (Figure 5) shows clearly the characteristic IR bands of dicyanamide in the range [2000, 2500] cm-1 (see the supporting material for details).

Refinement top

Structure solution by direct methods in the space group P21/c, followed by refinement, based on F2, of atomic coordinates and anisotropic displacement parameters, was performed using the programs SHELXS86 and SHELXL97 (Sheldrick, 2008) successively. H atoms bonded to C atoms were found in successive difference Fourier maps and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). C46 and C47 were restrained to have equal anisotropic displacements components along the direction of their bond. H atoms of O1W (see Fig. 1 for labelling) were located in a difference Fourier map whereas H atoms bonded to O2W, O3W, O4W and O5W were calculated with the program HYDROGEN (Nardelli, 1999). Water molecules were tightly restrained to the geometry used in HYDROGEN [O—H=0.85 (1) Å, H—O—H=107 (3)°] with Uiso(H) = 1.5Ueq(O). One of the dicyanamide groups, showing symptoms of disorder, was split in two positions and refined forcing its flatness with equal anisotropic displacement parameters for atoms closer than 1.7 Å and subject to a rigid bond restraint. Interatomic distances of the dca groups were assumed to be equal with a standard deviation of 0.02 Å. Also the distances O5W—N16 and H52—N16 were forced to be equal (within 0.02 Å) to those involving O1W—N13, O2W—N15 and H11W—N13 and H21W—N15 respectively. O4W appeared to be highly disordered around the inversion centre at (1/2,1/2,0) and was split in two equiprobable positions, the anisotropic refinement of its displacement parameters was restrained to approximate an isotropic behaviour. The water molecule O3W follows the statistical positions of OW4. Antibumping restrains of 2.20 (5) Å were applied to the closest distances H32W-(H51A, H52A) and H32W-(H41W, H42W). O5WA and O5WB are two mutually exclusive positions that were refined along with the two sets of atomic sites assigned to the disordered dicyanamide molecule. The refined site occupancy reaches a value of 0.386 (8) for the A positions. The highest residual electron density is 0.02 Å from atom Fe1 and the deepest hole is 0.62 Å from atom O4W.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of [Fe(C24H16N6)2](N(CN)2)2.4.5H2O showing the most relevant labels. H atoms excluded for clarity. Ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Projection of [Fe(C24H16N6)2](N(CN)2)2.4.5H2O packing along the a axis. In a) the voids occupied by solvents are shown. In b) are drawn the dca-O—O-dca chains. Infinite ordered dca chains are in green-orange colours. N10 and N12 atoms appear coloured in violet and yellow respectively. OW1 and OW2 in purple.
[Figure 3] Fig. 3. The two refined configurations for the disordered dca molecules. Occupancies are 0.386 (8) and 0.614 (8) for a) and b) respectively. Significant H-bonds are indicated.
[Figure 4] Fig. 4. T G and DTG curves of [Fe(C24H16N6)2](N(CN)2)2.4.5H2O. The first stage [30–100] °C can be assigned to a loss of mass equivalent to 4.5 water molecules. Successive stages would correspond to the loss of 1 dca molecule [100–230] °C, 1 dca and 1 tppz molecules [236–395] °C and 1 molecule of tppz [398, 676] °C, respectively.
[Figure 5] Fig. 5. IR spectra of ttpz and [Fe(C24H16N6)2](N(CN)2)2.4.5H2O. The marked region include characteristic dca bands peaked at 2357 cm-1, 2288 cm-1, 2234 cm-1, 2190 cm-1 and 2136 cm-1 respectively.
Bis(2,3,5,6-tetra-2-pyridylpyrazine- κ3N2,N1,N6)iron(II) bis(dicyanamidate) 4.5-hydrate top
Crystal data top
[Fe(C24H16N6)2](C2N3)2·4.5H2OF(000) = 2164
Mr = 1045.88Dx = 1.388 Mg m3
Dm = 1.39 (2) Mg m3
Dm measured by flotation
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8676 reflections
a = 13.9216 (7) Åθ = 3.2–31.9°
b = 18.9271 (9) ŵ = 0.37 mm1
c = 19.1425 (9) ÅT = 293 K
β = 97.017 (4)°Prism, black
V = 5006.2 (4) Å30.1 × 0.1 × 0.01 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur 2
diffractometer
8433 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.051
Graphite monochromatorθmax = 31.9°, θmin = 3.2°
Detector resolution: 16.7 pixels mm-1h = 2016
656 images at 0.7o stepwise rotation in ω and 90o phi, 30 sec./frame scansk = 2826
51234 measured reflectionsl = 2727
15912 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0745P)2]
where P = (Fo2 + 2Fc2)/3
15912 reflections(Δ/σ)max = 0.013
779 parametersΔρmax = 0.86 e Å3
135 restraintsΔρmin = 0.34 e Å3
0 constraints
Crystal data top
[Fe(C24H16N6)2](C2N3)2·4.5H2OV = 5006.2 (4) Å3
Mr = 1045.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9216 (7) ŵ = 0.37 mm1
b = 18.9271 (9) ÅT = 293 K
c = 19.1425 (9) Å0.1 × 0.1 × 0.01 mm
β = 97.017 (4)°
Data collection top
Oxford Diffraction Xcalibur 2
diffractometer
8433 reflections with I > 2σ(I)
51234 measured reflectionsRint = 0.051
15912 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063135 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.86 e Å3
15912 reflectionsΔρmin = 0.34 e Å3
779 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.48936 (2)0.100147 (16)0.190355 (16)0.03246 (11)
N10.53441 (13)0.03122 (10)0.26346 (10)0.0381 (4)
N20.62308 (12)0.11349 (9)0.19270 (9)0.0316 (4)
N30.48732 (13)0.17373 (9)0.11775 (10)0.0350 (4)
N40.75663 (17)0.19528 (12)0.02476 (13)0.0587 (6)
N50.81757 (13)0.13007 (10)0.19120 (11)0.0404 (5)
N60.84095 (18)0.06202 (14)0.35782 (13)0.0667 (7)
N70.47364 (12)0.02113 (9)0.12412 (9)0.0322 (4)
N80.35591 (12)0.08611 (9)0.18803 (9)0.0317 (4)
N90.46279 (13)0.17553 (10)0.25531 (10)0.0398 (5)
N100.19813 (18)0.14241 (16)0.35251 (14)0.0758 (8)
N110.16297 (13)0.06318 (10)0.19101 (11)0.0406 (5)
N120.15863 (15)0.01352 (12)0.02869 (13)0.0546 (6)
C10.63266 (16)0.02160 (12)0.27350 (12)0.0378 (5)
C20.67286 (19)0.03481 (14)0.31173 (15)0.0552 (7)
H20.73930.04240.31620.066*
C30.6137 (2)0.08021 (18)0.34353 (18)0.0745 (10)
H30.63990.11850.36980.089*
C40.5165 (2)0.06812 (19)0.33594 (18)0.0758 (10)
H40.47590.09750.3580.091*
C50.4789 (2)0.01276 (15)0.29575 (14)0.0541 (7)
H50.41230.00540.29060.065*
C60.57556 (16)0.20229 (11)0.11055 (12)0.0352 (5)
C70.58291 (18)0.26305 (13)0.07218 (13)0.0442 (6)
H70.6430.28410.07050.053*
C80.5013 (2)0.29245 (14)0.03640 (15)0.0550 (7)
H80.50550.33310.00960.066*
C90.4138 (2)0.26139 (15)0.04053 (15)0.0555 (7)
H90.35810.27950.01510.067*
C100.40864 (17)0.20356 (13)0.08221 (14)0.0452 (6)
H100.34830.1840.08620.054*
C110.65565 (15)0.16187 (11)0.14924 (11)0.0328 (5)
C120.75492 (16)0.16547 (12)0.14524 (13)0.0386 (5)
C130.68469 (16)0.07427 (12)0.23633 (11)0.0343 (5)
C140.78403 (16)0.08768 (12)0.23868 (12)0.0373 (5)
C150.85864 (17)0.05717 (13)0.29152 (15)0.0462 (6)
C160.94226 (18)0.02824 (15)0.27169 (17)0.0570 (7)
H160.95180.02630.22450.068*
C171.0109 (2)0.00245 (19)0.3226 (2)0.0787 (10)
H171.06760.01770.31070.094*
C180.9946 (3)0.0070 (2)0.3902 (2)0.0938 (12)
H181.04050.00980.42580.113*
C190.9091 (3)0.0368 (2)0.4069 (2)0.0945 (12)
H190.89870.03920.45390.113*
C200.79680 (17)0.20729 (13)0.09082 (16)0.0461 (6)
C210.8696 (2)0.25517 (16)0.1084 (2)0.0729 (10)
H210.89790.26070.15470.088*
C220.8994 (3)0.29532 (19)0.0535 (3)0.0974 (14)
H220.94750.32930.06260.117*
C230.8570 (3)0.2838 (2)0.0131 (3)0.0968 (14)
H230.87520.31060.050.116*
C240.7888 (3)0.23394 (19)0.02569 (19)0.0808 (11)
H240.76270.22590.07210.097*
C250.38166 (15)0.00599 (11)0.11185 (11)0.0322 (5)
C260.36364 (17)0.06764 (12)0.07343 (12)0.0397 (5)
H260.30160.08660.06640.048*
C270.43881 (18)0.10062 (12)0.04572 (12)0.0415 (6)
H270.42760.14180.01940.05*
C280.53014 (18)0.07250 (13)0.05702 (12)0.0412 (6)
H280.58130.09410.03830.049*
C290.54478 (16)0.01232 (12)0.09616 (12)0.0368 (5)
H290.6070.00640.10380.044*
C300.36729 (16)0.18459 (13)0.26188 (12)0.0405 (6)
C310.33384 (19)0.24506 (14)0.29113 (16)0.0572 (8)
H310.26810.25110.29390.069*
C320.3992 (2)0.29638 (17)0.31615 (19)0.0777 (10)
H320.37820.3380.33510.093*
C330.4960 (2)0.28530 (17)0.31276 (19)0.0791 (11)
H330.54140.31840.33130.095*
C340.52507 (19)0.22493 (15)0.28178 (15)0.0583 (8)
H340.59070.21820.27910.07*
C350.30654 (16)0.12729 (12)0.22915 (12)0.0365 (5)
C360.20994 (16)0.11077 (13)0.23360 (13)0.0408 (6)
C370.31129 (15)0.03477 (11)0.14734 (11)0.0309 (5)
C380.21093 (15)0.02652 (12)0.14645 (12)0.0363 (5)
C390.14880 (16)0.01974 (13)0.09692 (15)0.0441 (6)
C400.08168 (19)0.06434 (15)0.12202 (18)0.0618 (8)
H400.0760.06750.16980.074*
C410.0233 (2)0.10417 (17)0.0727 (3)0.0876 (13)
H410.02270.13470.08730.105*
C420.0332 (3)0.09853 (19)0.0033 (3)0.0939 (15)
H420.00540.1250.030.113*
C430.1008 (2)0.05331 (18)0.01650 (18)0.0735 (10)
H430.10730.04980.06420.088*
C440.15457 (18)0.14415 (14)0.28708 (16)0.0531 (7)
C450.06517 (19)0.17234 (16)0.26806 (19)0.0681 (9)
H450.0360.17080.22170.082*
C460.0191 (3)0.20364 (19)0.3210 (3)0.0977 (14)
H460.04170.22420.31070.117*
C470.0648 (3)0.2036 (2)0.3879 (3)0.1118 (17)
H470.0360.22470.42390.134*
C480.1513 (3)0.1729 (2)0.4015 (2)0.1036 (15)
H480.18090.17280.44770.124*
N130.1612 (3)0.2152 (2)0.0631 (2)0.1122 (13)
C490.1565 (3)0.2608 (3)0.0965 (3)0.0937 (12)
N140.1473 (5)0.3237 (3)0.1229 (3)0.186 (2)
C500.1319 (4)0.3337 (3)0.1872 (4)0.1124 (17)
N150.1194 (4)0.3529 (2)0.2376 (3)0.160 (2)
O1W0.24526 (17)0.38984 (15)0.48172 (14)0.0834 (7)
H11W0.209 (2)0.3545 (12)0.4841 (17)0.125*
H12W0.215 (2)0.4268 (11)0.493 (2)0.125*
O2W0.2300 (2)0.43951 (17)0.34384 (15)0.1059 (9)
H21W0.1789 (18)0.423 (2)0.3212 (18)0.159*
H22W0.239 (3)0.415 (2)0.3818 (15)0.159*
O3W0.3747 (7)0.0893 (3)0.4321 (5)0.319 (5)
H31W0.331 (9)0.076 (7)0.399 (6)0.478*
H32W0.385 (13)0.053 (5)0.459 (7)0.478*
O4W0.537 (2)0.0446 (14)0.4763 (18)0.69 (4)0.5
H41W0.597 (4)0.041 (8)0.474 (9)1.035*0.5
H42W0.528 (12)0.041 (13)0.519 (4)1.035*0.5
O5WA0.730 (2)0.0261 (11)0.5157 (8)0.355 (15)0.386 (8)
H51A0.76 (3)0.004 (17)0.494 (5)0.533*0.386 (8)
H52A0.742 (12)0.016 (3)0.5594 (10)0.533*0.386 (8)
N16A0.7525 (14)0.0627 (10)0.6648 (9)0.126 (6)0.386 (8)
C51A0.7388 (13)0.0951 (10)0.7131 (10)0.086 (5)0.386 (8)
N17A0.7190 (9)0.1288 (7)0.7671 (6)0.105 (3)0.386 (8)
C52A0.7437 (18)0.1931 (8)0.7891 (9)0.074 (4)0.386 (8)
N18A0.7701 (12)0.2453 (7)0.8021 (7)0.082 (3)0.386 (8)
O5WB0.6583 (5)0.1099 (6)0.4317 (5)0.220 (6)0.614 (8)
H51B0.697 (7)0.119 (9)0.402 (5)0.33*0.614 (8)
H52B0.688 (9)0.095 (8)0.471 (3)0.33*0.614 (8)
N16B0.7312 (13)0.0732 (9)0.5845 (8)0.322 (11)0.614 (8)
C51B0.7422 (10)0.0856 (7)0.6450 (9)0.163 (8)0.614 (8)
N17B0.7542 (14)0.0954 (11)0.7138 (11)0.210 (9)0.614 (8)
C52B0.7444 (19)0.1589 (11)0.7443 (12)0.205 (9)0.614 (8)
N18B0.7537 (16)0.2094 (10)0.7730 (8)0.159 (7)0.614 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02523 (16)0.03431 (18)0.03856 (19)0.00080 (13)0.00675 (13)0.00539 (14)
N10.0337 (10)0.0442 (11)0.0374 (11)0.0032 (9)0.0076 (9)0.0028 (9)
N20.0271 (9)0.0333 (10)0.0351 (10)0.0012 (7)0.0067 (8)0.0049 (8)
N30.0320 (10)0.0313 (10)0.0421 (11)0.0021 (8)0.0062 (8)0.0066 (8)
N40.0659 (15)0.0559 (15)0.0594 (16)0.0089 (12)0.0279 (13)0.0078 (12)
N50.0292 (10)0.0401 (11)0.0524 (13)0.0029 (9)0.0074 (9)0.0009 (9)
N60.0649 (16)0.0805 (18)0.0514 (16)0.0088 (14)0.0064 (13)0.0002 (13)
N70.0303 (9)0.0324 (10)0.0342 (10)0.0029 (8)0.0048 (8)0.0006 (8)
N80.0254 (9)0.0338 (10)0.0360 (10)0.0003 (7)0.0042 (8)0.0050 (8)
N90.0318 (10)0.0427 (11)0.0460 (12)0.0060 (9)0.0098 (9)0.0132 (9)
N100.0585 (16)0.106 (2)0.0671 (18)0.0184 (15)0.0251 (14)0.0346 (16)
N110.0270 (10)0.0425 (11)0.0534 (13)0.0033 (8)0.0088 (9)0.0102 (10)
N120.0415 (12)0.0561 (14)0.0617 (15)0.0102 (10)0.0114 (11)0.0222 (11)
C10.0333 (12)0.0415 (13)0.0393 (13)0.0016 (10)0.0075 (10)0.0012 (10)
C20.0409 (14)0.0550 (17)0.0700 (19)0.0028 (13)0.0079 (14)0.0167 (14)
C30.0590 (19)0.070 (2)0.094 (3)0.0021 (16)0.0065 (18)0.0389 (19)
C40.059 (2)0.081 (2)0.089 (2)0.0075 (17)0.0181 (17)0.040 (2)
C50.0408 (14)0.0639 (18)0.0591 (17)0.0052 (13)0.0126 (13)0.0122 (14)
C60.0360 (12)0.0312 (12)0.0401 (13)0.0006 (10)0.0115 (10)0.0073 (10)
C70.0462 (14)0.0341 (13)0.0541 (16)0.0003 (11)0.0136 (12)0.0039 (11)
C80.0639 (19)0.0403 (15)0.0610 (18)0.0089 (13)0.0080 (15)0.0037 (12)
C90.0487 (16)0.0537 (17)0.0621 (18)0.0127 (13)0.0018 (14)0.0050 (14)
C100.0336 (13)0.0429 (14)0.0583 (16)0.0063 (11)0.0024 (12)0.0041 (12)
C110.0312 (11)0.0311 (11)0.0368 (12)0.0018 (9)0.0070 (10)0.0057 (9)
C120.0339 (12)0.0339 (12)0.0498 (14)0.0026 (10)0.0122 (11)0.0054 (10)
C130.0311 (11)0.0373 (12)0.0348 (12)0.0001 (10)0.0054 (10)0.0050 (10)
C140.0304 (11)0.0392 (13)0.0419 (13)0.0001 (10)0.0033 (10)0.0070 (10)
C150.0334 (13)0.0451 (15)0.0581 (17)0.0039 (11)0.0030 (12)0.0035 (12)
C160.0349 (14)0.0622 (18)0.073 (2)0.0034 (13)0.0011 (13)0.0119 (15)
C170.0435 (17)0.077 (2)0.112 (3)0.0083 (15)0.0032 (19)0.016 (2)
C180.076 (3)0.096 (3)0.099 (3)0.007 (2)0.031 (2)0.021 (2)
C190.108 (3)0.108 (3)0.061 (2)0.011 (3)0.017 (2)0.008 (2)
C200.0326 (12)0.0365 (13)0.0729 (19)0.0045 (10)0.0211 (13)0.0083 (12)
C210.0394 (15)0.0529 (18)0.129 (3)0.0093 (13)0.0207 (17)0.0132 (18)
C220.059 (2)0.061 (2)0.179 (5)0.0118 (17)0.041 (3)0.029 (3)
C230.085 (3)0.079 (3)0.140 (4)0.015 (2)0.068 (3)0.045 (3)
C240.089 (2)0.080 (2)0.084 (2)0.019 (2)0.051 (2)0.0264 (19)
C250.0303 (11)0.0317 (12)0.0344 (12)0.0027 (9)0.0030 (9)0.0003 (9)
C260.0369 (13)0.0345 (12)0.0465 (14)0.0022 (10)0.0002 (11)0.0053 (11)
C270.0494 (14)0.0351 (12)0.0397 (13)0.0086 (11)0.0038 (11)0.0053 (10)
C280.0450 (14)0.0427 (13)0.0374 (13)0.0147 (11)0.0116 (11)0.0007 (11)
C290.0328 (12)0.0413 (13)0.0376 (13)0.0066 (10)0.0092 (10)0.0010 (10)
C300.0311 (12)0.0467 (14)0.0451 (14)0.0039 (10)0.0105 (10)0.0126 (11)
C310.0414 (14)0.0531 (17)0.080 (2)0.0011 (12)0.0172 (14)0.0296 (15)
C320.0595 (19)0.067 (2)0.110 (3)0.0119 (16)0.0254 (19)0.0512 (19)
C330.0541 (18)0.074 (2)0.113 (3)0.0228 (16)0.0237 (18)0.058 (2)
C340.0362 (14)0.0693 (19)0.0705 (19)0.0126 (13)0.0104 (13)0.0332 (16)
C350.0306 (11)0.0365 (12)0.0431 (13)0.0004 (10)0.0072 (10)0.0091 (10)
C360.0282 (11)0.0453 (14)0.0504 (15)0.0007 (10)0.0105 (11)0.0108 (11)
C370.0289 (11)0.0290 (11)0.0344 (12)0.0001 (9)0.0017 (9)0.0025 (9)
C380.0312 (11)0.0331 (12)0.0445 (14)0.0015 (9)0.0040 (10)0.0045 (10)
C390.0254 (11)0.0392 (13)0.0659 (18)0.0029 (10)0.0011 (11)0.0165 (12)
C400.0383 (14)0.0463 (16)0.100 (2)0.0054 (12)0.0051 (15)0.0142 (15)
C410.0416 (17)0.0523 (19)0.165 (4)0.0093 (14)0.005 (2)0.026 (2)
C420.053 (2)0.070 (2)0.146 (4)0.0201 (18)0.036 (2)0.060 (3)
C430.0559 (19)0.078 (2)0.078 (2)0.0301 (18)0.0244 (17)0.0407 (18)
C440.0373 (14)0.0535 (16)0.073 (2)0.0141 (12)0.0237 (14)0.0243 (14)
C450.0397 (15)0.0616 (19)0.108 (3)0.0053 (14)0.0306 (16)0.0263 (18)
C460.051 (2)0.074 (2)0.179 (4)0.0058 (17)0.058 (3)0.040 (3)
C470.087 (3)0.125 (4)0.137 (4)0.035 (3)0.071 (3)0.073 (3)
C480.086 (3)0.146 (4)0.087 (3)0.039 (3)0.047 (2)0.055 (3)
N130.080 (2)0.111 (3)0.148 (4)0.006 (2)0.028 (2)0.020 (3)
C490.072 (2)0.088 (3)0.122 (4)0.007 (2)0.017 (2)0.003 (3)
N140.276 (7)0.111 (4)0.177 (5)0.039 (4)0.051 (5)0.022 (4)
C500.118 (4)0.081 (3)0.131 (4)0.017 (3)0.014 (4)0.026 (3)
N150.247 (6)0.085 (3)0.139 (4)0.021 (3)0.008 (4)0.016 (3)
O1W0.0685 (15)0.1015 (19)0.0809 (17)0.0102 (13)0.0121 (13)0.0123 (15)
O2W0.106 (2)0.127 (2)0.0831 (19)0.0274 (18)0.0043 (16)0.0215 (16)
O3W0.342 (9)0.207 (6)0.350 (10)0.050 (6)0.194 (7)0.082 (6)
O4W0.61 (5)0.69 (5)0.67 (4)0.42 (5)0.34 (4)0.59 (5)
O5WA0.68 (5)0.227 (19)0.190 (16)0.04 (2)0.19 (2)0.041 (14)
N16A0.058 (7)0.113 (13)0.205 (15)0.010 (8)0.013 (10)0.033 (11)
C51A0.044 (6)0.060 (8)0.154 (14)0.017 (6)0.007 (8)0.015 (9)
N17A0.080 (7)0.113 (7)0.128 (9)0.014 (6)0.034 (6)0.037 (6)
C52A0.061 (8)0.104 (7)0.061 (10)0.009 (6)0.017 (7)0.039 (6)
N18A0.077 (8)0.109 (7)0.058 (7)0.001 (5)0.001 (6)0.012 (5)
O5WB0.144 (6)0.251 (11)0.272 (11)0.049 (6)0.056 (6)0.174 (9)
N16B0.43 (2)0.195 (13)0.36 (2)0.024 (14)0.104 (19)0.050 (17)
C51B0.071 (7)0.106 (8)0.31 (2)0.004 (6)0.001 (11)0.124 (11)
N17B0.117 (11)0.200 (17)0.310 (19)0.009 (13)0.016 (14)0.156 (15)
C52B0.140 (13)0.28 (2)0.21 (2)0.009 (19)0.055 (14)0.122 (14)
N18B0.063 (7)0.33 (2)0.084 (11)0.020 (14)0.020 (8)0.101 (11)
Geometric parameters (Å, º) top
Fe1—N81.8719 (17)C23—H230.93
Fe1—N21.8737 (17)C24—H240.93
Fe1—N71.9557 (18)C25—C261.386 (3)
Fe1—N91.9573 (18)C25—C371.476 (3)
Fe1—N11.9594 (19)C26—C271.379 (3)
Fe1—N31.9653 (19)C26—H260.93
N1—C51.338 (3)C27—C281.371 (3)
N1—C11.370 (3)C27—H270.93
N2—C131.345 (3)C28—C291.365 (3)
N2—C111.352 (3)C28—H280.93
N3—C101.341 (3)C29—H290.93
N3—C61.364 (3)C30—C311.380 (3)
N4—C241.332 (4)C30—C351.468 (3)
N4—C201.338 (3)C31—C321.377 (4)
N5—C141.339 (3)C31—H310.93
N5—C121.340 (3)C32—C331.372 (4)
N6—C151.325 (3)C32—H320.93
N6—C191.339 (4)C33—C341.371 (4)
N7—C291.341 (3)C33—H330.93
N7—C251.373 (3)C34—H340.93
N8—C371.348 (3)C35—C361.393 (3)
N8—C351.353 (3)C36—C441.495 (3)
N9—C341.332 (3)C37—C381.404 (3)
N9—C301.361 (3)C38—C391.488 (3)
N10—C441.324 (4)C39—C401.388 (4)
N10—C481.336 (4)C40—C411.390 (4)
N11—C361.332 (3)C40—H400.93
N11—C381.339 (3)C41—C421.357 (6)
N12—C391.335 (3)C41—H410.93
N12—C431.339 (4)C42—C431.360 (5)
C1—C21.374 (3)C42—H420.93
C1—C131.466 (3)C43—H430.93
C2—C31.382 (4)C44—C451.362 (4)
C2—H20.93C45—C461.396 (5)
C3—C41.363 (4)C45—H450.93
C3—H30.93C46—C471.358 (6)
C4—C51.366 (4)C46—H460.93
C4—H40.93C47—C481.334 (6)
C5—H50.93C47—H470.93
C6—C71.375 (3)C48—H480.93
C6—C111.475 (3)N13—C491.082 (5)
C7—C81.371 (4)C49—N141.305 (6)
C7—H70.93N14—C501.288 (7)
C8—C91.363 (4)C50—N151.066 (6)
C8—H80.93O1W—H11W0.84 (2)
C9—C101.362 (4)O1W—H12W0.86 (2)
C9—H90.93O2W—H21W0.85 (3)
C10—H100.93O2W—H22W0.86 (3)
C11—C121.395 (3)O3W—H31W0.86 (11)
C12—C201.483 (3)O3W—H32W0.86 (12)
C13—C141.401 (3)O4W—H41W0.84 (7)
C14—C151.476 (3)O4W—H42W0.85 (9)
C15—C161.381 (4)O5WA—H51A0.9 (3)
C16—C171.369 (4)O5WA—H52A0.85 (4)
C16—H160.93O5WB—H51B0.85 (11)
C17—C181.344 (5)O5WB—H52B0.86 (8)
C17—H170.93N16A—C51A1.145 (14)
C18—C191.390 (5)C51A—N17A1.273 (14)
C18—H180.93N17A—C52A1.321 (15)
C19—H190.93C52A—N18A1.072 (15)
C20—C211.371 (4)N16B—C51B1.173 (16)
C21—C221.400 (5)N16B—H52A1.19 (5)
C21—H210.93C51B—N17B1.320 (16)
C22—C231.355 (6)N17B—C52B1.351 (16)
C22—H220.93C52B—N18B1.101 (17)
C23—C241.339 (6)
N8—Fe1—N2179.59 (8)C20—C21—H21121.6
N8—Fe1—N781.02 (7)C22—C21—H21121.6
N2—Fe1—N798.67 (7)C23—C22—C21118.9 (4)
N8—Fe1—N981.63 (7)C23—C22—H22120.5
N2—Fe1—N998.68 (7)C21—C22—H22120.5
N7—Fe1—N9162.64 (7)C24—C23—C22120.0 (4)
N8—Fe1—N198.78 (8)C24—C23—H23120
N2—Fe1—N180.92 (8)C22—C23—H23120
N7—Fe1—N187.40 (8)N4—C24—C23123.4 (4)
N9—Fe1—N195.77 (8)N4—C24—H24118.3
N8—Fe1—N398.93 (8)C23—C24—H24118.3
N2—Fe1—N381.37 (8)N7—C25—C26120.7 (2)
N7—Fe1—N395.31 (7)N7—C25—C37112.54 (18)
N9—Fe1—N386.86 (8)C26—C25—C37126.7 (2)
N1—Fe1—N3162.29 (8)C27—C26—C25119.2 (2)
C5—N1—C1118.4 (2)C27—C26—H26120.4
C5—N1—Fe1126.28 (17)C25—C26—H26120.4
C1—N1—Fe1114.56 (15)C28—C27—C26119.8 (2)
C13—N2—C11121.29 (18)C28—C27—H27120.1
C13—N2—Fe1119.79 (15)C26—C27—H27120.1
C11—N2—Fe1118.91 (14)C29—C28—C27118.9 (2)
C10—N3—C6118.1 (2)C29—C28—H28120.5
C10—N3—Fe1126.68 (17)C27—C28—H28120.5
C6—N3—Fe1114.63 (15)N7—C29—C28123.0 (2)
C24—N4—C20116.9 (3)N7—C29—H29118.5
C14—N5—C12119.50 (18)C28—C29—H29118.5
C15—N6—C19116.6 (3)N9—C30—C31121.6 (2)
C29—N7—C25118.31 (19)N9—C30—C35112.69 (19)
C29—N7—Fe1126.17 (15)C31—C30—C35125.5 (2)
C25—N7—Fe1115.15 (14)C32—C31—C30119.0 (2)
C37—N8—C35121.34 (18)C32—C31—H31120.5
C37—N8—Fe1120.12 (14)C30—C31—H31120.5
C35—N8—Fe1118.52 (14)C33—C32—C31119.1 (3)
C34—N9—C30118.3 (2)C33—C32—H32120.4
C34—N9—Fe1126.04 (16)C31—C32—H32120.4
C30—N9—Fe1114.39 (15)C34—C33—C32119.4 (3)
C44—N10—C48116.5 (3)C34—C33—H33120.3
C36—N11—C38119.65 (18)C32—C33—H33120.3
C39—N12—C43117.2 (3)N9—C34—C33122.4 (2)
N1—C1—C2120.8 (2)N9—C34—H34118.8
N1—C1—C13112.7 (2)C33—C34—H34118.8
C2—C1—C13126.4 (2)N8—C35—C36118.0 (2)
C1—C2—C3119.5 (3)N8—C35—C30111.52 (19)
C1—C2—H2120.3C36—C35—C30130.5 (2)
C3—C2—H2120.3N11—C36—C35121.3 (2)
C4—C3—C2119.1 (3)N11—C36—C44116.7 (2)
C4—C3—H3120.5C35—C36—C44122.0 (2)
C2—C3—H3120.5N8—C37—C38118.34 (19)
C3—C4—C5119.7 (3)N8—C37—C25110.96 (18)
C3—C4—H4120.1C38—C37—C25130.67 (19)
C5—C4—H4120.1N11—C38—C37120.5 (2)
N1—C5—C4122.3 (3)N11—C38—C39114.50 (19)
N1—C5—H5118.8C37—C38—C39125.0 (2)
C4—C5—H5118.8N12—C39—C40123.1 (2)
N3—C6—C7120.8 (2)N12—C39—C38116.8 (2)
N3—C6—C11112.25 (19)C40—C39—C38120.1 (3)
C7—C6—C11126.9 (2)C39—C40—C41117.2 (3)
C8—C7—C6119.7 (2)C39—C40—H40121.4
C8—C7—H7120.2C41—C40—H40121.4
C6—C7—H7120.2C42—C41—C40120.0 (3)
C9—C8—C7119.2 (3)C42—C41—H41120
C9—C8—H8120.4C40—C41—H41120
C7—C8—H8120.4C41—C42—C43118.7 (3)
C10—C9—C8119.5 (3)C41—C42—H42120.7
C10—C9—H9120.2C43—C42—H42120.7
C8—C9—H9120.2N12—C43—C42123.8 (4)
N3—C10—C9122.5 (2)N12—C43—H43118.1
N3—C10—H10118.8C42—C43—H43118.1
C9—C10—H10118.8N10—C44—C45124.1 (3)
N2—C11—C12118.4 (2)N10—C44—C36115.0 (2)
N2—C11—C6111.74 (18)C45—C44—C36120.9 (3)
C12—C11—C6129.8 (2)C44—C45—C46117.3 (3)
N5—C12—C11120.6 (2)C44—C45—H45121.4
N5—C12—C20116.60 (19)C46—C45—H45121.4
C11—C12—C20122.8 (2)C47—C46—C45118.7 (4)
N2—C13—C14118.2 (2)C47—C46—H46120.6
N2—C13—C1111.17 (19)C45—C46—H46120.6
C14—C13—C1130.7 (2)C48—C47—C46119.5 (4)
N5—C14—C13120.8 (2)C48—C47—H47120.3
N5—C14—C15115.2 (2)C46—C47—H47120.3
C13—C14—C15124.1 (2)C47—C48—N10123.9 (4)
N6—C15—C16123.5 (2)C47—C48—H48118.1
N6—C15—C14115.6 (2)N10—C48—H48118.1
C16—C15—C14120.9 (2)N13—C49—N14166.7 (6)
C17—C16—C15119.0 (3)C50—N14—C49122.7 (5)
C17—C16—H16120.5N15—C50—N14168.6 (6)
C15—C16—H16120.5H11W—O1W—H12W109 (3)
C18—C17—C16118.5 (3)H21W—O2W—H22W105 (4)
C18—C17—H17120.7H31W—O3W—H32W105 (13)
C16—C17—H17120.7H41W—O4W—H42W108 (17)
C17—C18—C19119.8 (3)H51A—O5WA—H52A105 (13)
C17—C18—H18120.1H51B—O5WB—H52B113 (10)
C19—C18—H18120.1N16A—C51A—N17A176.5 (17)
N6—C19—C18122.5 (4)C51A—N17A—C52A130.4 (13)
N6—C19—H19118.7N18A—C52A—N17A172.7 (18)
C18—C19—H19118.7C51B—N16B—H52A125 (2)
N4—C20—C21123.7 (3)N16B—C51B—N17B176.5 (17)
N4—C20—C12114.7 (2)C51B—N17B—C52B123.3 (19)
C21—C20—C12121.5 (3)N18B—C52B—N17B167 (3)
C20—C21—C22116.9 (4)
N8—Fe1—N1—C53.0 (2)N2—C13—C14—C15169.9 (2)
N2—Fe1—N1—C5176.7 (2)C1—C13—C14—C1511.6 (4)
N7—Fe1—N1—C577.5 (2)C19—N6—C15—C160.3 (4)
N9—Fe1—N1—C585.4 (2)C19—N6—C15—C14177.9 (3)
N3—Fe1—N1—C5176.8 (2)N5—C14—C15—N6132.0 (2)
N8—Fe1—N1—C1172.95 (15)C13—C14—C15—N648.3 (3)
N2—Fe1—N1—C16.76 (15)N5—C14—C15—C1645.7 (3)
N7—Fe1—N1—C192.46 (16)C13—C14—C15—C16134.0 (3)
N9—Fe1—N1—C1104.65 (16)N6—C15—C16—C170.5 (4)
N3—Fe1—N1—C16.9 (3)C14—C15—C16—C17178.0 (3)
N7—Fe1—N2—C1384.51 (17)C15—C16—C17—C180.7 (5)
N9—Fe1—N2—C1395.93 (17)C16—C17—C18—C190.6 (6)
N1—Fe1—N2—C131.42 (16)C15—N6—C19—C180.2 (5)
N3—Fe1—N2—C13178.62 (17)C17—C18—C19—N60.4 (6)
N7—Fe1—N2—C1194.33 (16)C24—N4—C20—C211.7 (4)
N9—Fe1—N2—C1185.23 (16)C24—N4—C20—C12177.0 (2)
N1—Fe1—N2—C11179.73 (16)N5—C12—C20—N4129.0 (2)
N3—Fe1—N2—C110.22 (15)C11—C12—C20—N450.5 (3)
N8—Fe1—N3—C102.4 (2)N5—C12—C20—C2152.2 (3)
N2—Fe1—N3—C10177.9 (2)C11—C12—C20—C21128.3 (3)
N7—Fe1—N3—C1084.10 (19)N4—C20—C21—C222.9 (4)
N9—Fe1—N3—C1078.63 (19)C12—C20—C21—C22175.7 (3)
N1—Fe1—N3—C10177.8 (2)C20—C21—C22—C231.4 (5)
N8—Fe1—N3—C6173.59 (14)C21—C22—C23—C241.1 (6)
N2—Fe1—N3—C66.70 (14)C20—N4—C24—C231.1 (5)
N7—Fe1—N3—C6104.70 (15)C22—C23—C24—N42.5 (6)
N9—Fe1—N3—C692.57 (15)C29—N7—C25—C262.0 (3)
N1—Fe1—N3—C66.6 (3)Fe1—N7—C25—C26171.45 (17)
N8—Fe1—N7—C29175.68 (19)C29—N7—C25—C37178.33 (18)
N2—Fe1—N7—C294.04 (19)Fe1—N7—C25—C374.8 (2)
N9—Fe1—N7—C29177.4 (2)N7—C25—C26—C271.9 (3)
N1—Fe1—N7—C2976.36 (18)C37—C25—C26—C27177.6 (2)
N3—Fe1—N7—C2986.09 (18)C25—C26—C27—C280.6 (4)
N8—Fe1—N7—C252.77 (15)C26—C27—C28—C290.4 (4)
N2—Fe1—N7—C25176.95 (15)C25—N7—C29—C281.0 (3)
N9—Fe1—N7—C254.5 (4)Fe1—N7—C29—C28171.73 (17)
N1—Fe1—N7—C2596.54 (15)C27—C28—C29—N70.3 (4)
N3—Fe1—N7—C25101.00 (15)C34—N9—C30—C314.0 (4)
N7—Fe1—N8—C370.10 (16)Fe1—N9—C30—C31163.9 (2)
N9—Fe1—N8—C37179.37 (18)C34—N9—C30—C35178.7 (2)
N1—Fe1—N8—C3786.03 (17)Fe1—N9—C30—C3510.8 (3)
N3—Fe1—N8—C3793.92 (17)N9—C30—C31—C322.0 (4)
N7—Fe1—N8—C35178.32 (18)C35—C30—C31—C32176.0 (3)
N9—Fe1—N8—C352.21 (17)C30—C31—C32—C331.5 (5)
N1—Fe1—N8—C3592.39 (17)C31—C32—C33—C342.9 (6)
N3—Fe1—N8—C3587.66 (17)C30—N9—C34—C332.5 (4)
N8—Fe1—N9—C34172.0 (2)Fe1—N9—C34—C33163.8 (3)
N2—Fe1—N9—C348.3 (2)C32—C33—C34—N90.9 (6)
N7—Fe1—N9—C34170.2 (3)C37—N8—C35—C366.1 (3)
N1—Fe1—N9—C3490.0 (2)Fe1—N8—C35—C36172.28 (17)
N3—Fe1—N9—C3472.4 (2)C37—N8—C35—C30173.1 (2)
N8—Fe1—N9—C305.17 (17)Fe1—N8—C35—C308.5 (3)
N2—Fe1—N9—C30175.11 (17)N9—C30—C35—N812.3 (3)
N7—Fe1—N9—C303.4 (4)C31—C30—C35—N8162.2 (3)
N1—Fe1—N9—C30103.23 (17)N9—C30—C35—C36168.6 (2)
N3—Fe1—N9—C3094.34 (18)C31—C30—C35—C3616.9 (4)
C5—N1—C1—C24.5 (3)C38—N11—C36—C355.0 (4)
Fe1—N1—C1—C2166.2 (2)C38—N11—C36—C44173.7 (2)
C5—N1—C1—C13178.8 (2)N8—C35—C36—N1110.0 (4)
Fe1—N1—C1—C1310.4 (2)C30—C35—C36—N11169.1 (2)
N1—C1—C2—C33.5 (4)N8—C35—C36—C44168.6 (2)
C13—C1—C2—C3179.7 (3)C30—C35—C36—C4412.3 (4)
C1—C2—C3—C40.3 (5)C35—N8—C37—C382.4 (3)
C2—C3—C4—C51.7 (6)Fe1—N8—C37—C38179.26 (16)
C1—N1—C5—C42.5 (4)C35—N8—C37—C25175.71 (19)
Fe1—N1—C5—C4167.1 (3)Fe1—N8—C37—C252.7 (2)
C3—C4—C5—N10.6 (5)N7—C25—C37—N84.7 (3)
C10—N3—C6—C74.8 (3)C26—C25—C37—N8171.3 (2)
Fe1—N3—C6—C7167.20 (17)N7—C25—C37—C38177.5 (2)
C10—N3—C6—C11176.75 (19)C26—C25—C37—C386.5 (4)
Fe1—N3—C6—C1111.3 (2)C36—N11—C38—C373.9 (4)
N3—C6—C7—C84.9 (3)C36—N11—C38—C39174.3 (2)
C11—C6—C7—C8176.9 (2)N8—C37—C38—N117.6 (3)
C6—C7—C8—C91.1 (4)C25—C37—C38—N11170.0 (2)
C7—C8—C9—C102.6 (4)N8—C37—C38—C39170.4 (2)
C6—N3—C10—C91.0 (3)C25—C37—C38—C3912.0 (4)
Fe1—N3—C10—C9169.9 (2)C43—N12—C39—C400.7 (4)
C8—C9—C10—N32.7 (4)C43—N12—C39—C38177.9 (2)
C13—N2—C11—C126.4 (3)N11—C38—C39—N12128.8 (2)
Fe1—N2—C11—C12172.42 (15)C37—C38—C39—N1249.3 (3)
C13—N2—C11—C6175.49 (18)N11—C38—C39—C4048.5 (3)
Fe1—N2—C11—C65.7 (2)C37—C38—C39—C40133.4 (3)
N3—C6—C11—N210.8 (3)N12—C39—C40—C410.4 (4)
C7—C6—C11—N2167.5 (2)C38—C39—C40—C41177.5 (2)
N3—C6—C11—C12167.0 (2)C39—C40—C41—C420.0 (5)
C7—C6—C11—C1214.7 (4)C40—C41—C42—C430.2 (5)
C14—N5—C12—C113.9 (3)C39—N12—C43—C420.6 (4)
C14—N5—C12—C20175.6 (2)C41—C42—C43—N120.1 (5)
N2—C11—C12—N510.5 (3)C48—N10—C44—C452.6 (5)
C6—C11—C12—N5171.8 (2)C48—N10—C44—C36178.8 (3)
N2—C11—C12—C20169.1 (2)N11—C36—C44—N10128.7 (3)
C6—C11—C12—C208.6 (4)C35—C36—C44—N1050.0 (4)
C11—N2—C13—C143.7 (3)N11—C36—C44—C4549.9 (4)
Fe1—N2—C13—C14177.50 (15)C35—C36—C44—C45131.4 (3)
C11—N2—C13—C1175.07 (18)N10—C44—C45—C462.6 (5)
Fe1—N2—C13—C13.8 (2)C36—C44—C45—C46178.9 (3)
N1—C1—C13—N29.1 (3)C44—C45—C46—C470.8 (5)
C2—C1—C13—N2167.4 (2)C45—C46—C47—C480.9 (6)
N1—C1—C13—C14172.4 (2)C46—C47—C48—N101.0 (7)
C2—C1—C13—C1411.2 (4)C44—N10—C48—C470.7 (6)
C12—N5—C14—C136.6 (3)N13—C49—N14—C50164 (2)
C12—N5—C14—C15173.8 (2)C49—N14—C50—N15180 (10)
N2—C13—C14—N510.5 (3)C51B—N17B—C52B—N18B114 (12)
C1—C13—C14—N5168.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···N13i0.84 (2)2.17 (3)2.862 (5)139 (3)
O1W—H12W···N12i0.86 (2)1.98 (2)2.830 (4)173 (3)
O2W—H21W···N150.85 (3)2.16 (4)2.903 (6)146 (3)
O2W—H22W···O1W0.86 (3)1.96 (3)2.785 (4)160 (4)
O3W—H31W···N100.86 (11)2.32 (13)2.909 (10)126 (11)
O3W—H32W···O5WAii0.86 (12)2.29 (15)2.87 (2)126 (15)
O3W—H32W···O4W0.86 (12)2.11 (18)2.46 (3)104 (13)
O3W—H32W···O4Wii0.86 (12)2.41 (12)3.24 (3)162 (15)
O4W—H41W···O5WA0.85 (7)1.95 (9)2.72 (4)153 (17)
O5WA—H52A···N16A0.85 (4)2.19 (4)2.92 (2)143 (7)
O5WB—H51B···N60.85 (11)2.52 (12)3.188 (8)136 (13)
O5WB—H52B···N16B0.86 (8)2.22 (7)3.057 (18)164 (10)
C8—H8···O4Wiii0.932.453.349 (16)162
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C24H16N6)2](C2N3)2·4.5H2O
Mr1045.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.9216 (7), 18.9271 (9), 19.1425 (9)
β (°) 97.017 (4)
V3)5006.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.1 × 0.1 × 0.01
Data collection
DiffractometerOxford Diffraction Xcalibur 2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
51234, 15912, 8433
Rint0.051
(sin θ/λ)max1)0.744
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.168, 1.02
No. of reflections15912
No. of parameters779
No. of restraints135
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···N13i0.84 (2)2.17 (3)2.862 (5)139 (3)
O1W—H12W···N12i0.86 (2)1.98 (2)2.830 (4)173 (3)
O2W—H21W···N150.85 (3)2.16 (4)2.903 (6)146 (3)
O2W—H22W···O1W0.86 (3)1.96 (3)2.785 (4)160 (4)
O3W—H31W···N100.86 (11)2.32 (13)2.909 (10)126 (11)
O3W—H32W···O5WAii0.86 (12)2.29 (15)2.87 (2)126 (15)
O3W—H32W···O4W0.86 (12)2.11 (18)2.46 (3)104 (13)
O3W—H32W···O4Wii0.86 (12)2.41 (12)3.24 (3)162 (15)
O4W—H41W···O5WA0.85 (7)1.95 (9)2.72 (4)153 (17)
O5WA—H52A···N16A0.85 (4)2.19 (4)2.92 (2)143 (7)
O5WB—H51B···N60.85 (11)2.52 (12)3.188 (8)136 (13)
O5WB—H52B···N16B0.86 (8)2.22 (7)3.057 (18)164 (10)
C8—H8···O4Wiii0.932.453.349 (16)162
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Universidad del PaísVasco (UPV 00169.125–13956/2004), the Ministerio de Ciencia y Tecnología (CTQ2005–05778-PPQ) and the Basque Government (project IT-282–07). LC thanks the UPV/EHU for her doctoral fellowship. NdelaP thanks the UPV/EHU for financial support from `Convocatoria para la concesión de ayudas de especialización para investigadores doctores en la UPV/EHU (2008)'.

References

First citationAllis, D. G., Burkholder, E. & Zubieta, J. (2004). Polyhedron, 23, 1145–1152.  Web of Science CSD CrossRef CAS Google Scholar
First citationArana, C., Yan, S., Keshavarz, K. M., Potes, K. T. & Abruña, H. D. (1992). Inorg. Chem. 31, 3680–3682.  CrossRef CAS Web of Science Google Scholar
First citationBurkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 1229–1235.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHe, Y., Kou, H.-Z., Zhou, B. C., Xiong, M., Wang, R.-J. & Li, Y. (2002). Acta Cryst. E58, m389–m391.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKönigstein, C. & Bauer, R. (1994). Hydrogen Energy Progress X (Proc. 10th World Hydrogen Energy Conf.), Vol. 2, edited by D. L. Block & T. N. Veziroğlu, pp. 717–725. Coral Gables: International Association for Hydrogen Energy.  Google Scholar
First citationKönigstein, C. & Bauer, R. (1997). Int. J. Hydrogen Ener. 22, 471–474.  Google Scholar
First citationLainé, P., Gourdon, A. & Launay, J. P. (1995). Inorg. Chem. 34, 5156–5165.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRuminski, R. R. & Kiplinger, J. L. (1990). Inorg. Chem. 29, 4581–4584.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m249-m250
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds