organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[eth­yl(2-hy­droxy­ethyl)aza­nium] 2,2′-disulfanediyldibenzoate

a5959 FM 1960 Road West, Houston, Texas 77069, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 February 2010; accepted 22 February 2010; online 27 February 2010)

The asymmetric unit of the title salt, 2C4H12NO+·C14H8O4S22−, contains an eth­yl(2-hydr­oxy)aminium cation and half a 2,2′-disulfanediyldibenzoate anion, with the latter disposed about a twofold axis. The cation is a straight chain with the exception of the terminal hydr­oxy group [the N—C—C—O torsion angle is 66.5 (2)°]. A twisted conformation is found for the anion [the C—S—S—C torsion angle is 91.51 (9)° and the dihedral angle between the rings is 81.01 (4)°]. A supra­molecular chain with base vector [101] and a tubular topology is formed in the crystal structure mediated by charge-assisted O—H⋯O and N+—H⋯O hydrogen bonding.

Related literature

For related studies on co-crystal/salt formation involving 2-[(2-carboxy­phen­yl)disulfan­yl]benzoic acid, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]). For software used to search the Cambridge Structural Database, see: Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H12NO+·C14H8O4S22−

  • Mr = 484.64

  • Monoclinic, C 2/c

  • a = 22.949 (5) Å

  • b = 8.2429 (16) Å

  • c = 14.766 (3) Å

  • β = 119.80 (3)°

  • V = 2423.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 K

  • 0.40 × 0.25 × 0.10 mm

Data collection
  • Rigaku AFC12/SATURN724 CCD-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.800, Tmax = 1.000

  • 7823 measured reflections

  • 2503 independent reflections

  • 2367 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.100

  • S = 1.14

  • 2503 reflections

  • 148 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.92 1.94 2.840 (2) 164
N1—H1B⋯O2 0.92 1.85 2.7617 (19) 171
O3—H3⋯O2i 0.84 1.92 2.763 (2) 177
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The title salt, (I), was obtained during crystallisation experiments involving 2-[(2-carboxyphenyl)disulfanyl]benzoic acid with various N-containing species (Broker & Tiekink, 2007; Broker et al., 2008). The asymmetric unit comprises an aminium cation (Fig. 1) and half a dithiodibenzoate anion (Fig. 2), with the latter disposed about a crystallographic 2-fold axis. The cation is linear with the exception of the terminal hydroxy group which is twisted out of the chain as seen in the O3–C8–C9–N1 torsion angle [66.5 (2)°]. Confirmation of protonation of the amine-N1 atom during crystallisation is seen in the pattern of hydrogen-bonding interactions (see below). A search of the CSD (Bruno et al., 2002) suggests that this is the first structural characterisation reported for the ethyl(2-hydroxyethyl)aminium cation. The dithiodibenzoate anion is twisted [torsion angle C3–S1–S1i–C3i = 91.51 (9)°: for symmetry code i, -x, y, 1/2-z] in accord with expectation, with the conformation stabilised by an intramolecular S···O interaction of 2.7351 (16) Å (Broker & Tiekink (2007). The carboxylate group is twisted out of the plane of the benzene ring to which it is connected with the C3–C2–C1–O1 torsion angle being -25.0 (2) °. Confirmation of deprotonation of the carboxylic acid is consistent with the observed near equivalence of the C1–O1 and C1–O2 bond distances [1.2499 (19) and 1.270 (2) Å] with the weaker C1–O2 bond correlated to the participation of the O2 atom in two hydrogen bonding interactions compared to one for the O1 atom. The crystal packing is dominated by charge-assisted O–H···O- and N+–H···O- hydrogen bonding (Table 1). Each of the aminium-H atoms connects to a carboxylate-O atom and the O2 atom is also hydrogen-bonded to the hydroxy group. The result of these interactions is a supramolecular chain with base vector [1 0 1] (Fig. 3), which has a tubular topology (Fig. 4).

Related literature top

For related studies on co-crystal/salt formation involving 2-[(2-carboxyphenyl)disulfanyl]benzoic acid, see: Broker & Tiekink (2007); Broker et al. (2008). For software used to search the Cambridge Structural Database, see: Bruno et al. (2002).

Experimental top

The title salt (I) was obtained by dissolving 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (0.100 g, Fluka) in ethanol (20 ml) to which was added the amine in 1:1, 1:2 and 1:3 stoichiometric ratios in three separate experiments. Regardless of the stoichiometry, only crystals of (I) were harvested as proved by multiple unit cell determinations, m.p. 429–431 K

Refinement top

The H-atoms were located from difference maps but placed in their idealised positions (O–H = 0.84 Å, N–H = 0.92 Å, and C–H 0.95-0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2-1.5Ueq(carrier atom).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the cation in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of the anion in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The anion has crystallographic 2-fold symmetry; i: -x, y, 1/2-z.
[Figure 3] Fig. 3. Supramolecular chain formation in (I) mediated by charge-assisted O–H···O- (orange dashed lines) and N+–H···O- (blue dashed lines) hydrogen bonding. Colour code: S, yellow; O, red; N, blue; C, grey; H, green.
[Figure 4] Fig. 4. An end-on view of the supramolecular chain shown in Fig. 3 highlighting the tubular topology. The charge-assisted O–H···O- and N+–H···O- hydrogen-bonding interactions are indicated by orange and blue dashed lines, respectively. Colour code: S, yellow; O, red; N, blue; C, grey; H, green.
Ethyl(2-hydroxyethyl)azanium 2,2'-disulfanediyldibenzoate top
Crystal data top
2C4H12NO+·C14H8O4S22F(000) = 1032
Mr = 484.64Dx = 1.328 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5747 reflections
a = 22.949 (5) Åθ = 3.6–30.5°
b = 8.2429 (16) ŵ = 0.26 mm1
c = 14.766 (3) ÅT = 173 K
β = 119.80 (3)°Block, colourless
V = 2423.9 (11) Å30.40 × 0.25 × 0.10 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724 CCD-detector
diffractometer
2503 independent reflections
Radiation source: fine-focus sealed tube2367 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 26.5°, θmin = 3.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2825
Tmin = 0.800, Tmax = 1.000k = 1010
7823 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0437P)2 + 1.6814P]
where P = (Fo2 + 2Fc2)/3
2503 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
2C4H12NO+·C14H8O4S22V = 2423.9 (11) Å3
Mr = 484.64Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.949 (5) ŵ = 0.26 mm1
b = 8.2429 (16) ÅT = 173 K
c = 14.766 (3) Å0.40 × 0.25 × 0.10 mm
β = 119.80 (3)°
Data collection top
Rigaku AFC12K/SATURN724 CCD-detector
diffractometer
2503 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2367 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 1.000Rint = 0.032
7823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.100H-atom parameters constrained
S = 1.14Δρmax = 0.34 e Å3
2503 reflectionsΔρmin = 0.22 e Å3
148 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04587 (2)0.42885 (5)0.31713 (3)0.02621 (14)
O10.17238 (6)0.44668 (13)0.48609 (9)0.0272 (3)
O20.21265 (6)0.67861 (14)0.57133 (9)0.0269 (3)
O30.17235 (7)0.9908 (2)0.29494 (10)0.0453 (4)
H30.20720.93760.33380.068*
N10.20710 (7)1.00243 (16)0.51963 (10)0.0231 (3)
H1A0.24101.02420.50520.028*
H1B0.20690.89230.52960.028*
C10.16465 (8)0.58217 (18)0.51667 (12)0.0223 (3)
C20.09497 (8)0.63551 (18)0.48785 (12)0.0222 (3)
C30.03728 (8)0.57605 (18)0.39935 (12)0.0236 (3)
C40.02554 (9)0.6307 (2)0.37906 (14)0.0329 (4)
H40.06470.59310.31870.039*
C50.03181 (10)0.7382 (2)0.44505 (15)0.0376 (4)
H50.07520.77280.43030.045*
C60.02468 (9)0.7965 (2)0.53293 (14)0.0335 (4)
H60.02030.87010.57870.040*
C70.08727 (9)0.74627 (19)0.55301 (13)0.0269 (4)
H70.12610.78770.61240.032*
C80.12733 (9)0.9551 (2)0.33125 (14)0.0351 (4)
H8A0.12980.83760.34680.042*
H8B0.08100.97940.27530.042*
C90.14185 (9)1.0497 (2)0.42769 (13)0.0306 (4)
H9A0.14271.16700.41390.037*
H9B0.10531.03090.44370.037*
C100.22223 (9)1.0870 (2)0.61827 (14)0.0316 (4)
H10A0.18551.06710.63360.038*
H10B0.22521.20530.60990.038*
C110.28740 (10)1.0267 (3)0.70735 (15)0.0430 (5)
H11A0.29671.08320.77160.065*
H11B0.32381.04770.69240.065*
H11C0.28420.90980.71620.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0231 (2)0.0274 (2)0.0238 (2)0.00348 (15)0.00832 (17)0.00108 (15)
O10.0244 (6)0.0241 (6)0.0319 (6)0.0018 (5)0.0131 (5)0.0030 (5)
O20.0229 (6)0.0252 (6)0.0285 (6)0.0020 (5)0.0097 (5)0.0005 (5)
O30.0373 (8)0.0698 (10)0.0298 (7)0.0153 (7)0.0174 (6)0.0157 (7)
N10.0237 (7)0.0218 (7)0.0246 (7)0.0019 (5)0.0126 (6)0.0006 (5)
C10.0239 (8)0.0234 (8)0.0194 (7)0.0006 (6)0.0107 (7)0.0047 (6)
C20.0239 (8)0.0194 (7)0.0243 (8)0.0022 (6)0.0128 (7)0.0051 (6)
C30.0234 (8)0.0231 (8)0.0243 (8)0.0029 (6)0.0118 (7)0.0039 (6)
C40.0237 (9)0.0377 (10)0.0326 (9)0.0040 (8)0.0105 (8)0.0010 (8)
C50.0288 (10)0.0427 (10)0.0431 (10)0.0101 (8)0.0192 (9)0.0002 (9)
C60.0386 (10)0.0316 (9)0.0370 (9)0.0056 (8)0.0239 (8)0.0013 (8)
C70.0307 (9)0.0239 (8)0.0261 (8)0.0002 (7)0.0142 (7)0.0004 (7)
C80.0273 (9)0.0471 (10)0.0247 (9)0.0033 (8)0.0083 (7)0.0042 (8)
C90.0256 (9)0.0318 (9)0.0311 (9)0.0069 (7)0.0117 (8)0.0062 (7)
C100.0373 (10)0.0296 (9)0.0323 (9)0.0014 (7)0.0207 (8)0.0073 (7)
C110.0356 (11)0.0634 (13)0.0266 (9)0.0058 (10)0.0128 (8)0.0115 (9)
Geometric parameters (Å, º) top
S1—C31.7953 (16)C5—C61.387 (3)
S1—S1i2.0528 (13)C5—H50.9500
O1—C11.2499 (19)C6—C71.378 (2)
O2—C11.270 (2)C6—H60.9500
O3—C81.411 (2)C7—H70.9500
O3—H30.8401C8—C91.509 (3)
N1—C91.489 (2)C8—H8A0.9900
N1—C101.492 (2)C8—H8B0.9900
N1—H1A0.9200C9—H9A0.9900
N1—H1B0.9200C9—H9B0.9900
C1—C21.502 (2)C10—C111.503 (3)
C2—C71.400 (2)C10—H10A0.9900
C2—C31.407 (2)C10—H10B0.9900
C3—C41.393 (2)C11—H11A0.9800
C4—C51.377 (3)C11—H11B0.9800
C4—H40.9500C11—H11C0.9800
C3—S1—S1i104.39 (6)C6—C7—H7119.3
C8—O3—H3105.1C2—C7—H7119.3
C9—N1—C10114.12 (13)O3—C8—C9113.00 (16)
C9—N1—H1A108.7O3—C8—H8A109.0
C10—N1—H1A108.7C9—C8—H8A109.0
C9—N1—H1B108.7O3—C8—H8B109.0
C10—N1—H1B108.7C9—C8—H8B109.0
H1A—N1—H1B107.6H8A—C8—H8B107.8
O1—C1—O2123.69 (15)N1—C9—C8112.07 (14)
O1—C1—C2118.79 (14)N1—C9—H9A109.2
O2—C1—C2117.52 (14)C8—C9—H9A109.2
C7—C2—C3118.91 (15)N1—C9—H9B109.2
C7—C2—C1118.46 (14)C8—C9—H9B109.2
C3—C2—C1122.62 (14)H9A—C9—H9B107.9
C4—C3—C2118.84 (15)N1—C10—C11110.34 (14)
C4—C3—S1121.51 (13)N1—C10—H10A109.6
C2—C3—S1119.63 (12)C11—C10—H10A109.6
C5—C4—C3121.12 (17)N1—C10—H10B109.6
C5—C4—H4119.4C11—C10—H10B109.6
C3—C4—H4119.4H10A—C10—H10B108.1
C4—C5—C6120.48 (17)C10—C11—H11A109.5
C4—C5—H5119.8C10—C11—H11B109.5
C6—C5—H5119.8H11A—C11—H11B109.5
C7—C6—C5119.15 (16)C10—C11—H11C109.5
C7—C6—H6120.4H11A—C11—H11C109.5
C5—C6—H6120.4H11B—C11—H11C109.5
C6—C7—C2121.48 (16)
O1—C1—C2—C7153.69 (15)C2—C3—C4—C51.4 (3)
O2—C1—C2—C726.3 (2)S1—C3—C4—C5177.14 (15)
O1—C1—C2—C325.0 (2)C3—C4—C5—C60.9 (3)
O2—C1—C2—C3155.09 (14)C4—C5—C6—C70.5 (3)
C7—C2—C3—C40.6 (2)C5—C6—C7—C21.3 (3)
C1—C2—C3—C4179.26 (15)C3—C2—C7—C60.7 (2)
C7—C2—C3—S1177.96 (12)C1—C2—C7—C6177.99 (15)
C1—C2—C3—S10.7 (2)C10—N1—C9—C8177.21 (14)
S1i—S1—C3—C416.34 (15)O3—C8—C9—N166.5 (2)
S1i—S1—C3—C2165.14 (11)C9—N1—C10—C11177.61 (15)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.921.942.840 (2)164
N1—H1B···O20.921.852.7617 (19)171
O3—H3···O2ii0.841.922.763 (2)177
Symmetry code: (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula2C4H12NO+·C14H8O4S22
Mr484.64
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)22.949 (5), 8.2429 (16), 14.766 (3)
β (°) 119.80 (3)
V3)2423.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.40 × 0.25 × 0.10
Data collection
DiffractometerRigaku AFC12K/SATURN724 CCD-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.800, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7823, 2503, 2367
Rint0.032
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.14
No. of reflections2503
No. of parameters148
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.22

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.921.942.840 (2)164
N1—H1B···O20.921.852.7617 (19)171
O3—H3···O2i0.841.922.763 (2)177
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds