metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m383-m384

[μ-3-(8-Quinol­yl­oxy)propanedi­yl]bis­­[dicarbon­yl(η5-meth­oxy­carbonyl­cyclo­penta­dien­yl)molybdenum(III)]

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: chdsguo@sdnu.edu.cn

(Received 19 February 2010; accepted 1 March 2010; online 6 March 2010)

The crystal structure of the title dimolybdenum complex, [Mo2(C12H9NO)(C7H7O2)2(CO)4], has a quasi-tetra­hedral Mo2C2 cluster core attached to one 3-(8-quinol­yloxy)propanediyl (L) and two methoxy­carbonyl­cyclo­penta­dienyl (Cp') ligands which are coordinated to two Mo atoms: one Mo atom bonds two terminal CO ligands while the other links one terminal and one semi-bridging CO ligand. An intra­molecular C—H⋯N hydrogen bond results in the quinolyl plane of the L ligand approaching and being nearly perpendicular to one of the Cp' rings [88.09 (12)°]. In the supra­molecular structure, a one-dimensional comb-shaped infinite chain is formed approximately along the crystallographic c axis by a combination of inter­molecular C—H⋯O hydrogen bonds and locally generates a C(6) motif. Finally, pairs of inversion-related comb-shaped chains associate into a new ladder-shaped infinite chain through weak ππ stacking inter­actions between neighbouring quinolyl systems (pyridyl centroid–centroid distance = 3.853 Å).

Related literature

For general background to dimolybdenum alkyne complexes, see: Conole et al. (1989[Conole, G., Hill, K. A., Mcpartlin, M., Mays, M. J. & Morris, M. J. (1989). J. Chem. Soc. Chem. Commun. pp. 688-690.], 1990[Conole, G., Mcpartlin, M., Mays, M. J. & Morris, M. J. (1990). J. Chem. Soc. Dalton Trans. pp. 2359-2366.]); Adams et al. (1995[Adams, H., Bailey, N. A., Gay, S. R., Hamilton, T. & Morris, M. J. (1995). J. Organomet. Chem. 493, C25-C28.], 1996[Adams, H., Gill, L. J. & Morris, M. J. (1996). Organometallics, 15, 4182-4189.]); Muetterties (1980[Muetterties, E. L. (1980). J. Organomet. Chem. 200, 177-190.]); Gibson et al. (1991[Gibson, V. C., Parkin, G. & Bercaw, J. E. (1991). Organometallics, 10, 220-231.]); Brady & Pettit (1980[Brady, R. C. & Pettit, R. (1980). J. Am. Chem. Soc. 102, 6182-6184.]); Sappa et al. (1983[Sappa, E., Tiripicchio, A. & Braunstein, P. (1983). Chem. Rev. 83, 203-239.], 1985[Sappa, E., Tiripicchio, A. & Braunstein, P. (1985). Coord. Chem. Rev. 65, 219-284.]); Raithby & Rosales (1985[Raithby, P. R. & Rosales, M. J. (1985). Adv. Inorg. Chem. Radiochem. 29, 169-247.]). For semi-bridging CO ligands, see: Curtis & Butler (1978[Curtis, M. D. & Butler, W. M. (1978). J. Organomet. Chem. 155, 131-145.]); Klingler et al. (1978[Klingler, R. J., Butler, W. M. & Curtis, M. D. (1978). J. Am. Chem. Soc. 100, 5034-5039.]). For related structures, see: Bailey et al. (1978[Bailey, W. I. Jr, Chisholm, M. H., Cotton, F. A. & Rankel, L. A. (1978). J. Am. Chem. Soc. 100, 5764-5773.]); Song et al. (1996[Song, L.-C., Shen, J.-Y., Hu, Q.-M. & Huang, X.-Y. (1996). Inorg. Chim. Acta. 249, 175-181.]); Zhang et al. (1999[Zhang, J., Chen, X.-N., Yin, Y.-Q. & Huang, X.-Y. (1999). J. Organomet. Chem. 579, 304-310.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]). For the synthesis, see: Birdwhistell et al. (1978[Birdwhistell, R., Hackett, P. & Manning, A. R. (1978). J. Organomet. Chem. 157, 239-241.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo2(C12H9NO)(C7H7O2)2(CO)4]

  • Mr = 733.37

  • Monoclinic, P 21 /c

  • a = 7.744 (1) Å

  • b = 12.7189 (16) Å

  • c = 28.630 (3) Å

  • β = 100.012 (3)°

  • V = 2777.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 298 K

  • 0.42 × 0.18 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.688, Tmax = 0.963

  • 14074 measured reflections

  • 5071 independent reflections

  • 4445 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.094

  • S = 1.06

  • 5071 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N1 0.98 2.61 3.344 (6) 132
C15—H15⋯O4i 0.98 2.36 3.191 (5) 143
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The dimolybdenum alkyne complexes have been extensively examined (Conole et al., 1989, 1990; Adams et al., 1995, 1996) due to their potential applications in catalysis and materials (Muetterties, 1980; Gibson et al., 1991; Brady & Pettit, 1980). Moreover, such complexes can be used as precursors for constructing higher-nuclearity alkyne clusters (Sappa et al., 1983, 1985; Raithby & Rosales, 1985). While there is no example of using these clusters as building blocks for the construction of supramolecular assemblies. We report here a novel ladder-shaped chain sructure composed of a new dimolybdenum alkyne complex, Mo2Cp'2(µ-L)(CO)4 [Cp' = η5-C5H4CO2CH3, L = 8-(2-propynyloxy)quinoline], namely µ-[3-(8-quinolyloxy)propyne]-dicarbomethoxycyclopentadienyl-tetracarbonyldimolybdenum.

The crystal structure of the title complex, as shown in Fig. 1, contains a quasi-tetrahedral Mo2C2 cluster core linked to one L and two Cp' ligands which are coordinated to two Mo atoms, respectively, one Mo atom bonded two terminal CO ligands while the other attached one terminal and one semibridging CO ligand (Curtis & Butler 1978; Klingler et al., 1978). The complex has the same basic structure in which there is a crosswise acetylene bridge typical of that found in the related dimolybdenum alkyne compounds (Bailey et al., 1978; Song et al., 1996; Zhang et al., 1999). In the Mo2C2 cluster core, the Mo—Mo and C—C bond lengths are 2.978 (5) and 1.351 (5) A°, respectively, very close to the corresponding values observed in the cluster [Mo2Cp'2(µ-C2H2)(CO)4] (Song et al., 1996). Notably, the quinolyl plane belonging to L ligand is more approachable and nearly perpendicular to one Cp' ring, with an interplane angle of 88.09 (12)°, presumedly ascribed to the formation of an intramolecular C14—H14···N1 hydrogen bond (Table 1) between the cyclopentadienyl and quinolyl groups. Such an orientation of the quinolyl plane is different from that of the phenyl ring in the crystal structure of the compound [Mo2Cp'2(µ-C2HPh)(CO)4] (Zhang et al., 1999).

In the supramolecular structures of the title cluster, a novel one-dimensional comb-shaped infinite chain is formed approximatively along the crystallographic c axis via a combination of intermolecular C—H···O hydrogen bonds (Table 1), locally creating a C(6) motif (Bernstein et al., 1995) at each link. The motif arises from atoms C15—H15 in the molecule at (x, y, z), acting as a hydrogen-bond donor to atom O4 at (x - 1, y, z). Pairs of the inversion-related comb-shaped chains associate into a new ladder-shaped infinite chain (Fig. 2), in which there are weak ππ stacking between the neibouring quinolyl rings.

Related literature top

For general background to dimolybdenum alkyne complexes, see: Conole et al. (1989, 1990); Adams et al. (1995, 1996); Muetterties (1980); Gibson et al. (1991); Brady & Pettit (1980); Sappa et al. (1983, 1985); Raithby & Rosales (1985). For semi-bridging CO ligands, see: Curtis & Butler (1978); Klingler et al. (1978). For related structures, see: Bailey et al. (1978); Song et al. (1996); Zhang et al. (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis, see: Birdwhistell et al. (1978).

Experimental top

All reactions and manipulations were carried out under dry argon and using standard Schlenk techniques. A solution of [Mo2Cp'2(CO)6,Cp' = η5-C5H4CO2CH3], prepared according to the literature method (Birdwhistell et al., 1978), (0.400 g, 0.66 mmol) in toluene (20 ml) was refluxed for 24 h with a stream of argon bubbling slowly through it to form [Mo2Cp'2(CO)4]. Upon cooling to room temperature, 3-(8-quinolyloxy)propyne (0.605 g, 3.30 mmol) was added to the solution, followed stirring for an additional 2 h. After removal of the volatile under reduced pressure, the residue was separated by flash column chromatography (ethyl acetate/hexane = 1:1, Rf = 0.5), giving the title compound (yield 35%) as dark red solid. 1H NMR (300 MHz, CDCl3): δ 8.91 (br, 1H), 8.13 (d, 1H, J = 8.17 Hz), 7.40–7.48 (m, 3H), 7.11 (d, 1H, J = 7.16 Hz), 6.11 (s, 1H), 5.90 (s, 2H), 5.72 (s, 2H), 5.54 (s, 2H), 5.48 (s, 2H), 5.36 (s, 2H), 3.74 (s, 6H). Single crystals of the title compond suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in hexane and CH2Cl2 at 298 K.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to refined atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.93, 0.98 and 0.97?Å for aromatic, methylene and methyl H, respectively, and Uiso(H) = 1.5Ueq(C) for methyl H, and Uiso(H) = 1.2Ueq(C) for all other H atoms. .

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. A view of the hydrogen-bonded ladder-shaped chain of the title molecule approximatively along the c axis. Some hydrogen atoms are omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 2; (iii) x - 2, y, z].
[µ-3-(8-Quinolyloxy)propanediyl]bis[dicarbonyl(η5- methoxycarbonylcyclopentadienyl)molybdenum] top
Crystal data top
[Mo2(C12H9NO)(C7H7O2)2(CO)4]F(000) = 1464
Mr = 733.37Dx = 1.754 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5150 reflections
a = 7.744 (1) Åθ = 2.2–27.6°
b = 12.7189 (16) ŵ = 0.96 mm1
c = 28.630 (3) ÅT = 298 K
β = 100.012 (3)°Plan, red
V = 2777.0 (6) Å30.42 × 0.18 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5071 independent reflections
Radiation source: fine-focus sealed tube4445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 25.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 99
Tmin = 0.688, Tmax = 0.963k = 1511
14074 measured reflectionsl = 2734
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0485P)2 + 1.4813P]
where P = (Fo2 + 2Fc2)/3
5071 reflections(Δ/σ)max = 0.002
381 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Mo2(C12H9NO)(C7H7O2)2(CO)4]V = 2777.0 (6) Å3
Mr = 733.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.744 (1) ŵ = 0.96 mm1
b = 12.7189 (16) ÅT = 298 K
c = 28.630 (3) Å0.42 × 0.18 × 0.04 mm
β = 100.012 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5071 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4445 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.963Rint = 0.032
14074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.54 e Å3
5071 reflectionsΔρmin = 0.41 e Å3
381 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.22482 (4)0.85534 (3)0.887331 (11)0.02978 (11)
Mo20.29551 (4)0.80787 (3)0.790559 (11)0.03177 (11)
O10.2230 (4)0.5812 (2)0.90476 (9)0.0521 (8)
O20.4274 (4)0.7577 (3)0.66998 (11)0.0634 (9)
O30.4369 (6)0.9323 (3)0.67758 (13)0.0831 (12)
O40.7408 (4)0.9014 (3)0.94201 (12)0.0563 (8)
O50.6097 (4)1.0562 (3)0.92403 (11)0.0552 (8)
O60.1261 (5)1.0549 (3)0.82612 (12)0.0675 (10)
O70.1432 (4)0.7587 (3)0.85410 (11)0.0651 (10)
O80.6047 (5)0.9704 (3)0.80995 (13)0.0737 (10)
O90.5944 (5)0.6569 (3)0.77104 (12)0.0663 (10)
N10.2771 (5)0.5592 (3)0.99779 (13)0.0569 (10)
C10.3036 (7)0.5466 (4)1.04418 (16)0.0673 (15)
H10.34520.60371.06310.081*
C20.2727 (7)0.4519 (4)1.06671 (16)0.0629 (14)
H20.29440.44721.09960.075*
C30.2119 (6)0.3686 (4)1.04036 (15)0.0519 (12)
H30.19020.30581.05490.062*
C40.1807 (5)0.3764 (3)0.99026 (15)0.0431 (10)
C50.1187 (6)0.2923 (3)0.96027 (16)0.0505 (11)
H50.10080.22670.97290.061*
C60.0852 (6)0.3076 (4)0.91262 (16)0.0543 (12)
H60.04040.25230.89290.065*
C70.1163 (6)0.4037 (3)0.89266 (15)0.0454 (10)
H70.09200.41170.85990.054*
C80.1818 (5)0.4864 (3)0.92034 (14)0.0418 (10)
C90.2151 (5)0.4743 (3)0.97089 (14)0.0406 (9)
C100.1965 (6)0.5988 (3)0.85422 (13)0.0436 (10)
H10A0.07380.59100.84030.052*
H10B0.26510.54960.83910.052*
C110.2567 (5)0.7091 (3)0.84888 (12)0.0347 (9)
C120.4110 (5)0.7593 (3)0.86228 (12)0.0316 (8)
H120.52850.73510.87650.038*
C130.4045 (5)0.8172 (3)0.96022 (13)0.0381 (9)
H130.48930.75950.96600.046*
C140.2296 (6)0.8126 (4)0.96709 (13)0.0436 (10)
H140.17200.75210.97900.052*
C150.1585 (5)0.9153 (4)0.95922 (13)0.0432 (10)
H150.04220.93730.96450.052*
C160.2892 (5)0.9827 (3)0.94779 (13)0.0391 (9)
H160.27951.05900.94360.047*
C170.4428 (5)0.9215 (3)0.94789 (12)0.0336 (8)
C180.6130 (5)0.9562 (3)0.93762 (13)0.0398 (10)
C190.7730 (6)1.0965 (5)0.91356 (19)0.0720 (16)
H19A0.86321.08860.94090.108*
H19B0.75961.16950.90530.108*
H19C0.80471.05800.88750.108*
C200.1446 (6)0.9155 (4)0.73296 (14)0.0483 (11)
H200.16260.99120.72980.058*
C210.0138 (6)0.8680 (4)0.75394 (15)0.0517 (12)
H210.06910.90560.77020.062*
C220.0149 (6)0.7593 (4)0.74664 (14)0.0522 (12)
H220.06660.70830.75650.063*
C230.1485 (6)0.7372 (4)0.72051 (13)0.0460 (10)
H230.17190.66850.70740.055*
C240.2290 (6)0.8343 (4)0.71115 (13)0.0448 (11)
C250.3747 (6)0.8499 (4)0.68456 (14)0.0518 (12)
C260.5796 (8)0.7607 (5)0.6472 (2)0.0825 (17)
H26A0.55890.80860.62090.124*
H26B0.60180.69170.63600.124*
H26C0.67940.78400.66950.124*
C270.4917 (5)0.9115 (3)0.80390 (14)0.0427 (10)
C280.4856 (6)0.7096 (3)0.77944 (14)0.0415 (10)
C290.1655 (5)0.9754 (4)0.84529 (14)0.0430 (10)
C300.0102 (5)0.7963 (3)0.86565 (14)0.0428 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02632 (18)0.0338 (2)0.02849 (18)0.00216 (13)0.00266 (13)0.00110 (13)
Mo20.0326 (2)0.0353 (2)0.02659 (18)0.00396 (14)0.00280 (13)0.00113 (14)
O10.087 (2)0.0358 (17)0.0324 (15)0.0170 (16)0.0071 (14)0.0005 (13)
O20.068 (2)0.070 (2)0.056 (2)0.0065 (19)0.0225 (17)0.0079 (18)
O30.114 (3)0.069 (3)0.077 (3)0.019 (2)0.045 (2)0.011 (2)
O40.0321 (16)0.059 (2)0.079 (2)0.0001 (15)0.0124 (15)0.0006 (18)
O50.0436 (18)0.054 (2)0.065 (2)0.0148 (15)0.0003 (14)0.0098 (16)
O60.097 (3)0.0415 (19)0.060 (2)0.0189 (19)0.0004 (18)0.0078 (17)
O70.0340 (18)0.096 (3)0.064 (2)0.0204 (18)0.0043 (15)0.013 (2)
O80.069 (2)0.068 (2)0.082 (2)0.035 (2)0.0067 (19)0.002 (2)
O90.065 (2)0.071 (2)0.066 (2)0.0199 (19)0.0177 (18)0.0081 (18)
N10.081 (3)0.041 (2)0.045 (2)0.003 (2)0.0002 (19)0.0025 (18)
C10.103 (4)0.051 (3)0.042 (3)0.002 (3)0.006 (3)0.002 (2)
C20.082 (4)0.068 (4)0.036 (2)0.015 (3)0.004 (2)0.010 (2)
C30.061 (3)0.053 (3)0.043 (2)0.009 (2)0.012 (2)0.013 (2)
C40.043 (2)0.037 (2)0.052 (3)0.0070 (19)0.0159 (19)0.006 (2)
C50.063 (3)0.037 (3)0.057 (3)0.008 (2)0.024 (2)0.004 (2)
C60.065 (3)0.046 (3)0.055 (3)0.022 (2)0.021 (2)0.009 (2)
C70.058 (3)0.040 (2)0.039 (2)0.006 (2)0.0091 (19)0.0008 (19)
C80.044 (2)0.036 (2)0.045 (2)0.0004 (19)0.0085 (18)0.0023 (19)
C90.040 (2)0.043 (2)0.039 (2)0.0036 (19)0.0080 (17)0.0019 (19)
C100.058 (3)0.039 (2)0.034 (2)0.009 (2)0.0075 (19)0.0002 (18)
C110.048 (2)0.031 (2)0.0258 (18)0.0006 (17)0.0082 (16)0.0001 (16)
C120.035 (2)0.034 (2)0.0272 (18)0.0073 (17)0.0079 (15)0.0027 (16)
C130.039 (2)0.045 (2)0.0285 (19)0.0023 (18)0.0006 (16)0.0038 (17)
C140.051 (3)0.053 (3)0.027 (2)0.012 (2)0.0098 (18)0.0007 (19)
C150.035 (2)0.061 (3)0.036 (2)0.001 (2)0.0116 (17)0.007 (2)
C160.041 (2)0.039 (2)0.036 (2)0.0017 (18)0.0019 (17)0.0083 (18)
C170.030 (2)0.040 (2)0.0289 (19)0.0018 (17)0.0011 (15)0.0052 (16)
C180.038 (2)0.044 (3)0.035 (2)0.009 (2)0.0008 (17)0.0040 (18)
C190.058 (3)0.078 (4)0.077 (4)0.029 (3)0.004 (3)0.022 (3)
C200.055 (3)0.054 (3)0.032 (2)0.004 (2)0.0038 (19)0.003 (2)
C210.041 (2)0.073 (3)0.037 (2)0.006 (2)0.0046 (19)0.001 (2)
C220.041 (2)0.072 (3)0.040 (2)0.015 (2)0.0030 (18)0.006 (2)
C230.051 (3)0.050 (3)0.034 (2)0.008 (2)0.0023 (18)0.006 (2)
C240.053 (3)0.052 (3)0.026 (2)0.004 (2)0.0028 (18)0.0025 (18)
C250.064 (3)0.061 (3)0.030 (2)0.013 (3)0.008 (2)0.003 (2)
C260.076 (4)0.101 (5)0.075 (4)0.003 (4)0.027 (3)0.004 (4)
C270.045 (2)0.043 (3)0.039 (2)0.007 (2)0.0052 (18)0.0046 (19)
C280.046 (3)0.045 (3)0.034 (2)0.004 (2)0.0077 (18)0.0006 (18)
C290.045 (2)0.046 (3)0.037 (2)0.003 (2)0.0044 (18)0.003 (2)
C300.035 (2)0.055 (3)0.037 (2)0.001 (2)0.0045 (18)0.003 (2)
Geometric parameters (Å, º) top
Mo1—C291.949 (5)C4—C51.402 (6)
Mo1—C301.967 (4)C4—C91.407 (6)
Mo1—C122.108 (4)C5—C61.358 (6)
Mo1—C112.198 (4)C5—H50.9300
Mo1—C152.334 (4)C6—C71.388 (6)
Mo1—C142.341 (4)C6—H60.9300
Mo1—C132.349 (4)C7—C81.360 (6)
Mo1—C172.355 (4)C7—H70.9300
Mo1—C162.360 (4)C8—C91.433 (5)
Mo1—Mo22.9778 (5)C10—C111.494 (5)
Mo2—C271.998 (4)C10—H10A0.9700
Mo2—C281.999 (5)C10—H10B0.9700
Mo2—C112.152 (4)C11—C121.351 (5)
Mo2—C122.181 (3)C12—H120.9800
Mo2—C242.267 (4)C13—C141.403 (6)
Mo2—C202.300 (4)C13—C171.416 (6)
Mo2—C232.309 (4)C13—H130.9800
Mo2—C212.376 (4)C14—C151.420 (6)
Mo2—C222.395 (4)C14—H140.9801
Mo2—C292.925 (4)C15—C161.408 (6)
O1—C81.343 (5)C15—H150.9800
O1—C101.443 (5)C16—C171.421 (5)
O2—C251.332 (6)C16—H160.9800
O2—C261.444 (6)C17—C181.467 (5)
O3—C251.184 (6)C19—H19A0.9600
O4—C181.200 (5)C19—H19B0.9600
O5—C181.329 (5)C19—H19C0.9600
O5—C191.443 (5)C20—C211.401 (6)
O6—C291.166 (5)C20—C241.424 (6)
O7—C301.132 (5)C20—H200.9800
O8—C271.141 (5)C21—C221.399 (7)
O9—C281.135 (5)C21—H210.9799
N1—C11.318 (6)C22—C231.407 (6)
N1—C91.364 (5)C22—H220.9800
C1—C21.407 (7)C23—C241.429 (6)
C1—H10.9300C23—H230.9801
C2—C31.337 (7)C24—C251.480 (6)
C2—H20.9300C26—H26A0.9600
C3—C41.416 (6)C26—H26B0.9600
C3—H30.9300C26—H26C0.9600
C29—Mo1—C3089.90 (18)C6—C5—H5120.3
C29—Mo1—C12110.20 (15)C4—C5—H5120.3
C30—Mo1—C12108.77 (16)C5—C6—C7121.5 (4)
C29—Mo1—C11112.88 (15)C5—C6—H6119.2
C30—Mo1—C1172.37 (16)C7—C6—H6119.2
C12—Mo1—C1136.50 (14)C8—C7—C6121.0 (4)
C29—Mo1—C15102.97 (16)C8—C7—H7119.5
C30—Mo1—C1593.99 (15)C6—C7—H7119.5
C12—Mo1—C15139.24 (14)O1—C8—C7125.9 (4)
C11—Mo1—C15141.19 (15)O1—C8—C9114.9 (4)
C29—Mo1—C14138.27 (17)C7—C8—C9119.2 (4)
C30—Mo1—C1494.36 (16)N1—C9—C4123.4 (4)
C12—Mo1—C14107.56 (15)N1—C9—C8118.0 (4)
C11—Mo1—C14107.93 (15)C4—C9—C8118.7 (4)
C15—Mo1—C1435.35 (15)O1—C10—C11104.8 (3)
C29—Mo1—C13138.59 (16)O1—C10—H10A110.8
C30—Mo1—C13125.06 (16)C11—C10—H10A110.8
C12—Mo1—C1381.27 (14)O1—C10—H10B110.8
C11—Mo1—C1399.77 (14)C11—C10—H10B110.8
C15—Mo1—C1358.06 (14)H10A—C10—H10B108.9
C14—Mo1—C1334.82 (14)C12—C11—C10133.7 (4)
C29—Mo1—C17103.70 (16)C12—C11—Mo273.0 (2)
C30—Mo1—C17150.95 (14)C10—C11—Mo2135.7 (3)
C12—Mo1—C1790.70 (14)C12—C11—Mo168.2 (2)
C11—Mo1—C17122.87 (14)C10—C11—Mo1132.8 (3)
C15—Mo1—C1758.24 (13)Mo2—C11—Mo186.40 (14)
C14—Mo1—C1758.47 (14)C11—C12—Mo175.3 (2)
C13—Mo1—C1735.05 (14)C11—C12—Mo270.7 (2)
C29—Mo1—C1684.98 (16)Mo1—C12—Mo287.91 (14)
C30—Mo1—C16124.01 (15)C11—C12—H12132.9
C12—Mo1—C16125.27 (14)Mo1—C12—H12132.9
C11—Mo1—C16157.05 (14)Mo2—C12—H12132.9
C15—Mo1—C1634.90 (14)C14—C13—C17108.9 (4)
C14—Mo1—C1658.56 (15)C14—C13—Mo172.3 (2)
C13—Mo1—C1658.18 (14)C17—C13—Mo172.7 (2)
C17—Mo1—C1635.09 (13)C14—C13—H13125.4
C29—Mo1—Mo269.26 (12)C17—C13—H13125.4
C30—Mo1—Mo286.48 (12)Mo1—C13—H13125.4
C12—Mo1—Mo247.06 (9)C13—C14—C15107.2 (4)
C11—Mo1—Mo246.17 (9)C13—C14—Mo172.9 (2)
C15—Mo1—Mo2172.23 (11)C15—C14—Mo172.0 (2)
C14—Mo1—Mo2152.38 (11)C13—C14—H14126.2
C13—Mo1—Mo2127.49 (10)C15—C14—H14126.2
C17—Mo1—Mo2122.23 (9)Mo1—C14—H14126.2
C16—Mo1—Mo2140.55 (10)C16—C15—C14108.8 (4)
C27—Mo2—C2883.48 (18)C16—C15—Mo173.5 (2)
C27—Mo2—C11116.18 (15)C14—C15—Mo172.6 (2)
C28—Mo2—C1187.96 (15)C16—C15—H15125.4
C27—Mo2—C1280.38 (15)C14—C15—H15125.4
C28—Mo2—C1277.29 (14)Mo1—C15—H15125.4
C11—Mo2—C1236.32 (14)C15—C16—C17107.5 (4)
C27—Mo2—C2497.27 (16)C15—C16—Mo171.6 (2)
C28—Mo2—C2488.75 (16)C17—C16—Mo172.3 (2)
C11—Mo2—C24145.74 (16)C15—C16—H16126.1
C12—Mo2—C24166.01 (15)C17—C16—H16126.1
C27—Mo2—C2091.10 (17)Mo1—C16—H16126.1
C28—Mo2—C20123.69 (15)C13—C17—C16107.5 (3)
C11—Mo2—C20141.41 (16)C13—C17—C18124.5 (4)
C12—Mo2—C20156.56 (15)C16—C17—C18128.0 (4)
C24—Mo2—C2036.31 (15)C13—C17—Mo172.2 (2)
C27—Mo2—C23131.81 (15)C16—C17—Mo172.6 (2)
C28—Mo2—C2383.32 (16)C18—C17—Mo1120.9 (2)
C11—Mo2—C23109.40 (15)O4—C18—O5124.1 (4)
C12—Mo2—C23140.08 (16)O4—C18—C17123.9 (4)
C24—Mo2—C2336.38 (15)O5—C18—C17112.0 (4)
C20—Mo2—C2359.77 (16)O5—C19—H19A109.5
C27—Mo2—C21118.77 (17)O5—C19—H19B109.5
C28—Mo2—C21140.90 (16)H19A—C19—H19B109.5
C11—Mo2—C21106.79 (16)O5—C19—H19C109.5
C12—Mo2—C21134.52 (14)H19A—C19—H19C109.5
C24—Mo2—C2158.59 (16)H19B—C19—H19C109.5
C20—Mo2—C2134.81 (15)C21—C20—C24107.3 (4)
C23—Mo2—C2157.72 (16)C21—C20—Mo275.6 (3)
C27—Mo2—C22149.46 (17)C24—C20—Mo270.6 (2)
C28—Mo2—C22112.41 (17)C21—C20—H20126.1
C11—Mo2—C2291.16 (16)C24—C20—H20126.1
C12—Mo2—C22127.40 (16)Mo2—C20—H20126.1
C24—Mo2—C2258.97 (16)C22—C21—C20109.8 (4)
C20—Mo2—C2258.36 (17)C22—C21—Mo273.7 (3)
C23—Mo2—C2234.74 (15)C20—C21—Mo269.6 (2)
C21—Mo2—C2234.09 (17)C22—C21—H21125.1
C27—Mo2—C2974.82 (15)C20—C21—H21125.1
C28—Mo2—C29150.76 (14)Mo2—C21—H21125.1
C11—Mo2—C2984.39 (13)C21—C22—C23107.5 (4)
C12—Mo2—C2979.92 (12)C21—C22—Mo272.2 (2)
C24—Mo2—C29112.95 (14)C23—C22—Mo269.3 (2)
C20—Mo2—C2976.77 (14)C21—C22—H22126.2
C23—Mo2—C29125.81 (14)C23—C22—H22126.2
C21—Mo2—C2968.09 (14)Mo2—C22—H22126.2
C22—Mo2—C2995.96 (14)C22—C23—C24108.2 (4)
C27—Mo2—Mo186.85 (11)C22—C23—Mo276.0 (2)
C28—Mo2—Mo1122.32 (11)C24—C23—Mo270.2 (2)
C11—Mo2—Mo147.43 (10)C22—C23—H23125.7
C12—Mo2—Mo145.03 (9)C24—C23—H23125.7
C24—Mo2—Mo1148.92 (12)Mo2—C23—H23125.7
C20—Mo2—Mo1113.18 (11)C20—C24—C23107.2 (4)
C23—Mo2—Mo1138.11 (11)C20—C24—C25125.3 (4)
C21—Mo2—Mo192.41 (11)C23—C24—C25127.5 (4)
C22—Mo2—Mo1104.12 (11)C20—C24—Mo273.1 (2)
C29—Mo2—Mo138.54 (8)C23—C24—Mo273.4 (2)
C8—O1—C10118.2 (3)C25—C24—Mo2118.4 (3)
C25—O2—C26115.9 (4)O3—C25—O2124.7 (5)
C18—O5—C19115.3 (4)O3—C25—C24125.0 (5)
C1—N1—C9116.8 (4)O2—C25—C24110.2 (4)
N1—C1—C2123.9 (5)O2—C26—H26A109.5
N1—C1—H1118.1O2—C26—H26B109.5
C2—C1—H1118.1H26A—C26—H26B109.5
C3—C2—C1119.4 (4)O2—C26—H26C109.5
C3—C2—H2120.3H26A—C26—H26C109.5
C1—C2—H2120.3H26B—C26—H26C109.5
C2—C3—C4119.9 (4)O8—C27—Mo2177.6 (4)
C2—C3—H3120.1O9—C28—Mo2176.3 (4)
C4—C3—H3120.1O6—C29—Mo1169.9 (4)
C5—C4—C9120.1 (4)O6—C29—Mo2117.8 (3)
C5—C4—C3123.2 (4)Mo1—C29—Mo272.20 (13)
C9—C4—C3116.7 (4)O7—C30—Mo1177.2 (4)
C6—C5—C4119.5 (4)
C29—Mo1—Mo2—C2769.40 (18)C11—Mo1—C15—C16141.8 (3)
C30—Mo1—Mo2—C27160.62 (18)C14—Mo1—C15—C16116.4 (4)
C12—Mo1—Mo2—C2779.54 (19)C13—Mo1—C15—C1678.9 (3)
C11—Mo1—Mo2—C27130.58 (19)C17—Mo1—C15—C1637.4 (2)
C14—Mo1—Mo2—C27106.7 (3)C29—Mo1—C15—C14177.3 (3)
C13—Mo1—Mo2—C2766.68 (18)C30—Mo1—C15—C1491.9 (3)
C17—Mo1—Mo2—C2724.08 (17)C12—Mo1—C15—C1433.2 (4)
C16—Mo1—Mo2—C2716.80 (19)C11—Mo1—C15—C1425.4 (4)
C29—Mo1—Mo2—C28149.6 (2)C13—Mo1—C15—C1437.5 (2)
C30—Mo1—Mo2—C28119.13 (19)C17—Mo1—C15—C1479.0 (3)
C12—Mo1—Mo2—C280.7 (2)C16—Mo1—C15—C14116.4 (4)
C11—Mo1—Mo2—C2850.3 (2)C14—C15—C16—C170.7 (4)
C14—Mo1—Mo2—C2826.4 (3)Mo1—C15—C16—C1763.8 (3)
C13—Mo1—Mo2—C2813.57 (19)C14—C15—C16—Mo164.5 (3)
C17—Mo1—Mo2—C2856.17 (18)C29—Mo1—C16—C15121.3 (3)
C16—Mo1—Mo2—C2897.1 (2)C30—Mo1—C16—C1534.9 (3)
C29—Mo1—Mo2—C11160.0 (2)C12—Mo1—C16—C15127.4 (2)
C30—Mo1—Mo2—C1168.80 (19)C11—Mo1—C16—C1596.2 (4)
C12—Mo1—Mo2—C1151.0 (2)C14—Mo1—C16—C1537.4 (2)
C14—Mo1—Mo2—C1123.9 (3)C13—Mo1—C16—C1578.5 (3)
C13—Mo1—Mo2—C1163.91 (19)C17—Mo1—C16—C15116.1 (3)
C17—Mo1—Mo2—C11106.51 (18)Mo2—Mo1—C16—C15169.55 (19)
C16—Mo1—Mo2—C11147.4 (2)C29—Mo1—C16—C17122.6 (3)
C29—Mo1—Mo2—C12148.9 (2)C30—Mo1—C16—C17150.9 (2)
C30—Mo1—Mo2—C12119.84 (19)C12—Mo1—C16—C1711.3 (3)
C11—Mo1—Mo2—C1251.0 (2)C11—Mo1—C16—C1719.9 (5)
C14—Mo1—Mo2—C1227.2 (3)C15—Mo1—C16—C17116.1 (3)
C13—Mo1—Mo2—C1212.86 (19)C14—Mo1—C16—C1778.7 (3)
C17—Mo1—Mo2—C1255.47 (19)C13—Mo1—C16—C1737.6 (2)
C16—Mo1—Mo2—C1296.3 (2)Mo2—Mo1—C16—C1774.4 (3)
C29—Mo1—Mo2—C2429.5 (3)C14—C13—C17—C160.8 (4)
C30—Mo1—Mo2—C2461.7 (3)Mo1—C13—C17—C1664.5 (2)
C12—Mo1—Mo2—C24178.4 (3)C14—C13—C17—C18179.5 (3)
C11—Mo1—Mo2—C24130.5 (3)Mo1—C13—C17—C18115.7 (3)
C14—Mo1—Mo2—C24154.4 (3)C14—C13—C17—Mo163.7 (3)
C13—Mo1—Mo2—C24165.6 (3)C15—C16—C17—C130.9 (4)
C17—Mo1—Mo2—C24123.0 (2)Mo1—C16—C17—C1364.3 (2)
C16—Mo1—Mo2—C2482.1 (3)C15—C16—C17—C18179.3 (3)
C29—Mo1—Mo2—C2020.45 (19)Mo1—C16—C17—C18116.0 (4)
C30—Mo1—Mo2—C2070.77 (18)C15—C16—C17—Mo163.3 (3)
C12—Mo1—Mo2—C20169.39 (19)C29—Mo1—C17—C13175.4 (2)
C11—Mo1—Mo2—C20139.57 (19)C30—Mo1—C17—C1359.6 (4)
C14—Mo1—Mo2—C20163.5 (3)C12—Mo1—C17—C1373.6 (2)
C13—Mo1—Mo2—C20156.53 (18)C11—Mo1—C17—C1355.3 (3)
C17—Mo1—Mo2—C20113.93 (17)C15—Mo1—C17—C1378.4 (3)
C16—Mo1—Mo2—C2073.0 (2)C14—Mo1—C17—C1336.6 (2)
C29—Mo1—Mo2—C2390.4 (2)C16—Mo1—C17—C13115.6 (3)
C30—Mo1—Mo2—C230.8 (2)Mo2—Mo1—C17—C13110.7 (2)
C12—Mo1—Mo2—C23120.7 (2)C29—Mo1—C17—C1659.8 (3)
C11—Mo1—Mo2—C2369.6 (2)C30—Mo1—C17—C1656.0 (4)
C14—Mo1—Mo2—C2393.5 (3)C12—Mo1—C17—C16170.8 (2)
C13—Mo1—Mo2—C23133.5 (2)C11—Mo1—C17—C16170.9 (2)
C17—Mo1—Mo2—C23176.1 (2)C15—Mo1—C17—C1637.2 (2)
C16—Mo1—Mo2—C23143.0 (2)C14—Mo1—C17—C1679.0 (3)
C29—Mo1—Mo2—C2149.30 (18)C13—Mo1—C17—C16115.6 (3)
C30—Mo1—Mo2—C2141.93 (18)Mo2—Mo1—C17—C16133.7 (2)
C12—Mo1—Mo2—C21161.76 (19)C29—Mo1—C17—C1864.6 (3)
C11—Mo1—Mo2—C21110.72 (19)C30—Mo1—C17—C18179.7 (3)
C14—Mo1—Mo2—C21134.6 (3)C12—Mo1—C17—C1846.4 (3)
C13—Mo1—Mo2—C21174.63 (18)C11—Mo1—C17—C1864.8 (4)
C17—Mo1—Mo2—C21142.77 (17)C15—Mo1—C17—C18161.5 (4)
C16—Mo1—Mo2—C21101.9 (2)C14—Mo1—C17—C18156.7 (4)
C29—Mo1—Mo2—C2281.72 (19)C13—Mo1—C17—C18120.1 (4)
C30—Mo1—Mo2—C229.50 (18)C16—Mo1—C17—C18124.3 (4)
C12—Mo1—Mo2—C22129.3 (2)Mo2—Mo1—C17—C189.4 (4)
C11—Mo1—Mo2—C2278.3 (2)C19—O5—C18—O41.2 (6)
C14—Mo1—Mo2—C22102.2 (3)C19—O5—C18—C17179.6 (3)
C13—Mo1—Mo2—C22142.21 (18)C13—C17—C18—O45.7 (6)
C17—Mo1—Mo2—C22175.19 (18)C16—C17—C18—O4174.0 (4)
C16—Mo1—Mo2—C22134.3 (2)Mo1—C17—C18—O494.5 (4)
C30—Mo1—Mo2—C2991.22 (18)C13—C17—C18—O5175.9 (3)
C12—Mo1—Mo2—C29148.9 (2)C16—C17—C18—O54.4 (5)
C11—Mo1—Mo2—C29160.0 (2)Mo1—C17—C18—O587.0 (4)
C14—Mo1—Mo2—C29176.1 (3)C27—Mo2—C20—C21144.7 (3)
C13—Mo1—Mo2—C29136.08 (19)C28—Mo2—C20—C21132.5 (3)
C17—Mo1—Mo2—C2993.48 (18)C11—Mo2—C20—C217.6 (4)
C16—Mo1—Mo2—C2952.6 (2)C12—Mo2—C20—C2176.7 (5)
C9—N1—C1—C20.4 (8)C24—Mo2—C20—C21114.5 (4)
N1—C1—C2—C30.4 (9)C23—Mo2—C20—C2175.8 (3)
C1—C2—C3—C40.5 (8)C22—Mo2—C20—C2135.1 (3)
C2—C3—C4—C5179.3 (5)C29—Mo2—C20—C2170.5 (3)
C2—C3—C4—C90.6 (7)Mo1—Mo2—C20—C2157.6 (3)
C9—C4—C5—C62.8 (7)C27—Mo2—C20—C24100.8 (3)
C3—C4—C5—C6177.2 (4)C28—Mo2—C20—C2417.9 (3)
C4—C5—C6—C72.2 (7)C11—Mo2—C20—C24122.2 (3)
C5—C6—C7—C80.0 (7)C12—Mo2—C20—C24168.7 (3)
C10—O1—C8—C70.1 (6)C23—Mo2—C20—C2438.7 (3)
C10—O1—C8—C9178.8 (4)C21—Mo2—C20—C24114.5 (4)
C6—C7—C8—O1177.3 (4)C22—Mo2—C20—C2479.4 (3)
C6—C7—C8—C91.5 (7)C29—Mo2—C20—C24174.9 (3)
C1—N1—C9—C40.5 (7)Mo1—Mo2—C20—C24172.1 (2)
C1—N1—C9—C8178.8 (4)C24—C20—C21—C220.9 (5)
C5—C4—C9—N1179.3 (4)Mo2—C20—C21—C2263.1 (3)
C3—C4—C9—N10.6 (6)C24—C20—C21—Mo264.0 (3)
C5—C4—C9—C81.3 (6)C27—Mo2—C21—C22160.3 (2)
C3—C4—C9—C8178.7 (4)C28—Mo2—C21—C2242.3 (4)
O1—C8—C9—N12.5 (6)C11—Mo2—C21—C2265.9 (3)
C7—C8—C9—N1178.6 (4)C12—Mo2—C21—C2293.8 (3)
O1—C8—C9—C4178.1 (4)C24—Mo2—C21—C2279.9 (3)
C7—C8—C9—C40.8 (6)C20—Mo2—C21—C22119.0 (4)
C8—O1—C10—C11179.1 (3)C23—Mo2—C21—C2236.8 (2)
O1—C10—C11—C1259.7 (6)C29—Mo2—C21—C22142.5 (3)
O1—C10—C11—Mo2173.4 (3)Mo1—Mo2—C21—C22111.9 (2)
O1—C10—C11—Mo140.9 (5)C27—Mo2—C21—C2041.3 (3)
C27—Mo2—C11—C1210.6 (3)C28—Mo2—C21—C2076.8 (4)
C28—Mo2—C11—C1271.1 (2)C11—Mo2—C21—C20175.0 (3)
C24—Mo2—C11—C12155.9 (3)C12—Mo2—C21—C20147.1 (3)
C20—Mo2—C11—C12141.1 (3)C24—Mo2—C21—C2039.1 (3)
C23—Mo2—C11—C12153.3 (2)C23—Mo2—C21—C2082.3 (3)
C21—Mo2—C11—C12145.7 (2)C22—Mo2—C21—C20119.0 (4)
C22—Mo2—C11—C12176.5 (2)C29—Mo2—C21—C2098.4 (3)
C29—Mo2—C11—C1280.6 (2)Mo1—Mo2—C21—C20129.0 (3)
Mo1—Mo2—C11—C1268.2 (2)C20—C21—C22—C230.1 (5)
C27—Mo2—C11—C10146.8 (4)Mo2—C21—C22—C2360.6 (3)
C28—Mo2—C11—C1065.1 (4)C20—C21—C22—Mo260.6 (3)
C12—Mo2—C11—C10136.2 (5)C27—Mo2—C22—C2135.5 (4)
C24—Mo2—C11—C1019.7 (6)C28—Mo2—C22—C21152.7 (3)
C20—Mo2—C11—C1082.6 (5)C11—Mo2—C22—C21119.0 (3)
C23—Mo2—C11—C1017.1 (5)C12—Mo2—C22—C21116.4 (3)
C21—Mo2—C11—C1078.1 (4)C24—Mo2—C22—C2178.7 (3)
C22—Mo2—C11—C1047.3 (4)C20—Mo2—C22—C2135.9 (3)
C29—Mo2—C11—C10143.2 (4)C23—Mo2—C22—C21117.3 (4)
Mo1—Mo2—C11—C10155.5 (5)C29—Mo2—C22—C2134.6 (3)
C27—Mo2—C11—Mo157.68 (19)Mo1—Mo2—C22—C2172.9 (3)
C28—Mo2—C11—Mo1139.39 (15)C27—Mo2—C22—C2381.8 (4)
C12—Mo2—C11—Mo168.2 (2)C28—Mo2—C22—C2335.4 (3)
C24—Mo2—C11—Mo1135.8 (2)C11—Mo2—C22—C23123.6 (3)
C20—Mo2—C11—Mo172.9 (3)C12—Mo2—C22—C23126.3 (3)
C23—Mo2—C11—Mo1138.42 (14)C24—Mo2—C22—C2338.6 (3)
C21—Mo2—C11—Mo177.44 (16)C20—Mo2—C22—C2381.4 (3)
C22—Mo2—C11—Mo1108.23 (16)C21—Mo2—C22—C23117.3 (4)
C29—Mo2—C11—Mo112.35 (12)C29—Mo2—C22—C23151.9 (3)
C29—Mo1—C11—C1293.4 (2)Mo1—Mo2—C22—C23169.8 (3)
C30—Mo1—C11—C12175.6 (3)C21—C22—C23—C240.8 (5)
C15—Mo1—C11—C12110.6 (3)Mo2—C22—C23—C2463.3 (3)
C14—Mo1—C11—C1295.5 (2)C21—C22—C23—Mo262.5 (3)
C13—Mo1—C11—C1260.6 (2)C27—Mo2—C23—C22137.6 (3)
C17—Mo1—C11—C1231.9 (3)C28—Mo2—C23—C22147.4 (3)
C16—Mo1—C11—C1245.4 (4)C11—Mo2—C23—C2261.9 (3)
Mo2—Mo1—C11—C1273.1 (2)C12—Mo2—C23—C2286.4 (4)
C29—Mo1—C11—C10136.5 (4)C24—Mo2—C23—C22115.6 (4)
C30—Mo1—C11—C1054.3 (4)C20—Mo2—C23—C2277.0 (3)
C12—Mo1—C11—C10130.1 (5)C21—Mo2—C23—C2236.1 (3)
C15—Mo1—C11—C1019.5 (5)C29—Mo2—C23—C2235.3 (3)
C14—Mo1—C11—C1034.6 (4)Mo1—Mo2—C23—C2214.9 (4)
C13—Mo1—C11—C1069.5 (4)C27—Mo2—C23—C2422.0 (4)
C17—Mo1—C11—C1098.2 (4)C28—Mo2—C23—C2497.0 (3)
C16—Mo1—C11—C1084.7 (5)C11—Mo2—C23—C24177.5 (3)
Mo2—Mo1—C11—C10156.8 (5)C12—Mo2—C23—C24158.0 (3)
C29—Mo1—C11—Mo220.30 (19)C20—Mo2—C23—C2438.6 (3)
C30—Mo1—C11—Mo2102.47 (17)C21—Mo2—C23—C2479.5 (3)
C12—Mo1—C11—Mo273.1 (2)C22—Mo2—C23—C24115.6 (4)
C15—Mo1—C11—Mo2176.28 (16)C29—Mo2—C23—C2480.3 (3)
C14—Mo1—C11—Mo2168.62 (13)Mo1—Mo2—C23—C24130.5 (2)
C13—Mo1—C11—Mo2133.69 (13)C21—C20—C24—C231.3 (5)
C17—Mo1—C11—Mo2105.06 (15)Mo2—C20—C24—C2366.0 (3)
C16—Mo1—C11—Mo2118.5 (3)C21—C20—C24—C25179.5 (4)
C10—C11—C12—Mo1129.0 (4)Mo2—C20—C24—C25113.1 (4)
Mo2—C11—C12—Mo192.97 (11)C21—C20—C24—Mo267.3 (3)
C10—C11—C12—Mo2138.0 (4)C22—C23—C24—C201.3 (5)
Mo1—C11—C12—Mo292.97 (11)Mo2—C23—C24—C2065.8 (3)
C29—Mo1—C12—C11101.5 (2)C22—C23—C24—C25179.6 (4)
C30—Mo1—C12—C114.4 (3)Mo2—C23—C24—C25113.3 (4)
C15—Mo1—C12—C11116.0 (3)C22—C23—C24—Mo267.1 (3)
C14—Mo1—C12—C1196.6 (2)C27—Mo2—C24—C2081.9 (3)
C13—Mo1—C12—C11119.7 (2)C28—Mo2—C24—C20165.2 (3)
C17—Mo1—C12—C11153.6 (2)C11—Mo2—C24—C20110.3 (3)
C16—Mo1—C12—C11160.1 (2)C12—Mo2—C24—C20161.3 (6)
Mo2—Mo1—C12—C1170.6 (2)C23—Mo2—C24—C20114.4 (4)
C29—Mo1—C12—Mo230.94 (19)C21—Mo2—C24—C2037.5 (3)
C30—Mo1—C12—Mo266.12 (17)C22—Mo2—C24—C2077.6 (3)
C11—Mo1—C12—Mo270.6 (2)C29—Mo2—C24—C205.4 (3)
C15—Mo1—C12—Mo2173.43 (17)Mo1—Mo2—C24—C2014.1 (4)
C14—Mo1—C12—Mo2167.18 (13)C27—Mo2—C24—C23163.7 (3)
C13—Mo1—C12—Mo2169.70 (15)C28—Mo2—C24—C2380.4 (3)
C17—Mo1—C12—Mo2135.82 (14)C11—Mo2—C24—C234.1 (4)
C16—Mo1—C12—Mo2129.33 (14)C12—Mo2—C24—C2384.3 (7)
C27—Mo2—C12—C11170.4 (3)C20—Mo2—C24—C23114.4 (4)
C28—Mo2—C12—C11104.2 (2)C21—Mo2—C24—C2376.9 (3)
C24—Mo2—C12—C11108.2 (6)C22—Mo2—C24—C2336.8 (3)
C20—Mo2—C12—C11100.4 (4)C29—Mo2—C24—C23119.8 (3)
C23—Mo2—C12—C1141.3 (3)Mo1—Mo2—C24—C23100.3 (3)
C21—Mo2—C12—C1149.2 (3)C27—Mo2—C24—C2539.6 (4)
C22—Mo2—C12—C114.4 (3)C28—Mo2—C24—C2543.7 (4)
C29—Mo2—C12—C1194.3 (2)C11—Mo2—C24—C25128.2 (4)
Mo1—Mo2—C12—C1175.2 (2)C12—Mo2—C24—C2539.8 (8)
C27—Mo2—C12—Mo195.19 (16)C20—Mo2—C24—C25121.5 (5)
C28—Mo2—C12—Mo1179.39 (17)C23—Mo2—C24—C25124.1 (5)
C11—Mo2—C12—Mo175.2 (2)C21—Mo2—C24—C25159.0 (4)
C24—Mo2—C12—Mo1176.6 (6)C22—Mo2—C24—C25161.0 (4)
C20—Mo2—C12—Mo125.2 (4)C29—Mo2—C24—C25116.1 (4)
C23—Mo2—C12—Mo1116.5 (2)Mo1—Mo2—C24—C25135.6 (3)
C21—Mo2—C12—Mo126.0 (3)C26—O2—C25—O34.7 (7)
C22—Mo2—C12—Mo170.8 (2)C26—O2—C25—C24174.6 (4)
C29—Mo2—C12—Mo119.06 (12)C20—C24—C25—O31.3 (7)
C29—Mo1—C13—C14110.2 (3)C23—C24—C25—O3179.8 (5)
C30—Mo1—C13—C1432.2 (3)Mo2—C24—C25—O390.0 (6)
C12—Mo1—C13—C14139.0 (3)C20—C24—C25—O2178.1 (4)
C11—Mo1—C13—C14107.4 (3)C23—C24—C25—O20.9 (6)
C15—Mo1—C13—C1438.1 (2)Mo2—C24—C25—O289.4 (4)
C17—Mo1—C13—C14117.1 (4)C30—Mo1—C29—O6101 (2)
C16—Mo1—C13—C1479.4 (3)C12—Mo1—C29—O6149 (2)
Mo2—Mo1—C13—C14148.5 (2)C11—Mo1—C29—O6171 (2)
C29—Mo1—C13—C176.8 (4)C15—Mo1—C29—O67 (2)
C30—Mo1—C13—C17149.2 (2)C14—Mo1—C29—O64 (2)
C12—Mo1—C13—C17103.9 (2)C13—Mo1—C29—O649 (2)
C11—Mo1—C13—C17135.5 (2)C17—Mo1—C29—O653 (2)
C15—Mo1—C13—C1779.0 (3)C16—Mo1—C29—O624 (2)
C14—Mo1—C13—C17117.1 (4)Mo2—Mo1—C29—O6173 (2)
C16—Mo1—C13—C1737.6 (2)C30—Mo1—C29—Mo286.28 (13)
Mo2—Mo1—C13—C1794.4 (2)C12—Mo1—C29—Mo223.73 (14)
C17—C13—C14—C150.3 (4)C11—Mo1—C29—Mo215.52 (15)
Mo1—C13—C14—C1564.3 (3)C15—Mo1—C29—Mo2179.65 (10)
C17—C13—C14—Mo164.0 (3)C14—Mo1—C29—Mo2177.28 (18)
C29—Mo1—C14—C13111.2 (3)C13—Mo1—C29—Mo2123.67 (19)
C30—Mo1—C14—C13154.1 (3)C17—Mo1—C29—Mo2119.64 (10)
C12—Mo1—C14—C1342.8 (3)C16—Mo1—C29—Mo2149.55 (11)
C11—Mo1—C14—C1381.2 (3)C27—Mo2—C29—O674.2 (4)
C15—Mo1—C14—C13115.2 (4)C28—Mo2—C29—O6117.7 (4)
C17—Mo1—C14—C1336.9 (2)C11—Mo2—C29—O6166.7 (4)
C16—Mo1—C14—C1378.3 (3)C12—Mo2—C29—O6156.9 (4)
Mo2—Mo1—C14—C1363.3 (4)C24—Mo2—C29—O617.4 (4)
C29—Mo1—C14—C154.0 (4)C20—Mo2—C29—O620.6 (4)
C30—Mo1—C14—C1590.7 (3)C23—Mo2—C29—O656.8 (4)
C12—Mo1—C14—C15158.0 (2)C21—Mo2—C29—O656.1 (4)
C11—Mo1—C14—C15163.6 (2)C22—Mo2—C29—O676.1 (4)
C13—Mo1—C14—C15115.2 (4)Mo1—Mo2—C29—O6178.6 (4)
C17—Mo1—C14—C1578.3 (3)C27—Mo2—C29—Mo1104.43 (16)
C16—Mo1—C14—C1536.9 (2)C28—Mo2—C29—Mo160.9 (3)
Mo2—Mo1—C14—C15178.51 (18)C11—Mo2—C29—Mo114.65 (14)
C13—C14—C15—C160.3 (4)C12—Mo2—C29—Mo121.76 (13)
Mo1—C14—C15—C1665.1 (3)C24—Mo2—C29—Mo1163.99 (14)
C13—C14—C15—Mo164.9 (3)C20—Mo2—C29—Mo1160.74 (17)
C29—Mo1—C15—C1660.8 (3)C23—Mo2—C29—Mo1124.57 (16)
C30—Mo1—C15—C16151.6 (3)C21—Mo2—C29—Mo1125.28 (18)
C12—Mo1—C15—C1683.3 (3)C22—Mo2—C29—Mo1105.23 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N10.982.613.344 (6)132
C15—H15···O4i0.982.363.191 (5)143
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mo2(C12H9NO)(C7H7O2)2(CO)4]
Mr733.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.744 (1), 12.7189 (16), 28.630 (3)
β (°) 100.012 (3)
V3)2777.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.42 × 0.18 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.688, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
14074, 5071, 4445
Rint0.032
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.06
No. of reflections5071
No. of parameters381
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.41

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N10.982.613.344 (6)131.7
C15—H15···O4i0.982.363.191 (5)142.7
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 20572064) and the Natural Science Foundation of Shandong Province (No. Y2006B30) is gratefully acknowledged.

References

First citationAdams, H., Bailey, N. A., Gay, S. R., Hamilton, T. & Morris, M. J. (1995). J. Organomet. Chem. 493, C25–C28.  CSD CrossRef CAS Web of Science Google Scholar
First citationAdams, H., Gill, L. J. & Morris, M. J. (1996). Organometallics, 15, 4182–4189.  CSD CrossRef CAS Web of Science Google Scholar
First citationBailey, W. I. Jr, Chisholm, M. H., Cotton, F. A. & Rankel, L. A. (1978). J. Am. Chem. Soc. 100, 5764–5773.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBirdwhistell, R., Hackett, P. & Manning, A. R. (1978). J. Organomet. Chem. 157, 239–241.  CrossRef CAS Web of Science Google Scholar
First citationBrady, R. C. & Pettit, R. (1980). J. Am. Chem. Soc. 102, 6182–6184.  CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConole, G., Hill, K. A., Mcpartlin, M., Mays, M. J. & Morris, M. J. (1989). J. Chem. Soc. Chem. Commun. pp. 688–690.  CrossRef Web of Science Google Scholar
First citationConole, G., Mcpartlin, M., Mays, M. J. & Morris, M. J. (1990). J. Chem. Soc. Dalton Trans. pp. 2359–2366.  CSD CrossRef Web of Science Google Scholar
First citationCurtis, M. D. & Butler, W. M. (1978). J. Organomet. Chem. 155, 131–145.  CSD CrossRef CAS Web of Science Google Scholar
First citationGibson, V. C., Parkin, G. & Bercaw, J. E. (1991). Organometallics, 10, 220–231.  CrossRef CAS Web of Science Google Scholar
First citationKlingler, R. J., Butler, W. M. & Curtis, M. D. (1978). J. Am. Chem. Soc. 100, 5034–5039.  CSD CrossRef CAS Web of Science Google Scholar
First citationMuetterties, E. L. (1980). J. Organomet. Chem. 200, 177–190.  CrossRef CAS Web of Science Google Scholar
First citationRaithby, P. R. & Rosales, M. J. (1985). Adv. Inorg. Chem. Radiochem. 29, 169–247.  CrossRef CAS Web of Science Google Scholar
First citationSappa, E., Tiripicchio, A. & Braunstein, P. (1983). Chem. Rev. 83, 203–239.  CrossRef CAS Web of Science Google Scholar
First citationSappa, E., Tiripicchio, A. & Braunstein, P. (1985). Coord. Chem. Rev. 65, 219–284.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L.-C., Shen, J.-Y., Hu, Q.-M. & Huang, X.-Y. (1996). Inorg. Chim. Acta. 249, 175–181.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, J., Chen, X.-N., Yin, Y.-Q. & Huang, X.-Y. (1999). J. Organomet. Chem. 579, 304–310.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m383-m384
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds