organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 7-chloro-2-ethyl­sulfanyl-6-fluoro-4-oxo-4H-thio­chromene-3-carboxyl­ate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: taoxiao@njut.edu.cn

(Received 16 January 2010; accepted 21 January 2010; online 27 February 2010)

In the title compound, C13H10ClFO3S2, the two-ring system is essentially planar, the mean plane of the benzene ring being inclined at 6.0 (2)° to the plane of the remaining four atoms. The ethyl­sulfanyl group is almost coplanar with the two rings [dihedral angle = 6.4 (2)°], while the carboxyl­ate group is almost perpendicular to it [dihedral angle = 72.4 (2)°]. In the crystal structure, inter­molecular C—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules in a stacked arrangement along the a axis.

Related literature

For related compounds containing a 4H-thio­chromen-4-one fragment, see: Adams et al. (1991[Adams, H., Bailey, N. A., Giles, P. R. & Marson, C. M. (1991). Acta Cryst. C47, 1332-1334.]); Nakazumi et al. (1992[Nakazumi, H., Watanabe, S. & Kitao, T. (1992). J. Chem. Res. 212, 1616-1641.]); Weiss et al. (2008[Weiss, R., Bess, M., Huber, S. M. & Heinemann, F. W. (2008). J. Am. Chem. Soc. 130, 4610-4617.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClFO3S2

  • Mr = 332.78

  • Triclinic, [P \overline 1]

  • a = 7.6740 (15) Å

  • b = 9.3880 (19) Å

  • c = 10.368 (2) Å

  • α = 85.18 (3)°

  • β = 80.93 (3)°

  • γ = 71.24 (3)°

  • V = 698.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.892, Tmax = 0.944

  • 2735 measured reflections

  • 2531 independent reflections

  • 1908 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.138

  • S = 1.00

  • 2531 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.93 2.60 3.292 (4) 132
C13—H13C⋯Fii 0.96 2.52 3.144 (5) 123
Symmetry codes: (i) x+1, y, z; (ii) -x-1, -y+1, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, methyl 7-chloro-2-(ethylsulfanyl)-6-fluoro-4-oxo-4H- thiochromene-3-carboxylate (I), is a new molecule which has a potential use as antifungal. We herein report its crystal structure. The molecular structure of (I) is shown in Fig. 1, and selected geometric parameters are given in Table 1. The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The molecule is essentially planar, the atoms C7, C8, C9 and S1 form a plane inclined at 6.0 (2)° with the mean plane of the phenyl ring. The ethylsulfanyl group is almost coplanar with the two rings while the carboxylate group is almost perpendicular. In the crystal structure, intermolecular C—H···O and C—H···F hydrogen bonds (Table 2) link the molecules in a stacked arrangement along the a axis (Fig. 2).

Related literature top

For related compounds containing a 4H-thiochromen-4-one fragment, see: Adams et al. (1991); Nakazumi et al. (1992); Weiss et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

CS2 (1.0 g, 13.1 mmol) was dropwise added to a solution of methyl 3-(4-chloro-3-fluorophenyl)-3-oxopropanoate (4 g, 17.3 mmol) in DMSO (20 ml) containing KOH (1 g, 17.8 mmol). The yellow solution was stirred for about 2 h at room temperature. Then bromoethane (1.9 g, 17.3 mmol) was dropwise added to the intermediate. After 3 h, the solution was poured into water (50 ml). The crystalline product was isolated by filtration, washed with water (300 ml). The crystals were obtained by dissolving (I) in acetone (20 ml) and slow evaporation of the solvent at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Methyl 7-chloro-2-ethylsulfanyl-6-fluoro-4-oxo-4H-thiochromene-3-carboxylate top
Crystal data top
C13H10ClFO3S2Z = 2
Mr = 332.78F(000) = 340
Triclinic, P1Dx = 1.583 Mg m3
Hall symbol: -P 1Melting point: 421 K
a = 7.6740 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3880 (19) ÅCell parameters from 25 reflections
c = 10.368 (2) Åθ = 10–13°
α = 85.18 (3)°µ = 0.59 mm1
β = 80.93 (3)°T = 293 K
γ = 71.24 (3)°Block, colourless
V = 698.0 (2) Å30.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1908 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 1011
Tmin = 0.892, Tmax = 0.944l = 1212
2735 measured reflections3 standard reflections every 200 reflections
2531 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.085P)2]
where P = (Fo2 + 2Fc2)/3
2531 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C13H10ClFO3S2γ = 71.24 (3)°
Mr = 332.78V = 698.0 (2) Å3
Triclinic, P1Z = 2
a = 7.6740 (15) ÅMo Kα radiation
b = 9.3880 (19) ŵ = 0.59 mm1
c = 10.368 (2) ÅT = 293 K
α = 85.18 (3)°0.20 × 0.10 × 0.10 mm
β = 80.93 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1908 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.892, Tmax = 0.9443 standard reflections every 200 reflections
2735 measured reflections intensity decay: 1%
2531 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
2531 reflectionsΔρmin = 0.31 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.32919 (13)0.43804 (11)0.25035 (9)0.0614 (3)
F0.0661 (3)0.5608 (2)0.2592 (2)0.0679 (6)
S10.13971 (10)0.07054 (9)0.12622 (8)0.0409 (3)
S20.04493 (12)0.08554 (10)0.33572 (9)0.0515 (3)
O10.4369 (3)0.3010 (3)0.0513 (2)0.0541 (6)
O20.4884 (3)0.2281 (3)0.3453 (2)0.0572 (7)
O30.4571 (4)0.0067 (3)0.2676 (3)0.0738 (8)
C10.0642 (4)0.2176 (3)0.0132 (3)0.0353 (7)
C20.2053 (4)0.2628 (3)0.0640 (3)0.0403 (7)
H2A0.32890.21530.05310.048*
C30.1606 (4)0.3769 (3)0.1554 (3)0.0409 (7)
C40.0260 (5)0.4468 (4)0.1690 (3)0.0460 (8)
C50.1641 (4)0.4052 (3)0.0954 (3)0.0433 (8)
H5A0.28710.45460.10700.052*
C60.1220 (4)0.2881 (3)0.0019 (3)0.0357 (7)
C70.2770 (4)0.2453 (3)0.0767 (3)0.0394 (7)
C80.2374 (4)0.1375 (3)0.1842 (3)0.0364 (7)
C90.0653 (4)0.0524 (3)0.2103 (3)0.0359 (7)
C100.1994 (4)0.1669 (4)0.3475 (3)0.0478 (8)
H10A0.26800.20380.26380.057*
H10B0.24820.09280.37500.057*
C110.2151 (5)0.2962 (4)0.4489 (4)0.0616 (10)
H11A0.34320.34390.45930.092*
H11B0.16590.36830.42030.092*
H11C0.14590.25780.53100.092*
C120.4059 (4)0.1142 (4)0.2676 (3)0.0435 (8)
C130.6523 (5)0.2191 (5)0.4322 (4)0.0650 (11)
H13A0.70100.30660.48430.097*
H13B0.62000.13050.48820.097*
H13C0.74450.21410.38150.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0607 (6)0.0691 (6)0.0557 (6)0.0309 (5)0.0054 (4)0.0070 (4)
F0.0703 (15)0.0607 (13)0.0659 (13)0.0157 (11)0.0153 (11)0.0271 (11)
S10.0278 (4)0.0440 (5)0.0476 (5)0.0082 (3)0.0062 (3)0.0060 (3)
S20.0359 (5)0.0571 (6)0.0557 (5)0.0118 (4)0.0047 (4)0.0164 (4)
O10.0323 (12)0.0591 (15)0.0699 (16)0.0121 (11)0.0163 (11)0.0109 (12)
O20.0491 (14)0.0657 (16)0.0583 (15)0.0270 (12)0.0139 (12)0.0153 (12)
O30.0476 (15)0.0571 (16)0.119 (2)0.0274 (13)0.0101 (15)0.0153 (16)
C10.0362 (16)0.0339 (16)0.0375 (16)0.0114 (13)0.0077 (13)0.0044 (13)
C20.0356 (16)0.0406 (17)0.0454 (18)0.0115 (14)0.0061 (14)0.0058 (14)
C30.0462 (18)0.0416 (17)0.0374 (16)0.0179 (15)0.0024 (14)0.0040 (14)
C40.057 (2)0.0418 (18)0.0398 (18)0.0144 (16)0.0116 (16)0.0019 (14)
C50.0384 (17)0.0396 (18)0.0499 (19)0.0059 (14)0.0125 (15)0.0032 (15)
C60.0349 (16)0.0340 (15)0.0384 (16)0.0088 (13)0.0075 (13)0.0052 (12)
C70.0306 (16)0.0392 (17)0.0467 (18)0.0071 (13)0.0068 (14)0.0048 (14)
C80.0293 (15)0.0395 (16)0.0429 (17)0.0133 (13)0.0051 (13)0.0050 (13)
C90.0346 (16)0.0373 (16)0.0369 (16)0.0127 (13)0.0044 (13)0.0025 (13)
C100.0395 (18)0.050 (2)0.054 (2)0.0131 (15)0.0134 (15)0.0088 (16)
C110.054 (2)0.063 (2)0.065 (2)0.0148 (19)0.0194 (19)0.0168 (19)
C120.0283 (16)0.0442 (18)0.058 (2)0.0108 (14)0.0100 (14)0.0046 (16)
C130.049 (2)0.079 (3)0.059 (2)0.019 (2)0.0107 (18)0.002 (2)
Geometric parameters (Å, º) top
Cl—C31.719 (3)C5—C61.394 (4)
F—C41.352 (4)C5—H5A0.9300
S1—C91.726 (3)C6—C71.480 (4)
S1—C11.744 (3)C7—C81.441 (4)
S2—C91.744 (3)C8—C91.362 (4)
S2—C101.802 (3)C8—C121.505 (4)
O1—C71.231 (4)C10—C111.524 (4)
O2—C121.320 (4)C10—H10A0.9700
O2—C131.448 (4)C10—H10B0.9700
O3—C121.195 (4)C11—H11A0.9600
C1—C61.396 (4)C11—H11B0.9600
C1—C21.400 (4)C11—H11C0.9600
C2—C31.363 (4)C13—H13A0.9600
C2—H2A0.9300C13—H13B0.9600
C3—C41.394 (5)C13—H13C0.9600
C4—C51.349 (5)
C9—S1—C1103.12 (15)C7—C8—C12114.8 (3)
C9—S2—C10106.87 (15)C8—C9—S1124.2 (2)
C12—O2—C13116.1 (3)C8—C9—S2119.3 (2)
C6—C1—C2120.8 (3)S1—C9—S2116.45 (17)
C6—C1—S1124.0 (2)C11—C10—S2105.9 (2)
C2—C1—S1115.1 (2)C11—C10—H10A110.6
C3—C2—C1119.7 (3)S2—C10—H10A110.6
C3—C2—H2A120.2C11—C10—H10B110.6
C1—C2—H2A120.2S2—C10—H10B110.6
C2—C3—C4118.9 (3)H10A—C10—H10B108.7
C2—C3—Cl121.1 (3)C10—C11—H11A109.5
C4—C3—Cl119.9 (3)C10—C11—H11B109.5
C5—C4—F120.0 (3)H11A—C11—H11B109.5
C5—C4—C3122.4 (3)C10—C11—H11C109.5
F—C4—C3117.5 (3)H11A—C11—H11C109.5
C4—C5—C6119.8 (3)H11B—C11—H11C109.5
C4—C5—H5A120.1O3—C12—O2123.8 (3)
C6—C5—H5A120.1O3—C12—C8125.7 (3)
C5—C6—C1118.4 (3)O2—C12—C8110.4 (3)
C5—C6—C7118.3 (3)O2—C13—H13A109.5
C1—C6—C7123.3 (3)O2—C13—H13B109.5
O1—C7—C8120.6 (3)H13A—C13—H13B109.5
O1—C7—C6120.7 (3)O2—C13—H13C109.5
C8—C7—C6118.7 (3)H13A—C13—H13C109.5
C9—C8—C7125.9 (3)H13B—C13—H13C109.5
C9—C8—C12119.1 (3)
C9—S1—C1—C63.7 (3)C1—C6—C7—C87.3 (4)
C9—S1—C1—C2176.1 (2)O1—C7—C8—C9169.8 (3)
C6—C1—C2—C30.2 (4)C6—C7—C8—C910.5 (5)
S1—C1—C2—C3180.0 (2)O1—C7—C8—C126.3 (4)
C1—C2—C3—C40.5 (4)C6—C7—C8—C12173.4 (3)
C1—C2—C3—Cl178.9 (2)C7—C8—C9—S16.0 (5)
C2—C3—C4—C50.3 (5)C12—C8—C9—S1178.0 (2)
Cl—C3—C4—C5178.8 (3)C7—C8—C9—S2173.7 (2)
C2—C3—C4—F179.2 (3)C12—C8—C9—S22.3 (4)
Cl—C3—C4—F0.7 (4)C1—S1—C9—C81.0 (3)
F—C4—C5—C6179.6 (3)C1—S1—C9—S2179.22 (16)
C3—C4—C5—C60.2 (5)C10—S2—C9—C8176.9 (2)
C4—C5—C6—C10.5 (5)C10—S2—C9—S13.3 (2)
C4—C5—C6—C7179.8 (3)C9—S2—C10—C11175.0 (2)
C2—C1—C6—C50.3 (4)C13—O2—C12—O31.3 (5)
S1—C1—C6—C5179.6 (2)C13—O2—C12—C8179.4 (3)
C2—C1—C6—C7180.0 (3)C9—C8—C12—O370.7 (5)
S1—C1—C6—C70.1 (4)C7—C8—C12—O3105.7 (4)
C5—C6—C7—O17.3 (4)C9—C8—C12—O2107.4 (3)
C1—C6—C7—O1173.0 (3)C7—C8—C12—O276.2 (3)
C5—C6—C7—C8172.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.603.292 (4)132
C13—H13C···Fii0.962.523.144 (5)123
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H10ClFO3S2
Mr332.78
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6740 (15), 9.3880 (19), 10.368 (2)
α, β, γ (°)85.18 (3), 80.93 (3), 71.24 (3)
V3)698.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.892, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
2735, 2531, 1908
Rint0.016
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.138, 1.00
No. of reflections2531
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cl—C31.719 (3)S2—C101.802 (3)
F—C41.352 (4)O1—C71.231 (4)
S1—C91.726 (3)O2—C121.320 (4)
S1—C11.744 (3)O2—C131.448 (4)
S2—C91.744 (3)O3—C121.195 (4)
C9—S1—C1103.12 (15)O1—C7—C8120.6 (3)
C9—S2—C10106.87 (15)O1—C7—C6120.7 (3)
C12—O2—C13116.1 (3)C8—C9—S1124.2 (2)
C6—C1—S1124.0 (2)C8—C9—S2119.3 (2)
C2—C1—S1115.1 (2)S1—C9—S2116.45 (17)
C2—C3—Cl121.1 (3)C11—C10—S2105.9 (2)
C4—C3—Cl119.9 (3)O3—C12—O2123.8 (3)
C5—C4—F120.0 (3)O3—C12—C8125.7 (3)
F—C4—C3117.5 (3)O2—C12—C8110.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.93002.60003.292 (4)132.00
C13—H13C···Fii0.96002.52003.144 (5)123.00
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAdams, H., Bailey, N. A., Giles, P. R. & Marson, C. M. (1991). Acta Cryst. C47, 1332–1334.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakazumi, H., Watanabe, S. & Kitao, T. (1992). J. Chem. Res. 212, 1616–1641.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeiss, R., Bess, M., Huber, S. M. & Heinemann, F. W. (2008). J. Am. Chem. Soc. 130, 4610–4617.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds