metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(di­methyl­formamide)(μ4-2,2′-sulfanediyldibenzoato)nickel(II)]

aCollege of Materials Science and Engineering, North University of China, Taiyuan, Shanxi, 030051, People's Republic of China
*Correspondence e-mail: xjb209@126.com

(Received 25 February 2010; accepted 1 March 2010; online 6 March 2010)

The title centrosymmetric dinuclear NiII complex, [Ni(C14H8O4S)(C3H7NO)]n, was prepared via reaction of Ni(NO3)2·6H2O and thio­salicylic acid, with H2O and dimethyl­formamide (DMF) as the mixed solvent. The central NiII ion is five-coordinated by five O atoms from DMF and from the carboxyl­ate groups of the organic ligand. The symmetry-related coordination polyhedra inter­link into centrosymmetric dimeric units and these, in turn, are linked into infinite chains propagating parallel to [100].

Related literature

For high-dimensional coordination polymers, see: Li et al. (2009[Li, Z., Dai, J. & Yue, S. (2009). Acta Cryst. E65, m775.], 2010[Li, Z.-Y., Dai, J.-W., Qiu, H.-H., Yue, S.-T. & Liu, Y.-L. (2010). Inorg. Chem. Commun. 13, 452-455.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H8O4S)(C3H7NO)]

  • Mr = 808.12

  • Triclinic, [P \overline 1]

  • a = 8.5196 (2) Å

  • b = 10.5240 (2) Å

  • c = 11.0138 (3) Å

  • α = 67.241 (1)°

  • β = 79.0410 (11)°

  • γ = 71.796 (1)°

  • V = 862.33 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.701, Tmax = 0.794

  • 11190 measured reflections

  • 3350 independent reflections

  • 2553 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.079

  • S = 1.01

  • 3350 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organic carboxylates as ligands attract much attention not only because of versatile coordination modes but also owing to their ability to facilitate the formation of high-dimensional coordination polymers (Li et al., 2009; Li et al., 2010). One such example, namely, thiosalicylic acid, is a semi-rigid, multidentate ligand that can provide up to four donor atoms with variable coordination modes. Unlike the imidazole-4,5-dicarboxylic acid and benzimidazole-5,6-dicarboxylic acid with nitrogen and oxygen coordinated dots, the thiosalicylic acid only has oxygen coordinated dot. So it can form low-dimensional compound. This is therefore considered as an excellent candidate for generating one-dimensional compound with chain structure.

In the title complex, the NiII atom is coordinated by one oxygen atom from one DMF ligand and four oxygen atoms from the thiosalicylic acid carboxylates, giving a centrosymmetric dimeric structure with a Ni···Ni distance of 2.6374 (7) Å (Fig. 1). A one-dimensional infinite chain is formed due to the bidentate bridging mode shown by all the thiosalicylic acid carboxylates (Fig. 2). The Ni—O bond distances vary from 1.947 (2) Å to 2.129 (2) Å. The O—Ni—O angles are in the range of 88.16 (9) to 168.24 (8) °. As far as we know, examples of dinuclear NiII complex bridged by thiosalicylic acid and DMF have not been characterized so far.

Related literature top

For high-dimensional coordination polymers see Li et al. (2009, 2010).

Experimental top

A solution obtained by dissolving 0.145 g (0.5 mmol) Ni(NO3)2.6H2O in 4 ml DMF and 10 ml H2O was added. The mixture was stirred until complete dissolution. To the stirred solution was added equimolar quantities 0.136 g (0.5 mmol) thiosalicylic acid. The green solution was then under 160 °C for 72 h in a 23 ml Teflon-lined stainless-steel autoclave. Afterthe reaction, the bomb was cooled to room temperature in a rate of 5 °C per hour. Green prismatic crystals were collected and dried in air. Yield: ca.82 % on the basis of Ni.

Refinement top

All H atoms were positioned in calculated positions, with C—H distances of 0.93 and 0.96 Å,and with Uiso~(H) = 1.2 or 1.5 Ueq~(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (40% probability level) of the title compound(I), with atom numbering of structurally unique non-H.
[Figure 2] Fig. 2. The packing diagram of the title compound (I).
Poly[(dimethylformamide)(µ4-2,2'-sulfanediyldibenzoato)nickel(II)] top
Crystal data top
[Ni(C14H8O4S)(C3H7NO)]Z = 1
Mr = 808.12F(000) = 416
Triclinic, P1Dx = 1.556 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5196 (2) ÅCell parameters from 2701 reflections
b = 10.5240 (2) Åθ = 2.4–22.3°
c = 11.0138 (3) ŵ = 1.27 mm1
α = 67.241 (1)°T = 298 K
β = 79.0410 (11)°Block, green
γ = 71.796 (1)°0.30 × 0.25 × 0.19 mm
V = 862.33 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3350 independent reflections
Radiation source: fine-focus sealed tube2553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scanθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 910
Tmin = 0.701, Tmax = 0.794k = 1212
11190 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0295P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
3350 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni(C14H8O4S)(C3H7NO)]γ = 71.796 (1)°
Mr = 808.12V = 862.33 (3) Å3
Triclinic, P1Z = 1
a = 8.5196 (2) ÅMo Kα radiation
b = 10.5240 (2) ŵ = 1.27 mm1
c = 11.0138 (3) ÅT = 298 K
α = 67.241 (1)°0.30 × 0.25 × 0.19 mm
β = 79.0410 (11)°
Data collection top
Bruker APEXII area-detector
diffractometer
3350 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2553 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.794Rint = 0.035
11190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.01Δρmax = 0.44 e Å3
3350 reflectionsΔρmin = 0.35 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.37381 (4)0.57945 (3)0.55076 (3)0.03249 (12)
S10.02998 (9)0.75102 (9)0.29878 (7)0.0481 (2)
O10.2572 (2)0.5904 (2)0.40641 (19)0.0499 (5)
O20.4743 (3)0.4593 (2)0.3200 (2)0.0551 (6)
O30.3145 (3)0.5998 (2)0.33626 (19)0.0501 (5)
O40.5286 (2)0.7322 (2)0.4242 (2)0.0521 (5)
O50.1675 (3)0.7125 (2)0.6255 (2)0.0547 (6)
N10.1056 (3)0.8241 (3)0.6247 (3)0.0535 (7)
C10.3275 (4)0.5360 (3)0.3199 (3)0.0417 (7)
C20.2315 (3)0.5674 (3)0.2057 (3)0.0381 (6)
C30.3089 (4)0.5029 (3)0.1132 (3)0.0501 (8)
H30.41260.43800.12810.060*
C40.2369 (4)0.5317 (4)0.0004 (3)0.0561 (8)
H40.29220.48940.06140.067*
C50.0810 (4)0.6248 (3)0.0189 (3)0.0553 (8)
H50.03080.64560.09480.066*
C60.0010 (4)0.6872 (3)0.0722 (3)0.0494 (8)
H60.10720.74770.05820.059*
C70.0723 (3)0.6616 (3)0.1858 (3)0.0411 (7)
C80.2076 (4)0.8749 (3)0.2161 (3)0.0429 (7)
C90.1898 (4)1.0066 (3)0.1271 (3)0.0571 (9)
H90.08551.02350.10770.069*
C100.3225 (5)1.1122 (4)0.0670 (3)0.0665 (10)
H100.30771.19930.00690.080*
C110.4766 (4)1.0887 (3)0.0962 (3)0.0620 (9)
H110.56681.15950.05500.074*
C120.4984 (4)0.9601 (3)0.1866 (3)0.0529 (8)
H120.60390.94550.20690.063*
C130.3648 (3)0.8520 (3)0.2478 (3)0.0388 (7)
C140.4029 (4)0.7160 (3)0.3450 (3)0.0399 (7)
C150.0244 (4)0.7207 (3)0.6097 (3)0.0472 (7)
H150.00700.65070.58590.057*
C160.2706 (4)0.8325 (4)0.5980 (4)0.0821 (12)
H16A0.26470.75450.57090.123*
H16B0.31150.92130.52890.123*
H16C0.34400.82710.67650.123*
C170.0867 (4)0.9353 (4)0.6631 (4)0.0730 (11)
H17A0.02790.93560.64980.110*
H17B0.12390.91770.75460.110*
H17C0.15151.02640.61030.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0266 (2)0.0328 (2)0.0312 (2)0.00384 (15)0.00182 (14)0.00739 (15)
S10.0385 (5)0.0590 (5)0.0440 (4)0.0096 (4)0.0055 (3)0.0165 (4)
O10.0380 (12)0.0645 (14)0.0418 (12)0.0035 (11)0.0075 (9)0.0189 (11)
O20.0390 (13)0.0620 (14)0.0583 (14)0.0012 (11)0.0136 (10)0.0217 (11)
O30.0488 (13)0.0383 (12)0.0507 (13)0.0109 (10)0.0077 (10)0.0083 (10)
O40.0458 (13)0.0440 (12)0.0561 (13)0.0135 (10)0.0116 (11)0.0125 (10)
O50.0396 (13)0.0615 (14)0.0619 (14)0.0011 (11)0.0042 (11)0.0302 (12)
N10.0392 (16)0.0548 (17)0.0596 (17)0.0016 (13)0.0001 (13)0.0230 (14)
C10.0382 (18)0.0402 (17)0.0422 (17)0.0145 (15)0.0034 (14)0.0062 (14)
C20.0373 (17)0.0401 (16)0.0344 (15)0.0146 (14)0.0054 (12)0.0058 (13)
C30.0479 (19)0.0488 (19)0.0492 (19)0.0120 (16)0.0056 (15)0.0124 (16)
C40.059 (2)0.066 (2)0.0479 (19)0.0171 (19)0.0054 (16)0.0247 (17)
C50.064 (2)0.061 (2)0.0452 (18)0.0191 (19)0.0137 (16)0.0157 (17)
C60.0444 (19)0.056 (2)0.0467 (18)0.0127 (16)0.0133 (15)0.0122 (16)
C70.0380 (17)0.0432 (17)0.0398 (16)0.0177 (14)0.0025 (13)0.0068 (13)
C80.0430 (18)0.0410 (17)0.0387 (16)0.0096 (14)0.0039 (13)0.0084 (14)
C90.056 (2)0.055 (2)0.055 (2)0.0266 (18)0.0023 (17)0.0072 (17)
C100.075 (3)0.044 (2)0.060 (2)0.018 (2)0.001 (2)0.0035 (17)
C110.059 (2)0.0440 (19)0.057 (2)0.0006 (17)0.0058 (18)0.0013 (16)
C120.0407 (19)0.0497 (19)0.055 (2)0.0071 (16)0.0006 (15)0.0090 (16)
C130.0368 (17)0.0370 (16)0.0371 (16)0.0094 (14)0.0002 (13)0.0088 (13)
C140.0338 (17)0.0419 (18)0.0397 (16)0.0105 (14)0.0036 (13)0.0090 (14)
C150.048 (2)0.0482 (19)0.0381 (17)0.0065 (16)0.0032 (15)0.0155 (15)
C160.045 (2)0.111 (3)0.092 (3)0.013 (2)0.004 (2)0.044 (3)
C170.060 (2)0.064 (2)0.094 (3)0.0011 (19)0.003 (2)0.042 (2)
Geometric parameters (Å, º) top
Ni1—O2i1.947 (2)C5—C61.373 (4)
Ni1—O4ii1.9695 (19)C5—H50.9300
Ni1—O3iii1.9751 (19)C6—C71.400 (4)
Ni1—O11.9790 (19)C6—H60.9300
Ni1—O52.129 (2)C8—C91.389 (4)
Ni1—Ni1i2.6374 (6)C8—C131.390 (4)
S1—C71.781 (3)C9—C101.371 (4)
S1—C81.786 (3)C9—H90.9300
O1—C11.259 (3)C10—C111.368 (5)
O2—C11.258 (3)C10—H100.9300
O3—C141.249 (3)C11—C121.379 (4)
O4—C141.258 (3)C11—H110.9300
O5—C151.236 (3)C12—C131.391 (4)
N1—C151.325 (4)C12—H120.9300
N1—C171.450 (4)C13—C141.507 (4)
N1—C161.460 (4)C15—H150.9300
C1—C21.504 (4)C16—H16A0.9600
C2—C31.391 (4)C16—H16B0.9600
C2—C71.405 (4)C16—H16C0.9600
C3—C41.375 (4)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.379 (4)C17—H17C0.9600
C4—H40.9300
O2i—Ni1—O4ii90.48 (9)C7—C6—H6119.4
O2i—Ni1—O3iii88.17 (9)C6—C7—C2118.1 (3)
O4ii—Ni1—O3iii168.24 (8)C6—C7—S1120.9 (2)
O2i—Ni1—O1168.07 (8)C2—C7—S1121.0 (2)
O4ii—Ni1—O189.02 (9)C9—C8—C13118.9 (3)
O3iii—Ni1—O189.89 (8)C9—C8—S1117.6 (2)
O2i—Ni1—O597.16 (8)C13—C8—S1123.1 (2)
O4ii—Ni1—O597.19 (8)C10—C9—C8121.5 (3)
O3iii—Ni1—O594.56 (8)C10—C9—H9119.2
O1—Ni1—O594.73 (8)C8—C9—H9119.2
O2i—Ni1—Ni1i84.58 (6)C11—C10—C9119.6 (3)
O4ii—Ni1—Ni1i81.54 (6)C11—C10—H10120.2
O3iii—Ni1—Ni1i86.70 (6)C9—C10—H10120.2
O1—Ni1—Ni1i83.56 (6)C10—C11—C12120.1 (3)
O5—Ni1—Ni1i177.88 (6)C10—C11—H11120.0
C7—S1—C8102.75 (13)C12—C11—H11120.0
C1—O1—Ni1123.11 (19)C11—C12—C13120.9 (3)
C1—O2—Ni1i123.63 (19)C11—C12—H12119.6
C14—O3—Ni1iii119.78 (18)C13—C12—H12119.6
C14—O4—Ni1iv125.92 (19)C8—C13—C12119.0 (3)
C15—O5—Ni1120.6 (2)C8—C13—C14124.6 (3)
C15—N1—C17120.9 (3)C12—C13—C14116.4 (2)
C15—N1—C16120.9 (3)O3—C14—O4126.0 (3)
C17—N1—C16118.2 (3)O3—C14—C13118.5 (2)
O2—C1—O1124.9 (3)O4—C14—C13115.4 (3)
O2—C1—C2117.1 (3)O5—C15—N1123.4 (3)
O1—C1—C2118.0 (3)O5—C15—H15118.3
C3—C2—C7119.1 (3)N1—C15—H15118.3
C3—C2—C1117.4 (3)N1—C16—H16A109.5
C7—C2—C1123.5 (3)N1—C16—H16B109.5
C4—C3—C2122.1 (3)H16A—C16—H16B109.5
C4—C3—H3118.9N1—C16—H16C109.5
C2—C3—H3118.9H16A—C16—H16C109.5
C3—C4—C5118.5 (3)H16B—C16—H16C109.5
C3—C4—H4120.7N1—C17—H17A109.5
C5—C4—H4120.7N1—C17—H17B109.5
C6—C5—C4120.9 (3)H17A—C17—H17B109.5
C6—C5—H5119.6N1—C17—H17C109.5
C4—C5—H5119.6H17A—C17—H17C109.5
C5—C6—C7121.2 (3)H17B—C17—H17C109.5
C5—C6—H6119.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C14H8O4S)(C3H7NO)]
Mr808.12
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.5196 (2), 10.5240 (2), 11.0138 (3)
α, β, γ (°)67.241 (1), 79.0410 (11), 71.796 (1)
V3)862.33 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.30 × 0.25 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.701, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
11190, 3350, 2553
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.079, 1.01
No. of reflections3350
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.35

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The project was supported by the Science Foundation of North University of China.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Z.-Y., Dai, J.-W., Qiu, H.-H., Yue, S.-T. & Liu, Y.-L. (2010). Inorg. Chem. Commun. 13, 452–455.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z., Dai, J. & Yue, S. (2009). Acta Cryst. E65, m775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds