metal-organic compounds
Poly[(dimethylformamide)(μ4-2,2′-sulfanediyldibenzoato)nickel(II)]
aCollege of Materials Science and Engineering, North University of China, Taiyuan, Shanxi, 030051, People's Republic of China
*Correspondence e-mail: xjb209@126.com
The title centrosymmetric dinuclear NiII complex, [Ni(C14H8O4S)(C3H7NO)]n, was prepared via reaction of Ni(NO3)2·6H2O and thiosalicylic acid, with H2O and dimethylformamide (DMF) as the mixed solvent. The central NiII ion is five-coordinated by five O atoms from DMF and from the carboxylate groups of the organic ligand. The symmetry-related coordination polyhedra interlink into centrosymmetric dimeric units and these, in turn, are linked into infinite chains propagating parallel to [100].
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810007749/bg2334sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810007749/bg2334Isup2.hkl
A solution obtained by dissolving 0.145 g (0.5 mmol) Ni(NO3)2.6H2O in 4 ml DMF and 10 ml H2O was added. The mixture was stirred until complete dissolution. To the stirred solution was added equimolar quantities 0.136 g (0.5 mmol) thiosalicylic acid. The green solution was then under 160 °C for 72 h in a 23 ml Teflon-lined stainless-steel autoclave. Afterthe reaction, the bomb was cooled to room temperature in a rate of 5 °C per hour. Green prismatic crystals were collected and dried in air. Yield: ca.82 % on the basis of Ni.
All H atoms were positioned in calculated positions, with C—H distances of 0.93 and 0.96 Å,and with Uiso~(H) = 1.2 or 1.5 Ueq~(C).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Displacement ellipsoid plot (40% probability level) of the title compound(I), with atom numbering of structurally unique non-H. | |
Fig. 2. The packing diagram of the title compound (I). |
[Ni(C14H8O4S)(C3H7NO)] | Z = 1 |
Mr = 808.12 | F(000) = 416 |
Triclinic, P1 | Dx = 1.556 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5196 (2) Å | Cell parameters from 2701 reflections |
b = 10.5240 (2) Å | θ = 2.4–22.3° |
c = 11.0138 (3) Å | µ = 1.27 mm−1 |
α = 67.241 (1)° | T = 298 K |
β = 79.0410 (11)° | Block, green |
γ = 71.796 (1)° | 0.30 × 0.25 × 0.19 mm |
V = 862.33 (3) Å3 |
Bruker APEXII area-detector diffractometer | 3350 independent reflections |
Radiation source: fine-focus sealed tube | 2553 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ϕ and ω scan | θmax = 26.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −9→10 |
Tmin = 0.701, Tmax = 0.794 | k = −12→12 |
11190 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0295P)2 + 0.4P] where P = (Fo2 + 2Fc2)/3 |
3350 reflections | (Δ/σ)max = 0.001 |
228 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
[Ni(C14H8O4S)(C3H7NO)] | γ = 71.796 (1)° |
Mr = 808.12 | V = 862.33 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.5196 (2) Å | Mo Kα radiation |
b = 10.5240 (2) Å | µ = 1.27 mm−1 |
c = 11.0138 (3) Å | T = 298 K |
α = 67.241 (1)° | 0.30 × 0.25 × 0.19 mm |
β = 79.0410 (11)° |
Bruker APEXII area-detector diffractometer | 3350 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2553 reflections with I > 2σ(I) |
Tmin = 0.701, Tmax = 0.794 | Rint = 0.035 |
11190 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.44 e Å−3 |
3350 reflections | Δρmin = −0.35 e Å−3 |
228 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.37381 (4) | 0.57945 (3) | 0.55076 (3) | 0.03249 (12) | |
S1 | −0.02998 (9) | 0.75102 (9) | 0.29878 (7) | 0.0481 (2) | |
O1 | 0.2572 (2) | 0.5904 (2) | 0.40641 (19) | 0.0499 (5) | |
O2 | 0.4743 (3) | 0.4593 (2) | 0.3200 (2) | 0.0551 (6) | |
O3 | −0.3145 (3) | 0.5998 (2) | 0.33626 (19) | 0.0501 (5) | |
O4 | −0.5286 (2) | 0.7322 (2) | 0.4242 (2) | 0.0521 (5) | |
O5 | 0.1675 (3) | 0.7125 (2) | 0.6255 (2) | 0.0547 (6) | |
N1 | −0.1056 (3) | 0.8241 (3) | 0.6247 (3) | 0.0535 (7) | |
C1 | 0.3275 (4) | 0.5360 (3) | 0.3199 (3) | 0.0417 (7) | |
C2 | 0.2315 (3) | 0.5674 (3) | 0.2057 (3) | 0.0381 (6) | |
C3 | 0.3089 (4) | 0.5029 (3) | 0.1132 (3) | 0.0501 (8) | |
H3 | 0.4126 | 0.4380 | 0.1281 | 0.060* | |
C4 | 0.2369 (4) | 0.5317 (4) | 0.0004 (3) | 0.0561 (8) | |
H4 | 0.2922 | 0.4894 | −0.0614 | 0.067* | |
C5 | 0.0810 (4) | 0.6248 (3) | −0.0189 (3) | 0.0553 (8) | |
H5 | 0.0308 | 0.6456 | −0.0948 | 0.066* | |
C6 | −0.0010 (4) | 0.6872 (3) | 0.0722 (3) | 0.0494 (8) | |
H6 | −0.1072 | 0.7477 | 0.0582 | 0.059* | |
C7 | 0.0723 (3) | 0.6616 (3) | 0.1858 (3) | 0.0411 (7) | |
C8 | −0.2076 (4) | 0.8749 (3) | 0.2161 (3) | 0.0429 (7) | |
C9 | −0.1898 (4) | 1.0066 (3) | 0.1271 (3) | 0.0571 (9) | |
H9 | −0.0855 | 1.0235 | 0.1077 | 0.069* | |
C10 | −0.3225 (5) | 1.1122 (4) | 0.0670 (3) | 0.0665 (10) | |
H10 | −0.3077 | 1.1993 | 0.0069 | 0.080* | |
C11 | −0.4766 (4) | 1.0887 (3) | 0.0962 (3) | 0.0620 (9) | |
H11 | −0.5668 | 1.1595 | 0.0550 | 0.074* | |
C12 | −0.4984 (4) | 0.9601 (3) | 0.1866 (3) | 0.0529 (8) | |
H12 | −0.6039 | 0.9455 | 0.2069 | 0.063* | |
C13 | −0.3648 (3) | 0.8520 (3) | 0.2478 (3) | 0.0388 (7) | |
C14 | −0.4029 (4) | 0.7160 (3) | 0.3450 (3) | 0.0399 (7) | |
C15 | 0.0244 (4) | 0.7207 (3) | 0.6097 (3) | 0.0472 (7) | |
H15 | 0.0070 | 0.6507 | 0.5859 | 0.057* | |
C16 | −0.2706 (4) | 0.8325 (4) | 0.5980 (4) | 0.0821 (12) | |
H16A | −0.2647 | 0.7545 | 0.5709 | 0.123* | |
H16B | −0.3115 | 0.9213 | 0.5289 | 0.123* | |
H16C | −0.3440 | 0.8271 | 0.6765 | 0.123* | |
C17 | −0.0867 (4) | 0.9353 (4) | 0.6631 (4) | 0.0730 (11) | |
H17A | 0.0279 | 0.9356 | 0.6498 | 0.110* | |
H17B | −0.1239 | 0.9177 | 0.7546 | 0.110* | |
H17C | −0.1515 | 1.0264 | 0.6103 | 0.110* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0266 (2) | 0.0328 (2) | 0.0312 (2) | −0.00384 (15) | −0.00182 (14) | −0.00739 (15) |
S1 | 0.0385 (5) | 0.0590 (5) | 0.0440 (4) | −0.0096 (4) | −0.0055 (3) | −0.0165 (4) |
O1 | 0.0380 (12) | 0.0645 (14) | 0.0418 (12) | −0.0035 (11) | −0.0075 (9) | −0.0189 (11) |
O2 | 0.0390 (13) | 0.0620 (14) | 0.0583 (14) | 0.0012 (11) | −0.0136 (10) | −0.0217 (11) |
O3 | 0.0488 (13) | 0.0383 (12) | 0.0507 (13) | −0.0109 (10) | 0.0077 (10) | −0.0083 (10) |
O4 | 0.0458 (13) | 0.0440 (12) | 0.0561 (13) | −0.0135 (10) | 0.0116 (11) | −0.0125 (10) |
O5 | 0.0396 (13) | 0.0615 (14) | 0.0619 (14) | −0.0011 (11) | −0.0042 (11) | −0.0302 (12) |
N1 | 0.0392 (16) | 0.0548 (17) | 0.0596 (17) | −0.0016 (13) | −0.0001 (13) | −0.0230 (14) |
C1 | 0.0382 (18) | 0.0402 (17) | 0.0422 (17) | −0.0145 (15) | −0.0034 (14) | −0.0062 (14) |
C2 | 0.0373 (17) | 0.0401 (16) | 0.0344 (15) | −0.0146 (14) | −0.0054 (12) | −0.0058 (13) |
C3 | 0.0479 (19) | 0.0488 (19) | 0.0492 (19) | −0.0120 (16) | −0.0056 (15) | −0.0124 (16) |
C4 | 0.059 (2) | 0.066 (2) | 0.0479 (19) | −0.0171 (19) | −0.0054 (16) | −0.0247 (17) |
C5 | 0.064 (2) | 0.061 (2) | 0.0452 (18) | −0.0191 (19) | −0.0137 (16) | −0.0157 (17) |
C6 | 0.0444 (19) | 0.056 (2) | 0.0467 (18) | −0.0127 (16) | −0.0133 (15) | −0.0122 (16) |
C7 | 0.0380 (17) | 0.0432 (17) | 0.0398 (16) | −0.0177 (14) | −0.0025 (13) | −0.0068 (13) |
C8 | 0.0430 (18) | 0.0410 (17) | 0.0387 (16) | −0.0096 (14) | −0.0039 (13) | −0.0084 (14) |
C9 | 0.056 (2) | 0.055 (2) | 0.055 (2) | −0.0266 (18) | 0.0023 (17) | −0.0072 (17) |
C10 | 0.075 (3) | 0.044 (2) | 0.060 (2) | −0.018 (2) | −0.001 (2) | 0.0035 (17) |
C11 | 0.059 (2) | 0.0440 (19) | 0.057 (2) | 0.0006 (17) | −0.0058 (18) | −0.0013 (16) |
C12 | 0.0407 (19) | 0.0497 (19) | 0.055 (2) | −0.0071 (16) | −0.0006 (15) | −0.0090 (16) |
C13 | 0.0368 (17) | 0.0370 (16) | 0.0371 (16) | −0.0094 (14) | 0.0002 (13) | −0.0088 (13) |
C14 | 0.0338 (17) | 0.0419 (18) | 0.0397 (16) | −0.0105 (14) | −0.0036 (13) | −0.0090 (14) |
C15 | 0.048 (2) | 0.0482 (19) | 0.0381 (17) | −0.0065 (16) | 0.0032 (15) | −0.0155 (15) |
C16 | 0.045 (2) | 0.111 (3) | 0.092 (3) | −0.013 (2) | −0.004 (2) | −0.044 (3) |
C17 | 0.060 (2) | 0.064 (2) | 0.094 (3) | −0.0011 (19) | 0.003 (2) | −0.042 (2) |
Ni1—O2i | 1.947 (2) | C5—C6 | 1.373 (4) |
Ni1—O4ii | 1.9695 (19) | C5—H5 | 0.9300 |
Ni1—O3iii | 1.9751 (19) | C6—C7 | 1.400 (4) |
Ni1—O1 | 1.9790 (19) | C6—H6 | 0.9300 |
Ni1—O5 | 2.129 (2) | C8—C9 | 1.389 (4) |
Ni1—Ni1i | 2.6374 (6) | C8—C13 | 1.390 (4) |
S1—C7 | 1.781 (3) | C9—C10 | 1.371 (4) |
S1—C8 | 1.786 (3) | C9—H9 | 0.9300 |
O1—C1 | 1.259 (3) | C10—C11 | 1.368 (5) |
O2—C1 | 1.258 (3) | C10—H10 | 0.9300 |
O3—C14 | 1.249 (3) | C11—C12 | 1.379 (4) |
O4—C14 | 1.258 (3) | C11—H11 | 0.9300 |
O5—C15 | 1.236 (3) | C12—C13 | 1.391 (4) |
N1—C15 | 1.325 (4) | C12—H12 | 0.9300 |
N1—C17 | 1.450 (4) | C13—C14 | 1.507 (4) |
N1—C16 | 1.460 (4) | C15—H15 | 0.9300 |
C1—C2 | 1.504 (4) | C16—H16A | 0.9600 |
C2—C3 | 1.391 (4) | C16—H16B | 0.9600 |
C2—C7 | 1.405 (4) | C16—H16C | 0.9600 |
C3—C4 | 1.375 (4) | C17—H17A | 0.9600 |
C3—H3 | 0.9300 | C17—H17B | 0.9600 |
C4—C5 | 1.379 (4) | C17—H17C | 0.9600 |
C4—H4 | 0.9300 | ||
O2i—Ni1—O4ii | 90.48 (9) | C7—C6—H6 | 119.4 |
O2i—Ni1—O3iii | 88.17 (9) | C6—C7—C2 | 118.1 (3) |
O4ii—Ni1—O3iii | 168.24 (8) | C6—C7—S1 | 120.9 (2) |
O2i—Ni1—O1 | 168.07 (8) | C2—C7—S1 | 121.0 (2) |
O4ii—Ni1—O1 | 89.02 (9) | C9—C8—C13 | 118.9 (3) |
O3iii—Ni1—O1 | 89.89 (8) | C9—C8—S1 | 117.6 (2) |
O2i—Ni1—O5 | 97.16 (8) | C13—C8—S1 | 123.1 (2) |
O4ii—Ni1—O5 | 97.19 (8) | C10—C9—C8 | 121.5 (3) |
O3iii—Ni1—O5 | 94.56 (8) | C10—C9—H9 | 119.2 |
O1—Ni1—O5 | 94.73 (8) | C8—C9—H9 | 119.2 |
O2i—Ni1—Ni1i | 84.58 (6) | C11—C10—C9 | 119.6 (3) |
O4ii—Ni1—Ni1i | 81.54 (6) | C11—C10—H10 | 120.2 |
O3iii—Ni1—Ni1i | 86.70 (6) | C9—C10—H10 | 120.2 |
O1—Ni1—Ni1i | 83.56 (6) | C10—C11—C12 | 120.1 (3) |
O5—Ni1—Ni1i | 177.88 (6) | C10—C11—H11 | 120.0 |
C7—S1—C8 | 102.75 (13) | C12—C11—H11 | 120.0 |
C1—O1—Ni1 | 123.11 (19) | C11—C12—C13 | 120.9 (3) |
C1—O2—Ni1i | 123.63 (19) | C11—C12—H12 | 119.6 |
C14—O3—Ni1iii | 119.78 (18) | C13—C12—H12 | 119.6 |
C14—O4—Ni1iv | 125.92 (19) | C8—C13—C12 | 119.0 (3) |
C15—O5—Ni1 | 120.6 (2) | C8—C13—C14 | 124.6 (3) |
C15—N1—C17 | 120.9 (3) | C12—C13—C14 | 116.4 (2) |
C15—N1—C16 | 120.9 (3) | O3—C14—O4 | 126.0 (3) |
C17—N1—C16 | 118.2 (3) | O3—C14—C13 | 118.5 (2) |
O2—C1—O1 | 124.9 (3) | O4—C14—C13 | 115.4 (3) |
O2—C1—C2 | 117.1 (3) | O5—C15—N1 | 123.4 (3) |
O1—C1—C2 | 118.0 (3) | O5—C15—H15 | 118.3 |
C3—C2—C7 | 119.1 (3) | N1—C15—H15 | 118.3 |
C3—C2—C1 | 117.4 (3) | N1—C16—H16A | 109.5 |
C7—C2—C1 | 123.5 (3) | N1—C16—H16B | 109.5 |
C4—C3—C2 | 122.1 (3) | H16A—C16—H16B | 109.5 |
C4—C3—H3 | 118.9 | N1—C16—H16C | 109.5 |
C2—C3—H3 | 118.9 | H16A—C16—H16C | 109.5 |
C3—C4—C5 | 118.5 (3) | H16B—C16—H16C | 109.5 |
C3—C4—H4 | 120.7 | N1—C17—H17A | 109.5 |
C5—C4—H4 | 120.7 | N1—C17—H17B | 109.5 |
C6—C5—C4 | 120.9 (3) | H17A—C17—H17B | 109.5 |
C6—C5—H5 | 119.6 | N1—C17—H17C | 109.5 |
C4—C5—H5 | 119.6 | H17A—C17—H17C | 109.5 |
C5—C6—C7 | 121.2 (3) | H17B—C17—H17C | 109.5 |
C5—C6—H6 | 119.4 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x, −y+1, −z+1; (iv) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C14H8O4S)(C3H7NO)] |
Mr | 808.12 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 8.5196 (2), 10.5240 (2), 11.0138 (3) |
α, β, γ (°) | 67.241 (1), 79.0410 (11), 71.796 (1) |
V (Å3) | 862.33 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.27 |
Crystal size (mm) | 0.30 × 0.25 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.701, 0.794 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11190, 3350, 2553 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.079, 1.01 |
No. of reflections | 3350 |
No. of parameters | 228 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.35 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).
Acknowledgements
The project was supported by the Science Foundation of North University of China.
References
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Li, Z.-Y., Dai, J.-W., Qiu, H.-H., Yue, S.-T. & Liu, Y.-L. (2010). Inorg. Chem. Commun. 13, 452–455. Web of Science CSD CrossRef CAS Google Scholar
Li, Z., Dai, J. & Yue, S. (2009). Acta Cryst. E65, m775. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic carboxylates as ligands attract much attention not only because of versatile coordination modes but also owing to their ability to facilitate the formation of high-dimensional coordination polymers (Li et al., 2009; Li et al., 2010). One such example, namely, thiosalicylic acid, is a semi-rigid, multidentate ligand that can provide up to four donor atoms with variable coordination modes. Unlike the imidazole-4,5-dicarboxylic acid and benzimidazole-5,6-dicarboxylic acid with nitrogen and oxygen coordinated dots, the thiosalicylic acid only has oxygen coordinated dot. So it can form low-dimensional compound. This is therefore considered as an excellent candidate for generating one-dimensional compound with chain structure.
In the title complex, the NiII atom is coordinated by one oxygen atom from one DMF ligand and four oxygen atoms from the thiosalicylic acid carboxylates, giving a centrosymmetric dimeric structure with a Ni···Ni distance of 2.6374 (7) Å (Fig. 1). A one-dimensional infinite chain is formed due to the bidentate bridging mode shown by all the thiosalicylic acid carboxylates (Fig. 2). The Ni—O bond distances vary from 1.947 (2) Å to 2.129 (2) Å. The O—Ni—O angles are in the range of 88.16 (9) to 168.24 (8) °. As far as we know, examples of dinuclear NiII complex bridged by thiosalicylic acid and DMF have not been characterized so far.