organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Thia­zol-4-yl)benzimidazolium nitrate monohydrate

aFacultad de Química, Universidad Nacional Autónoma de México, 04510 México DF, México
*Correspondence e-mail: blum@servidor.unam.mx

(Received 16 February 2010; accepted 4 March 2010; online 13 March 2010)

In the title compound, C10H8N3S+·NO3·H2O, one of the N atoms of the benzimidazole unit is protonated, unlike than that in the thia­zole group. This protonation leads to equalization of the bond angles at the two N atoms of the benzimidazole group. The benzimidazole and thia­zole systems are almost coplanar, forming a dihedral angle of 0.5 (2)°. In the crystal, the nitrate anion and water mol­ecule bridge the thia­bendazolium cations through N—H⋯O and O—H⋯O hydrogen bonds, leading to a supra­molecular network based on an infinite one-dimensional chain using [001] as base vector.

Related literature

For the anti­viral action and anthelmintic activity of substituted benzimidazoles, see: Goodgame et al. (1985[Goodgame, M., Holt, S. D., Piggott, B. & Williams, D. J. (1985). Inorg. Chim. Acta, 107, 49-55.]). Related structures have been reported: thia­bendazole (Trus & Marsh, 1973[Trus, B. L. & Marsh, R. E. (1973). Acta Cryst. B29, 2298-2301.]); thia­bendazolium nitrate (Murugesan et al., 1998[Murugesan, S., Prabakaran, P. & Muthiah, P. T. (1998). Acta Cryst. C54, 1905-1907.]; Devereux et al., 2004[Devereux, M., McCann, M. O., Shea, D., Kelly, R., Egan, D., Deegan, C., Kavanagh, K., McKee, V. & Finn, G. (2004). J. Inorg. Biochem. 98, 1023-1031.]); thia­bendazolium perchlorate (Stanley et al., 2002[Stanley, N., Panneerselvam, P. & Thomas Muthiah, P. (2002). Acta Cryst. E58, o426-o428.]); thia­bendazolium halide dihydrates (Prabakaran et al., 2000[Prabakaran, P., Murugesan, S., Robert, J. J., Panneerselvam, P., Muthiah, P. T., Bocelli, G. & Righi, L. (2000). Chem. Lett. pp. 1080-1081.]). For structures of transition metal complexes bearing thia­bendazole as ligand, see: Kowala & Wunderlich (1973[Kowala, C. & Wunderlich, J. A. (1973). Inorg. Chim. Acta, 7, 331-338.]); Udupa & Krebs (1979[Udupa, M. R. & Krebs, B. (1979). Inorg. Chim. Acta, 32, 1-5.]); Rong et al. (1991[Rong, M., Muir, M. M., Cádiz, M. E. & Muir, J. A. (1991). Acta Cryst. C47, 1539-1541.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N3S+·NO3·H2O

  • Mr = 282.28

  • Monoclinic, P 21 /c

  • a = 7.6140 (3) Å

  • b = 16.3130 (5) Å

  • c = 10.0990 (3) Å

  • β = 102.731 (4)°

  • V = 1223.53 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.54 × 0.39 × 0.26 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini Mo) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.920, Tmax = 0.952

  • 5590 measured reflections

  • 2426 independent reflections

  • 1859 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.08

  • 2426 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2D⋯O17 0.85 (2) 2.06 (2) 2.903 (2) 168 (2)
O1W—H1D⋯O16i 0.78 (2) 2.24 (3) 2.969 (2) 156 (2)
N1—H1N⋯O1Wi 0.85 (2) 1.91 (2) 2.748 (2) 168.5 (18)
N3—H3N⋯O16ii 0.82 (2) 2.58 (2) 3.300 (2) 147.5 (18)
N3—H3N⋯O17ii 0.82 (2) 2.02 (2) 2.791 (2) 157 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z-1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Substituted benzimidazoles show antiviral action and anthelmintic activity. This has been attributed to their metal-chelating ability (Goodgame et al., 1985). Thiabendazole is a broad-spectrum anthelmintic compound useful in the treatment of human and animal parasitic diseases.

The crystal structures of thiabendazole (Trus & Marsh, 1973), thiabendazolium nitrate (Murugesan et al., 1998; Devereux et al., 2004), thiabendazolium perchlorate (Stanley et al., 2002), thiabendazolium halide dihydrates (Prabakaran et al., 2000), and its complexes with cobalt (Kowala & Wunderlich, 1973), copper (Udupa & Krebs, 1979) and platinum (Rong et al., 1991) have been reported. The present paper deals with the crystal structure of a protonated thiabendazole moiety, namely, thiabendazolium nitrate hydrate.

The asymmetric unit of the title salt contains one protonated 2-(4-thiazolyl)-1H-benzimidazol-1-ium cation, one nitrate anion and one water molecule, shown in Fig. 1. The cation is protonated on the benzimidazole iminic nitrogen atom, resulting in delocalization of the double bond over the N—C—N fragment, with C—N distances of 1.326 (2) and 1.327 (2) Å (Table 1), in contrast to the benzimidazole group in the crystal structure of free thiabendazole, where the two bond lengths are different (Trus & Marsh, 1973).

The C—C bond connecting the two ring systems has a length of 1.445 (2) Å, which is the same bond length, within experimental error, as that in neutral thiabendazole. This value suggests appreciable delocalization across this bond (Prabakaran et al., 2000).

The benzimidazole and thiazole systems are coplanar, the dihedral angle between them is 0.5 (2)°.

The thiabendazole cation is involved in a pair of N—H···O, O—H···O hydrogen bonds [N1···O1w: 2.748 (2) Å and N3···O17: 2.791 (2) Å], while the nitrate anion and water molecule display hydrogen bonding (Table 2), which lead to an infinite one-dimensional chain with base vector [0 0 1].

Related literature top

For the antiviral action and anthelmintic activity of substituted benzimidazoles, see: Goodgame et al. (1985). Related structures have been reported: thiabendazole (Trus & Marsh, 1973); thiabendazolium nitrate (Murugesan et al., 1998; Devereux et al., 2004); thiabendazolium perchlorate (Stanley et al., 2002); thiabendazolium halide dihydrates (Prabakaran et al., 2000). For structures of transition metal complexes bearing thiabendazole as ligand, see: Kowala & Wunderlich (1973); Udupa & Krebs (1979); Rong et al. (1991).

Experimental top

The reaction mixture of 2-(4-thiazolyl)benzimidazole (0.3686 g, 1.83 mmol) with [Fe(DMSO)6]NO3 (0.3549 g, 0.5 mmol) in acetonitrile (60 ml) was refluxed for 10 h. It yielded pale-yellow crystals of (C10H8N3S)(NO3).H2O as a byproduct when the solution was left to stand at room temperature for a couple of days.

Refinement top

H atoms bonded to N and O atoms were located in difference maps and were refined with free coordinates and Uiso(H) = 1.5Ueq(N) and 1.2Ueq(O). H atoms attached to C atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO RED (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED(Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
2-(1,3-Thiazol-4-yl)benzimidazolium nitrate monohydrate top
Crystal data top
C10H8N3S+·NO3·H2OF(000) = 584
Mr = 282.28Dx = 1.532 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3277 reflections
a = 7.6140 (3) Åθ = 3.2–26.0°
b = 16.3130 (5) ŵ = 0.28 mm1
c = 10.0990 (3) ÅT = 298 K
β = 102.731 (4)°Prism, pale yellow
V = 1223.53 (7) Å30.54 × 0.39 × 0.26 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini Mo) detector
2426 independent reflections
Radiation source: X-ray1859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.4685 pixels mm-1θmax = 26.1°, θmin = 3.2°
ω scansh = 97
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1920
Tmin = 0.920, Tmax = 0.952l = 1210
5590 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.057P]
where P = (Fo2 + 2Fc2)/3
2426 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
0 constraints
Crystal data top
C10H8N3S+·NO3·H2OV = 1223.53 (7) Å3
Mr = 282.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6140 (3) ŵ = 0.28 mm1
b = 16.3130 (5) ÅT = 298 K
c = 10.0990 (3) Å0.54 × 0.39 × 0.26 mm
β = 102.731 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini Mo) detector
2426 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1859 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.952Rint = 0.017
5590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.23 e Å3
2426 reflectionsΔρmin = 0.21 e Å3
184 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.7417 (2)0.01688 (10)0.01259 (16)0.0385 (4)
C40.8456 (2)0.11013 (10)0.02130 (18)0.0416 (4)
C50.8891 (3)0.18937 (11)0.0082 (2)0.0542 (5)
H50.85780.21020.0960.065*
C60.9813 (3)0.23603 (12)0.0988 (2)0.0606 (5)
H61.01320.28970.0840.073*
C71.0266 (2)0.20260 (12)0.2293 (2)0.0576 (5)
H71.09230.23460.29920.069*
C80.9784 (2)0.12463 (12)0.25917 (19)0.0517 (5)
H81.00620.10420.34730.062*
C90.8865 (2)0.07819 (10)0.15118 (16)0.0416 (4)
C100.6544 (2)0.09278 (9)0.03838 (16)0.0387 (4)
C110.5761 (2)0.10865 (11)0.17031 (17)0.0467 (4)
H110.56950.07180.24150.056*
C130.5667 (3)0.21780 (11)0.01579 (18)0.0507 (4)
H130.54950.26670.0270.061*
N10.81909 (19)0.00164 (8)0.14122 (14)0.0403 (3)
N30.7559 (2)0.04857 (9)0.06229 (15)0.0434 (4)
N140.6484 (2)0.15582 (9)0.05111 (15)0.0487 (4)
N150.6705 (2)0.07673 (9)0.58671 (15)0.0502 (4)
O1W0.2195 (2)0.07887 (10)0.62504 (15)0.0621 (4)
O160.7817 (3)0.02340 (12)0.61835 (19)0.1061 (7)
O170.6049 (2)0.10779 (9)0.67836 (14)0.0724 (4)
O180.6223 (3)0.09795 (10)0.47009 (14)0.0989 (6)
S120.49270 (6)0.20485 (3)0.18646 (4)0.05076 (18)
H2D0.329 (3)0.0937 (14)0.647 (2)0.076*
H1D0.205 (3)0.0427 (15)0.574 (2)0.076*
H1N0.814 (3)0.0313 (12)0.210 (2)0.061*
H3N0.722 (3)0.0536 (13)0.145 (2)0.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0382 (9)0.0415 (9)0.0363 (9)0.0061 (7)0.0094 (7)0.0024 (7)
C40.0385 (9)0.0433 (9)0.0447 (9)0.0003 (7)0.0131 (7)0.0001 (7)
C50.0536 (11)0.0513 (11)0.0609 (12)0.0058 (8)0.0193 (10)0.0072 (9)
C60.0486 (11)0.0507 (11)0.0877 (16)0.0080 (9)0.0261 (11)0.0116 (11)
C70.0421 (10)0.0577 (12)0.0726 (13)0.0018 (8)0.0119 (9)0.0247 (10)
C80.0462 (10)0.0564 (11)0.0496 (10)0.0067 (8)0.0041 (8)0.0116 (9)
C90.0379 (9)0.0435 (9)0.0437 (9)0.0060 (7)0.0100 (7)0.0020 (8)
C100.0369 (9)0.0413 (9)0.0385 (9)0.0043 (7)0.0098 (7)0.0007 (7)
C110.0543 (11)0.0477 (10)0.0371 (9)0.0004 (8)0.0080 (8)0.0035 (7)
C130.0614 (11)0.0457 (10)0.0452 (10)0.0069 (8)0.0124 (9)0.0037 (8)
N10.0464 (8)0.0403 (8)0.0337 (7)0.0064 (6)0.0076 (6)0.0026 (6)
N30.0473 (9)0.0488 (8)0.0340 (7)0.0021 (6)0.0086 (7)0.0057 (7)
N140.0591 (9)0.0464 (8)0.0390 (8)0.0046 (7)0.0070 (7)0.0044 (7)
N150.0613 (10)0.0447 (8)0.0414 (8)0.0024 (7)0.0044 (7)0.0033 (7)
O1W0.0733 (10)0.0623 (9)0.0512 (8)0.0057 (8)0.0149 (8)0.0038 (6)
O160.1230 (16)0.1025 (14)0.0874 (12)0.0633 (12)0.0118 (11)0.0130 (10)
O170.0828 (11)0.0859 (11)0.0469 (8)0.0184 (8)0.0104 (7)0.0106 (7)
O180.1616 (18)0.0918 (12)0.0357 (8)0.0366 (11)0.0057 (10)0.0079 (7)
S120.0541 (3)0.0533 (3)0.0437 (3)0.0063 (2)0.0082 (2)0.0065 (2)
Geometric parameters (Å, º) top
N1—C21.326 (2)C8—C91.385 (2)
N1—C91.395 (2)C8—H80.93
N3—C21.327 (2)C10—C111.359 (2)
N3—C41.390 (2)C11—S121.6874 (18)
N14—C101.376 (2)C11—H110.93
N14—C131.296 (2)C13—S121.7045 (19)
C2—C101.445 (2)C13—H130.93
C4—C91.382 (2)N1—H1N0.85 (2)
C4—C51.383 (2)N3—H3N0.82 (2)
C5—C61.380 (3)N15—O181.205 (2)
C5—H50.93N15—O161.207 (2)
C6—C71.398 (3)N15—O171.2516 (19)
C6—H60.93O1W—H2D0.85 (2)
C7—C81.375 (3)O1W—H1D0.78 (2)
C7—H70.93
C2—N1—C9108.82 (13)C7—C8—H8121.7
C2—N1—H1N126.9 (14)C9—C8—H8121.7
C9—N1—H1N123.4 (13)C4—C9—C8120.69 (16)
C2—N3—C4109.03 (14)C4—C9—N1106.34 (14)
C2—N3—H3N127.8 (15)C8—C9—N1132.97 (16)
C4—N3—H3N123.2 (15)C11—C10—N14115.50 (15)
N1—C2—N3109.45 (15)C11—C10—C2125.47 (15)
N1—C2—C10125.43 (14)N14—C10—C2119.03 (14)
N3—C2—C10125.13 (15)C10—C11—S12110.26 (13)
C9—C4—C5122.87 (17)C10—C11—H11124.9
C9—C4—N3106.36 (14)S12—C11—H11124.9
C5—C4—N3130.76 (16)N14—C13—S12116.36 (14)
C6—C5—C4116.81 (19)N14—C13—H13121.8
C6—C5—H5121.6S12—C13—H13121.8
C4—C5—H5121.6C13—N14—C10108.79 (15)
C5—C6—C7120.04 (18)O18—N15—O16120.71 (18)
C5—C6—H6120O18—N15—O17121.43 (17)
C7—C6—H6120O16—N15—O17117.84 (16)
C8—C7—C6123.02 (19)O18—N15—O17121.43 (17)
C8—C7—H7118.5O16—N15—O17117.84 (16)
C6—C7—H7118.5H2D—O1W—H1D112 (2)
C7—C8—C9116.52 (18)C11—S12—C1389.08 (8)
C9—C4—C5—C61.6 (3)N14—C10—C11—S120.39 (19)
N3—C4—C5—C6179.56 (17)C2—C10—C11—S12179.16 (13)
C4—C5—C6—C70.2 (3)N3—C2—N1—C90.41 (18)
C5—C6—C7—C82.2 (3)C10—C2—N1—C9179.28 (14)
C6—C7—C8—C92.3 (3)C4—C9—N1—C20.09 (17)
C5—C4—C9—C81.5 (3)C8—C9—N1—C2179.72 (17)
N3—C4—C9—C8179.44 (14)N1—C2—N3—C40.58 (18)
C5—C4—C9—N1178.82 (15)C10—C2—N3—C4179.11 (14)
N3—C4—C9—N10.25 (17)C9—C4—N3—C20.51 (18)
C7—C8—C9—C40.5 (2)C5—C4—N3—C2178.47 (18)
C7—C8—C9—N1179.10 (16)S12—C13—N14—C100.2 (2)
N1—C2—C10—C11179.51 (16)C11—C10—N14—C130.4 (2)
N3—C2—C10—C110.8 (3)C2—C10—N14—C13179.21 (15)
N1—C2—C10—N140.0 (2)C10—C11—S12—C130.22 (14)
N3—C2—C10—N14179.62 (15)N14—C13—S12—C110.01 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2D···O170.85 (2)2.06 (2)2.903 (2)168 (2)
O1W—H1D···O16i0.78 (2)2.24 (3)2.969 (2)156 (2)
N1—H1N···O1Wi0.85 (2)1.91 (2)2.748 (2)168.5 (18)
N3—H3N···O16ii0.82 (2)2.58 (2)3.300 (2)147.5 (18)
N3—H3N···O17ii0.82 (2)2.02 (2)2.791 (2)157 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC10H8N3S+·NO3·H2O
Mr282.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.6140 (3), 16.3130 (5), 10.0990 (3)
β (°) 102.731 (4)
V3)1223.53 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.54 × 0.39 × 0.26
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini Mo) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.920, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
5590, 2426, 1859
Rint0.017
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.08
No. of reflections2426
No. of parameters184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), CrysAlis PRO RED(Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N1—C21.326 (2)N3—C41.390 (2)
N1—C91.395 (2)N14—C101.376 (2)
N3—C21.327 (2)N14—C131.296 (2)
C2—N1—C9108.82 (13)C13—N14—C10108.79 (15)
C2—N3—C4109.03 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2D···O170.85 (2)2.06 (2)2.903 (2)168 (2)
O1W—H1D···O16i0.78 (2)2.24 (3)2.969 (2)156 (2)
N1—H1N···O1Wi0.85 (2)1.91 (2)2.748 (2)168.5 (18)
N3—H3N···O16ii0.82 (2)2.58 (2)3.300 (2)147.5 (18)
N3—H3N···O17ii0.82 (2)2.02 (2)2.791 (2)157 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1.
 

Acknowledgements

The authors thank the project PAPIIT UNAM-DGAPA for support via project No. IN206707 and CONACyT project VI-060894 CB-2006–1.

References

First citationDevereux, M., McCann, M. O., Shea, D., Kelly, R., Egan, D., Deegan, C., Kavanagh, K., McKee, V. & Finn, G. (2004). J. Inorg. Biochem. 98, 1023–1031.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoodgame, M., Holt, S. D., Piggott, B. & Williams, D. J. (1985). Inorg. Chim. Acta, 107, 49–55.  CSD CrossRef CAS Web of Science Google Scholar
First citationKowala, C. & Wunderlich, J. A. (1973). Inorg. Chim. Acta, 7, 331–338.  CSD CrossRef CAS Google Scholar
First citationMurugesan, S., Prabakaran, P. & Muthiah, P. T. (1998). Acta Cryst. C54, 1905–1907.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrabakaran, P., Murugesan, S., Robert, J. J., Panneerselvam, P., Muthiah, P. T., Bocelli, G. & Righi, L. (2000). Chem. Lett. pp. 1080–1081.  Web of Science CSD CrossRef Google Scholar
First citationRong, M., Muir, M. M., Cádiz, M. E. & Muir, J. A. (1991). Acta Cryst. C47, 1539–1541.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanley, N., Panneerselvam, P. & Thomas Muthiah, P. (2002). Acta Cryst. E58, o426–o428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrus, B. L. & Marsh, R. E. (1973). Acta Cryst. B29, 2298–2301.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationUdupa, M. R. & Krebs, B. (1979). Inorg. Chim. Acta, 32, 1–5.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds