organic compounds
Benzene-1,3,5-triyl tris(methanesulfonate)
aCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500, Tijuana, B.C., Mexico
*Correspondence e-mail: dperalta55@yahoo.com.mx
In the molecule of the title compound, C9H12O9S3, the two methanesulfonate groups re located one above and one below the ring plane. The C—O—S angle range is 119.3 (2)–121.1 (2)°. This conformation is different from that of the benzene analog 1,2,5-tris(p-toluenesulfonate), which is a three-legged `table' with all fragments of the p-toluenesulfonate on top of the benzene ring. In the crystal, the supramolecular aggregation is completed by the presence of C—H⋯O hydrogen bonds.
Related literature
For infrared spectroscopic studies related compounds, see: Grice et al. (2000); Yan & Yan (2001). For of related compounds, see: Chavez et al. (2003); Olivas et al. (2008); Madrigal et al. (2006). For examples of O⋯O interactions, see: Raghavaiah et al. (2006), and for a comprehensive theoretical treatment, see: Ni et al. (2004). For a related structure, see:, see: Vembu et al. (2003). For the IR spectrum, see: Skoog et al. (1997).
Experimental
Crystal data
|
Refinement
|
Data collection: XSCANS (Siemens, 1996); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810006641/bg2322sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810006641/bg2322Isup2.hkl
The synthesis of the title compound included reagents and solvents of reagent grade, which were used without further purification. In a round bottom flask of 10 ml provided with a magnetic stirrer, was placed 0.3 g (2.3 mmol) of 1,3,5-trihydroxybenzene and 3 ml of pyridine. The flask was immersed in an ice bath and 0.58 ml (7.6 mmol) of methanesulfonyl chloride was added dropwise. The mixture was stirred for one hour and stored in the refrigerator for 24 hours. The reaction mixture was poured on to cracked ice and the precipitate was washed with a cold solution 20% of HCl (3 x 5 ml) and cold water (3 x 5 ml). The solid obtained was dried under vacuum. The yield was of 49 % of melting point: 142 °C. IR(KBr): 3099, 3027, 1602, 1458, 1367, 1182, 1110 cm-1 (Skoog, et al., 1997). 1H NMR (CDCl3): δ 7.51 (s, 3H, CH), 3.49 (s, 9H, CH3). 13C NMR (CDCl3): δ 149.7(CO), 116.3(CH), 39.1(CH3).
Crystallization.
50 mg of benzene-1,3,5-triyl trimethanesulfonate compound was placed in a glass vial and 3 ml of dimethyl sulfoxide was added. The solution was allowed to stand at room temperature for seven days and the crystals formed were separated by filtration.
Refinement for H atoms was carried out using a riding model, with distances constrained to: 0.93 Å for aromatic CH, 0.98 Å for methine CH. Isotropic displacement parameters were fixed to Uĩso~(H)=1.2/1.5 U~eq~(carrier atom)
Data collection: XSCANS (Siemens, 1996); cell
XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The title compound (I) with displacement ellipsoids drawn at a 30% probability level. | |
Fig. 2. The molecules forming cyclic dimers. O—O bonds are indicated by broken lines. |
C9H12O9S3 | F(000) = 744 |
Mr = 360.37 | Dx = 1.668 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 51 reflections |
a = 8.7810 (5) Å | θ = 4.9–12.4° |
b = 17.0053 (9) Å | µ = 0.56 mm−1 |
c = 9.7746 (7) Å | T = 298 K |
β = 100.595 (5)° | Needle, colourless |
V = 1434.69 (15) Å3 | 0.40 × 0.24 × 0.10 mm |
Z = 4 |
Bruker P4 diffractometer | 2333 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.048 |
Graphite monochromator | θmax = 30.0°, θmin = 2.4° |
2θ/ω scans | h = 0→12 |
Absorption correction: ψ scan (XSCANS; Siemens, 1996) | k = 0→23 |
Tmin = 0.258, Tmax = 0.310 | l = −13→13 |
4418 measured reflections | 3 standard reflections every 97 reflections |
4176 independent reflections | intensity decay: 4.3% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.177 | H-atom parameters constrained |
S = 0.92 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
4176 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C9H12O9S3 | V = 1434.69 (15) Å3 |
Mr = 360.37 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.7810 (5) Å | µ = 0.56 mm−1 |
b = 17.0053 (9) Å | T = 298 K |
c = 9.7746 (7) Å | 0.40 × 0.24 × 0.10 mm |
β = 100.595 (5)° |
Bruker P4 diffractometer | 2333 reflections with I > 2σ(I) |
Absorption correction: ψ scan (XSCANS; Siemens, 1996) | Rint = 0.048 |
Tmin = 0.258, Tmax = 0.310 | 3 standard reflections every 97 reflections |
4418 measured reflections | intensity decay: 4.3% |
4176 independent reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.177 | H-atom parameters constrained |
S = 0.92 | Δρmax = 0.32 e Å−3 |
4176 reflections | Δρmin = −0.33 e Å−3 |
190 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.88376 (11) | 0.16428 (6) | 0.42609 (9) | 0.0390 (2) | |
S2 | 0.78601 (11) | 0.00358 (6) | −0.20344 (8) | 0.0376 (2) | |
S3 | 0.60481 (12) | −0.19992 (6) | 0.32307 (10) | 0.0441 (3) | |
O3 | 0.6500 (3) | 0.00837 (15) | −0.1152 (2) | 0.0362 (5) | |
O2 | 0.7498 (3) | −0.14794 (15) | 0.3008 (3) | 0.0414 (6) | |
O1 | 0.7281 (3) | 0.13465 (16) | 0.3276 (2) | 0.0431 (6) | |
C2 | 0.7397 (4) | −0.0073 (2) | 0.3185 (3) | 0.0342 (7) | |
H2A | 0.7576 | −0.0108 | 0.4151 | 0.041* | |
C6 | 0.6987 (4) | 0.0718 (2) | 0.1073 (3) | 0.0322 (7) | |
H6A | 0.6893 | 0.1207 | 0.0640 | 0.039* | |
C4 | 0.7008 (4) | −0.0705 (2) | 0.0917 (3) | 0.0322 (7) | |
H4A | 0.6932 | −0.1159 | 0.0380 | 0.039* | |
C5 | 0.6872 (4) | 0.0031 (2) | 0.0319 (3) | 0.0307 (7) | |
C3 | 0.7265 (4) | −0.0735 (2) | 0.2358 (3) | 0.0330 (7) | |
C1 | 0.7251 (4) | 0.0646 (2) | 0.2512 (3) | 0.0323 (7) | |
O5 | 0.7038 (4) | −0.00487 (19) | −0.3418 (3) | 0.0606 (9) | |
O4 | 0.8956 (4) | −0.05374 (18) | −0.1437 (3) | 0.0564 (8) | |
C7 | 0.8698 (5) | 0.0967 (2) | −0.1803 (4) | 0.0463 (9) | |
H7A | 0.9541 | 0.1000 | −0.2302 | 0.069* | |
H7B | 0.9079 | 0.1056 | −0.0830 | 0.069* | |
H7C | 0.7936 | 0.1359 | −0.2148 | 0.069* | |
O9 | 0.9613 (4) | 0.09894 (18) | 0.4963 (3) | 0.0619 (9) | |
O8 | 0.8301 (4) | 0.22633 (19) | 0.5033 (3) | 0.0602 (8) | |
O7 | 0.4863 (4) | −0.19317 (19) | 0.2031 (3) | 0.0626 (8) | |
O6 | 0.6727 (4) | −0.27378 (18) | 0.3633 (4) | 0.0759 (10) | |
C9 | 0.9942 (5) | 0.2029 (3) | 0.3109 (5) | 0.0559 (11) | |
H9B | 1.0906 | 0.2223 | 0.3622 | 0.084* | |
H9C | 0.9385 | 0.2452 | 0.2590 | 0.084* | |
H9D | 1.0143 | 0.1625 | 0.2479 | 0.084* | |
C8 | 0.5441 (6) | −0.1548 (3) | 0.4643 (5) | 0.0608 (12) | |
H8B | 0.4558 | −0.1823 | 0.4855 | 0.091* | |
H8C | 0.5165 | −0.1012 | 0.4413 | 0.091* | |
H8D | 0.6267 | −0.1562 | 0.5436 | 0.091* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0487 (5) | 0.0386 (5) | 0.0283 (4) | −0.0024 (4) | 0.0034 (4) | −0.0045 (4) |
S2 | 0.0461 (5) | 0.0422 (5) | 0.0263 (4) | 0.0004 (4) | 0.0117 (3) | −0.0044 (4) |
S3 | 0.0552 (6) | 0.0307 (5) | 0.0477 (5) | −0.0008 (4) | 0.0132 (4) | 0.0047 (4) |
O3 | 0.0369 (12) | 0.0483 (15) | 0.0229 (10) | −0.0022 (11) | 0.0046 (9) | −0.0009 (10) |
O2 | 0.0424 (14) | 0.0375 (14) | 0.0441 (14) | 0.0047 (11) | 0.0076 (11) | 0.0099 (11) |
O1 | 0.0468 (15) | 0.0410 (14) | 0.0376 (13) | 0.0089 (12) | −0.0021 (11) | −0.0150 (11) |
C2 | 0.0375 (17) | 0.0410 (19) | 0.0238 (14) | 0.0003 (15) | 0.0043 (12) | 0.0003 (14) |
C6 | 0.0343 (17) | 0.0335 (17) | 0.0283 (15) | 0.0000 (14) | 0.0042 (13) | −0.0020 (13) |
C4 | 0.0338 (17) | 0.0338 (17) | 0.0296 (16) | −0.0035 (14) | 0.0072 (13) | −0.0048 (13) |
C5 | 0.0297 (15) | 0.0382 (17) | 0.0244 (14) | −0.0032 (14) | 0.0056 (12) | −0.0015 (14) |
C3 | 0.0316 (17) | 0.0335 (17) | 0.0341 (16) | 0.0002 (14) | 0.0062 (14) | 0.0028 (14) |
C1 | 0.0325 (17) | 0.0363 (18) | 0.0287 (15) | 0.0047 (14) | 0.0066 (13) | −0.0075 (14) |
O5 | 0.076 (2) | 0.081 (2) | 0.0242 (12) | −0.0115 (18) | 0.0093 (13) | −0.0115 (13) |
O4 | 0.0625 (19) | 0.0546 (18) | 0.0561 (17) | 0.0207 (15) | 0.0218 (14) | −0.0017 (14) |
C7 | 0.046 (2) | 0.048 (2) | 0.046 (2) | −0.0071 (18) | 0.0088 (18) | 0.0034 (18) |
O9 | 0.069 (2) | 0.0528 (18) | 0.0534 (17) | −0.0063 (15) | −0.0173 (15) | 0.0123 (14) |
O8 | 0.069 (2) | 0.066 (2) | 0.0465 (16) | −0.0050 (16) | 0.0130 (14) | −0.0271 (15) |
O7 | 0.065 (2) | 0.0585 (19) | 0.0591 (18) | −0.0198 (16) | −0.0012 (16) | −0.0021 (15) |
O6 | 0.095 (3) | 0.0401 (17) | 0.099 (3) | 0.0165 (17) | 0.036 (2) | 0.0248 (17) |
C9 | 0.071 (3) | 0.044 (2) | 0.059 (2) | −0.005 (2) | 0.028 (2) | −0.002 (2) |
C8 | 0.073 (3) | 0.062 (3) | 0.053 (2) | 0.001 (2) | 0.028 (2) | 0.001 (2) |
S1—O9 | 1.413 (3) | C2—H2A | 0.9300 |
S1—O8 | 1.427 (3) | C6—C5 | 1.375 (5) |
S1—O1 | 1.601 (3) | C6—C1 | 1.389 (4) |
S1—C9 | 1.744 (4) | C6—H6A | 0.9300 |
S2—O4 | 1.418 (3) | C4—C5 | 1.377 (5) |
S2—O5 | 1.418 (3) | C4—C3 | 1.385 (4) |
S2—O3 | 1.598 (3) | C4—H4A | 0.9300 |
S2—C7 | 1.744 (4) | C7—H7A | 0.9600 |
S3—O6 | 1.415 (3) | C7—H7B | 0.9600 |
S3—O7 | 1.422 (3) | C7—H7C | 0.9600 |
S3—O2 | 1.598 (3) | C9—H9B | 0.9600 |
S3—C8 | 1.745 (4) | C9—H9C | 0.9600 |
O3—C5 | 1.417 (4) | C9—H9D | 0.9600 |
O2—C3 | 1.414 (4) | C8—H8B | 0.9600 |
O1—C1 | 1.404 (4) | C8—H8C | 0.9600 |
C2—C3 | 1.379 (5) | C8—H8D | 0.9600 |
C2—C1 | 1.383 (5) | ||
O9—S1—O8 | 120.1 (2) | C3—C4—H4A | 121.6 |
O9—S1—O1 | 109.04 (16) | C6—C5—C4 | 123.5 (3) |
O8—S1—O1 | 102.84 (16) | C6—C5—O3 | 118.1 (3) |
O9—S1—C9 | 109.5 (2) | C4—C5—O3 | 118.3 (3) |
O8—S1—C9 | 109.9 (2) | C2—C3—C4 | 123.1 (3) |
O1—S1—C9 | 104.17 (19) | C2—C3—O2 | 118.5 (3) |
O4—S2—O5 | 120.70 (19) | C4—C3—O2 | 118.2 (3) |
O4—S2—O3 | 109.32 (16) | C2—C1—C6 | 122.9 (3) |
O5—S2—O3 | 102.73 (16) | C2—C1—O1 | 120.4 (3) |
O4—S2—C7 | 109.43 (19) | C6—C1—O1 | 116.6 (3) |
O5—S2—C7 | 110.14 (19) | S2—C7—H7A | 109.5 |
O3—S2—C7 | 102.88 (17) | S2—C7—H7B | 109.5 |
O6—S3—O7 | 120.5 (2) | H7A—C7—H7B | 109.5 |
O6—S3—O2 | 102.92 (19) | S2—C7—H7C | 109.5 |
O7—S3—O2 | 108.86 (16) | H7A—C7—H7C | 109.5 |
O6—S3—C8 | 110.1 (2) | H7B—C7—H7C | 109.5 |
O7—S3—C8 | 109.5 (2) | S1—C9—H9B | 109.5 |
O2—S3—C8 | 103.4 (2) | S1—C9—H9C | 109.5 |
C5—O3—S2 | 119.3 (2) | H9B—C9—H9C | 109.5 |
C3—O2—S3 | 120.2 (2) | S1—C9—H9D | 109.5 |
C1—O1—S1 | 121.1 (2) | H9B—C9—H9D | 109.5 |
C3—C2—C1 | 116.9 (3) | H9C—C9—H9D | 109.5 |
C3—C2—H2A | 121.5 | S3—C8—H8B | 109.5 |
C1—C2—H2A | 121.5 | S3—C8—H8C | 109.5 |
C5—C6—C1 | 116.8 (3) | H8B—C8—H8C | 109.5 |
C5—C6—H6A | 121.6 | S3—C8—H8D | 109.5 |
C1—C6—H6A | 121.6 | H8B—C8—H8D | 109.5 |
C5—C4—C3 | 116.8 (3) | H8C—C8—H8D | 109.5 |
C5—C4—H4A | 121.6 | ||
O4—S2—O3—C5 | 39.6 (3) | S2—O3—C5—C4 | −85.2 (3) |
O5—S2—O3—C5 | 168.9 (3) | C1—C2—C3—C4 | 0.4 (5) |
C7—S2—O3—C5 | −76.7 (3) | C1—C2—C3—O2 | 176.3 (3) |
O6—S3—O2—C3 | 168.7 (3) | C5—C4—C3—C2 | −0.6 (5) |
O7—S3—O2—C3 | 39.7 (3) | C5—C4—C3—O2 | −176.4 (3) |
C8—S3—O2—C3 | −76.6 (3) | S3—O2—C3—C2 | 98.7 (3) |
O9—S1—O1—C1 | −40.3 (3) | S3—O2—C3—C4 | −85.2 (3) |
O8—S1—O1—C1 | −168.7 (3) | C3—C2—C1—C6 | −0.1 (5) |
C9—S1—O1—C1 | 76.6 (3) | C3—C2—C1—O1 | 176.3 (3) |
C1—C6—C5—C4 | −0.2 (5) | C5—C6—C1—C2 | 0.0 (5) |
C1—C6—C5—O3 | 175.9 (3) | C5—C6—C1—O1 | −176.5 (3) |
C3—C4—C5—C6 | 0.4 (5) | S1—O1—C1—C2 | 69.1 (4) |
C3—C4—C5—O3 | −175.6 (3) | S1—O1—C1—C6 | −114.3 (3) |
S2—O3—C5—C6 | 98.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O5i | 0.93 | 2.51 | 3.392 (4) | 159 |
C9—H9D···O4ii | 0.96 | 2.32 | 3.259 (5) | 166 |
C4—H4A···O6iii | 0.93 | 2.52 | 3.444 (4) | 172 |
C9—H9C···O8iv | 0.96 | 2.55 | 3.312 (5) | 136 |
Symmetry codes: (i) x, y, z+1; (ii) −x+2, −y, −z; (iii) x, −y−1/2, z−1/2; (iv) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H12O9S3 |
Mr | 360.37 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 8.7810 (5), 17.0053 (9), 9.7746 (7) |
β (°) | 100.595 (5) |
V (Å3) | 1434.69 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.56 |
Crystal size (mm) | 0.40 × 0.24 × 0.10 |
Data collection | |
Diffractometer | Bruker P4 diffractometer |
Absorption correction | ψ scan (XSCANS; Siemens, 1996) |
Tmin, Tmax | 0.258, 0.310 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4418, 4176, 2333 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.177, 0.92 |
No. of reflections | 4176 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.33 |
Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O5i | 0.93 | 2.51 | 3.392 (4) | 158.9 |
C9—H9D···O4ii | 0.96 | 2.32 | 3.259 (5) | 165.9 |
C4—H4A···O6iii | 0.93 | 2.52 | 3.444 (4) | 171.8 |
C9—H9C···O8iv | 0.96 | 2.55 | 3.312 (5) | 136.2 |
Symmetry codes: (i) x, y, z+1; (ii) −x+2, −y, −z; (iii) x, −y−1/2, z−1/2; (iv) x, −y+1/2, z−1/2. |
Acknowledgements
This work was supported by the Consejo del Sistema Nacional de Educación Tecnológica (COSNET) grant No. 497.05-P.
References
Chavez, D., Ochoa, A., Madrigal, D., Castillo, M., Espinoza, K., González, T., Velez, E., Melendez, J., Garcia, D. & Rivero, I. A. (2003). J. Comb. Chem. 5, 149–154. Web of Science CrossRef PubMed CAS Google Scholar
Grice, P., Leach, A. G., Ley, S. V., Massi, A. & Mynett, D. M. (2000). J. Comb. Chem. 2, 491–495. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Madrigal, D., Pina-Luis, G. & Rivero, I. A. (2006). J. Mex. Chem. Soc. 5, 175–179 Google Scholar
Ni, B., Lee, K.-H. & Sinnott, S. B. (2004). J. Phys. Condens. Matter, 16, 7261–7275 Web of Science CrossRef CAS Google Scholar
Olivas, A., Zepeda, T. A. & Madrigal, D. (2008). Mater. Res. Innov. 12, 12–17. CrossRef CAS Google Scholar
Raghavaiah, P., Supriya, S. & Das, S. K. (2006). Chem. Commun. pp. 7262–2764 Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Skoog, A. D., Holler, F. J. & Nieman, T. A. (1997). Principles of Instrumental Analysis, 5th ed., pp. 380–428. Philadelphia: Brooks College Publishing Google Scholar
Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, o1019–o1021. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yan, B. & Yan, H. (2001). J. Comb. Chem. 3, 78–84. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of supported organic compounds and dendrimers on Merrifield resin with a mesyl group and a trihydroxybenzene core has been one of our objectives; however the analysis of the supported products on the solid state is only limited to infrared spectroscopy (Grice et al., 2000; Yan et al., 2001). In our previous work we have used mass spectroscopy to characterize intermediates and products (Chavez et al., 2003; Olivas et al., 2008;. Madrigal et al., 2006). In this work, and as part of our ongoing research, we have synthesized benzene-1,3,5-triyl trimethanesulfonate using 1,3,5 trihydroxybenzene. The product (I) is an intermediate in the synthesis of complex first , second and third generation dendrimers.
As shown in Fig. 1, the molecule shows two fragments of trimethanesulfonate above and one below the plane of the benzene ring, with angles C5—O3—S2 119.3 (2)° , C1—01—S1 121.1 (2)° and C3—02—S3 120.2 (2)°. This conformation is different from the one shown by the analogue benzene 1,2,5-tris(p-toluenesulfonate), where the conformation of the molecule is described as a three-legged table (all fragments of the p-toluenesulfonate lay on the top of the benzene ring) stabilized by intramolecular C—H···O and C— H···π (Vembu et al., 2003).
In the crystal structure of (I), adjacent units are arranged like dimers via intermolecular C3—O2···(O9—S1)i, (3.035 Å, (i): 2-x,-y,1-z ) oxygen bond interactions (Fig 2). Similar interactions are described in the literature, e.g. the helical structure of sulfate anions formed by non-covalent O···O (2.9413 Å) contacts described in Raghavaiah et al. 2006, and it stresses the role of a flip-flop water chain in determining the helical arrangement of sulfate anions in the solid state. These non-covalent O···O interactions are well-established in the literature including their theoretical aspects (Ni et al. 2004). In addition, adjacent dimers are linked together via intermolecular C—H···O hydrogen bond interactions (table 2).