metal-organic compounds
Poly[[diaqua(μ4-L-tartrato)(μ2-L-tartrato)dizinc(II)] tetrahydrate]
aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: liuhouting@lcu.edu.cn
In the title compound, {[Zn(C4H4O6)(H2O)]·2H2O}n, the L-tartrate ligands adopt μ4- and μ2-coordination modes. The ZnII atom adopts an octahedral geometry and is chelated by two kinds of L-tartrate ligands through the hydroxy and carboxylate groups and coordinated by one unchelating carboxylate O atom and one water molecule. In the crystal, the L-tartrate ligands link the ZnII atoms, forming a two-dimensional coordination layer; these layers are futher linked into a three-dimensional supramolecular network by O—H⋯O hydrogen bonds between the two-dimensional coordination layers and the uncoordinated water molecules. The latter are equally disordered over two positions.
Related literature
For the potential applications and varied architectures and topologies of chiral inorganic–organic materials, see: Ma et al. (2007); Kitagawa et al. (2004); Lee et al. (2002). For chiral multifunctional materials constructed from tartrate, see: Liu et al. (2008) Gelbrich et al. (2006). For magnetic properties of transition metal tartrates, see: Coronado et al. (2006).
Experimental
Crystal data
|
Data collection: SMART (Sheldrick, 2008); cell SAINT (Sheldrick, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810007543/bq2195sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810007543/bq2195Isup2.hkl
Compound (I) was obtained at room temperature. An aqueous solution (5 ml) of L-tartaric acid (0.51 g, 3.4 mmol) was added dropwise into an aqueous solution (10 ml) of Zn(OAc)2˙2H2O (0.37 g, 1.7 mmol). White crystals were obtained in yield about 60% (based on Zn) after the solution was allowed to stand for several days. Elemental analysis, Found: C 17.36, H 3.23%. Calc. for C4H10O9Zn : calcd. C 17.94, H 3.74%.
All H atoms were positioned geometrically and treated as riding on their parent atoms, with C–H 0.980, O(aqua)–H 0.850, O(hydroxyl)–H 0.970 and with Uiso(H) = 1.2Ueq(C). The O8 and O9 atom is resolved into two positions by PART instructions. The geometries and anisotropic displacement parameters of disordered atoms were refined with soft restraints using the SHELXL commands damp.
Data collection: SMART (Sheldrick, 2008); cell
SAINT (Sheldrick, 2008); data reduction: SAINT (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I) with 30% probability displacement elliposolids (hydrogen atoms are omitted for clarity). Symmetry codes: (A) 0.5-x, -0.5+y, -z; (B) -x, -2+y, -z. | |
Fig. 2. The two-dimensional structure of the title compound, with atom labels. | |
Fig. 3. The three-dimensional supramolecular layer construcuted by hydrogen bonds. |
[Zn(C4H4O6)(H2O)]·2H2O | F(000) = 544 |
Mr = 267.49 | Dx = 2.054 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2y | Cell parameters from 1296 reflections |
a = 12.8652 (16) Å | θ = 2.7–25.0° |
b = 8.7884 (14) Å | µ = 2.87 mm−1 |
c = 8.3816 (12) Å | T = 296 K |
β = 114.130 (1)° | Block, white |
V = 864.9 (2) Å3 | 0.50 × 0.48 × 0.45 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 1296 independent reflections |
Radiation source: fine-focus sealed tube | 1262 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
phi and ω scans | θmax = 25.0°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −15→14 |
Tmin = 0.328, Tmax = 0.358 | k = −8→10 |
2182 measured reflections | l = −9→9 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0392P)2 + 0.821P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
1296 reflections | Δρmax = 0.34 e Å−3 |
147 parameters | Δρmin = −0.42 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 481 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (2) |
[Zn(C4H4O6)(H2O)]·2H2O | V = 864.9 (2) Å3 |
Mr = 267.49 | Z = 4 |
Monoclinic, C2 | Mo Kα radiation |
a = 12.8652 (16) Å | µ = 2.87 mm−1 |
b = 8.7884 (14) Å | T = 296 K |
c = 8.3816 (12) Å | 0.50 × 0.48 × 0.45 mm |
β = 114.130 (1)° |
Bruker SMART CCD area-detector diffractometer | 1296 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1262 reflections with I > 2σ(I) |
Tmin = 0.328, Tmax = 0.358 | Rint = 0.017 |
2182 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.071 | Δρmax = 0.34 e Å−3 |
S = 1.10 | Δρmin = −0.42 e Å−3 |
1296 reflections | Absolute structure: Flack (1983), 481 Friedel pairs |
147 parameters | Absolute structure parameter: 0.01 (2) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.23251 (3) | 0.52758 (7) | 0.15818 (5) | 0.02164 (15) | |
O1 | 0.2031 (2) | 0.3568 (4) | 0.2954 (4) | 0.0271 (7) | |
O2 | 0.1296 (3) | 0.1272 (4) | 0.2844 (4) | 0.0418 (9) | |
O3 | 0.2105 (2) | 0.7016 (4) | −0.0093 (4) | 0.0289 (7) | |
O4 | 0.1403 (2) | 0.9327 (3) | −0.1022 (4) | 0.0307 (7) | |
O5 | 0.0911 (2) | 0.4067 (3) | −0.0441 (4) | 0.0270 (7) | |
H5 | 0.0531 | 0.4421 | −0.1579 | 0.032* | |
O6 | 0.0846 (2) | 0.6635 (4) | 0.1705 (4) | 0.0265 (7) | |
H6 | 0.0438 | 0.6340 | 0.2349 | 0.032* | |
O7 | 0.3436 (3) | 0.6376 (5) | 0.3781 (4) | 0.0447 (9) | |
H7B | 0.3339 | 0.6097 | 0.4681 | 0.054* | |
H7C | 0.3352 | 0.7335 | 0.3666 | 0.054* | |
O8 | 0.1503 (7) | 0.4516 (9) | 0.6526 (9) | 0.042 (3) | 0.499 (12) |
H8A | 0.0955 | 0.4991 | 0.5745 | 0.050* | 0.499 (12) |
H8D | 0.2121 | 0.5007 | 0.6784 | 0.050* | 0.499 (12) |
O9 | 0.0715 (6) | 0.8274 (9) | 0.4409 (8) | 0.038 (2) | 0.495 (11) |
H9A | 0.0955 | 0.8838 | 0.5312 | 0.057* | 0.495 (11) |
H9C | 0.0299 | 0.7572 | 0.4531 | 0.057* | 0.495 (11) |
O8' | 0.0611 (7) | 0.4189 (9) | 0.6283 (8) | 0.042 (3) | 0.501 (12) |
H8'A | −0.0075 | 0.3939 | 0.5660 | 0.050* | 0.501 (12) |
H8'D | 0.0751 | 0.5059 | 0.5974 | 0.050* | 0.501 (12) |
O9' | 0.1034 (6) | 0.6981 (9) | 0.4957 (8) | 0.038 (2) | 0.505 (11) |
H9'A | 0.0453 | 0.7453 | 0.4937 | 0.045* | 0.505 (11) |
H9'C | 0.1636 | 0.7473 | 0.5563 | 0.045* | 0.505 (11) |
C1 | 0.1372 (3) | 0.2489 (5) | 0.2135 (6) | 0.0242 (9) | |
C2 | 0.0635 (4) | 0.2672 (5) | 0.0178 (6) | 0.0213 (10) | |
H2 | 0.0786 | 0.1821 | −0.0453 | 0.026* | |
C3 | 0.0619 (4) | 0.8000 (5) | 0.0673 (6) | 0.0240 (11) | |
H3 | 0.0737 | 0.8879 | 0.1447 | 0.029* | |
C4 | 0.1442 (3) | 0.8113 (5) | −0.0218 (6) | 0.0233 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0224 (2) | 0.0192 (2) | 0.0234 (2) | −0.0043 (2) | 0.00947 (16) | 0.0007 (2) |
O1 | 0.0278 (14) | 0.0253 (17) | 0.0275 (16) | −0.0077 (13) | 0.0104 (12) | 0.0035 (14) |
O2 | 0.070 (2) | 0.026 (2) | 0.0321 (18) | −0.0124 (17) | 0.0231 (17) | 0.0034 (15) |
O3 | 0.0307 (15) | 0.0190 (16) | 0.0466 (19) | 0.0052 (13) | 0.0257 (14) | 0.0091 (14) |
O4 | 0.0287 (14) | 0.0182 (18) | 0.0502 (19) | 0.0017 (13) | 0.0212 (14) | 0.0064 (15) |
O5 | 0.0375 (15) | 0.0179 (17) | 0.0333 (17) | −0.0090 (13) | 0.0224 (13) | −0.0027 (13) |
O6 | 0.0287 (14) | 0.0259 (17) | 0.0260 (15) | 0.0033 (12) | 0.0124 (12) | −0.0001 (12) |
O7 | 0.051 (2) | 0.048 (2) | 0.0279 (16) | −0.0214 (18) | 0.0087 (15) | −0.0063 (17) |
O8 | 0.050 (6) | 0.041 (5) | 0.030 (4) | −0.001 (3) | 0.012 (3) | 0.002 (3) |
O9 | 0.043 (4) | 0.044 (6) | 0.023 (4) | −0.007 (3) | 0.010 (3) | −0.007 (3) |
O8' | 0.050 (5) | 0.041 (4) | 0.029 (4) | −0.001 (4) | 0.012 (3) | 0.002 (3) |
O9' | 0.043 (4) | 0.044 (5) | 0.023 (4) | −0.007 (3) | 0.010 (3) | −0.008 (3) |
C1 | 0.0273 (19) | 0.023 (2) | 0.027 (2) | 0.0014 (18) | 0.0157 (17) | 0.0015 (18) |
C2 | 0.028 (2) | 0.014 (2) | 0.026 (2) | −0.0046 (17) | 0.0149 (18) | 0.0000 (18) |
C3 | 0.028 (2) | 0.012 (2) | 0.036 (3) | −0.0012 (18) | 0.017 (2) | −0.0045 (19) |
C4 | 0.0201 (18) | 0.017 (2) | 0.034 (2) | −0.0032 (15) | 0.0125 (17) | −0.0028 (18) |
Zn1—O3 | 2.016 (3) | O8—H8A | 0.8501 |
Zn1—O1 | 2.019 (3) | O8—H8D | 0.8500 |
Zn1—O4i | 2.054 (3) | O8—H8'D | 1.0056 |
Zn1—O7 | 2.054 (3) | O9—H9A | 0.8500 |
Zn1—O5 | 2.189 (3) | O9—H9C | 0.8500 |
Zn1—O6 | 2.285 (3) | O9—H9'A | 0.9764 |
O1—C1 | 1.270 (6) | O8'—H8A | 1.0296 |
O2—C1 | 1.247 (6) | O8'—H8'A | 0.8500 |
O3—C4 | 1.264 (5) | O8'—H8'D | 0.8500 |
O4—C4 | 1.252 (5) | O9'—H9'A | 0.8500 |
O4—Zn1ii | 2.054 (3) | O9'—H9'C | 0.8500 |
O5—C2 | 1.431 (5) | C1—C2 | 1.531 (6) |
O5—H5 | 0.9300 | C2—C2iii | 1.537 (9) |
O6—C3 | 1.437 (6) | C2—H2 | 0.9800 |
O6—H6 | 0.9300 | C3—C4 | 1.529 (6) |
O7—H7B | 0.8500 | C3—C3iii | 1.529 (10) |
O7—H7C | 0.8500 | C3—H3 | 0.9800 |
O3—Zn1—O1 | 162.78 (11) | H8D—O8—H8'D | 120.0 |
O3—Zn1—O4i | 92.67 (13) | H9A—O9—H9C | 109.5 |
O1—Zn1—O4i | 100.41 (13) | H9A—O9—H9'A | 95.4 |
O3—Zn1—O7 | 96.64 (15) | H9A—O9—H9'C | 77.2 |
O1—Zn1—O7 | 93.60 (14) | H9C—O9—H9'C | 87.0 |
O4i—Zn1—O7 | 93.97 (14) | H9'A—O9—H9'C | 70.2 |
O3—Zn1—O5 | 89.61 (13) | H8A—O8'—H8'A | 115.6 |
O1—Zn1—O5 | 77.90 (12) | H8'A—O8'—H8'D | 110.0 |
O4i—Zn1—O5 | 96.51 (12) | H9C—O9'—H9'C | 116.2 |
O7—Zn1—O5 | 167.53 (13) | H9'A—O9'—H9'C | 110.0 |
O3—Zn1—O6 | 75.68 (11) | O2—C1—O1 | 123.2 (4) |
O1—Zn1—O6 | 90.55 (12) | O2—C1—C2 | 117.8 (4) |
O4i—Zn1—O6 | 168.07 (12) | O1—C1—C2 | 119.0 (4) |
O7—Zn1—O6 | 90.00 (14) | O5—C2—C1 | 110.0 (4) |
O5—Zn1—O6 | 81.09 (11) | O5—C2—C2iii | 109.4 (3) |
C1—O1—Zn1 | 119.1 (3) | C1—C2—C2iii | 110.6 (5) |
C4—O3—Zn1 | 122.3 (3) | O5—C2—H2 | 109.0 |
C4—O4—Zn1ii | 127.5 (3) | C1—C2—H2 | 109.0 |
C2—O5—Zn1 | 112.7 (3) | C2iii—C2—H2 | 109.0 |
C2—O5—H5 | 123.7 | O6—C3—C4 | 109.7 (4) |
Zn1—O5—H5 | 123.7 | O6—C3—C3iii | 109.8 (3) |
C3—O6—Zn1 | 112.2 (3) | C4—C3—C3iii | 111.1 (5) |
C3—O6—H6 | 123.9 | O6—C3—H3 | 108.7 |
Zn1—O6—H6 | 123.9 | C4—C3—H3 | 108.7 |
Zn1—O7—H7B | 111.1 | C3iii—C3—H3 | 108.7 |
Zn1—O7—H7C | 110.8 | O4—C4—O3 | 124.9 (4) |
H7B—O7—H7C | 109.2 | O4—C4—C3 | 115.8 (4) |
H8A—O8—H8D | 110.0 | O3—C4—C3 | 119.3 (4) |
Symmetry codes: (i) −x+1/2, y−1/2, −z; (ii) −x+1/2, y+1/2, −z; (iii) −x, y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8D···O2iv | 0.85 | 2.23 | 3.074 (10) | 174 |
O9—H9A···O1iv | 0.85 | 2.41 | 2.849 (7) | 113 |
O9—H9A···O7iv | 0.85 | 2.38 | 3.094 (8) | 142 |
O9—H9C···O9v | 0.85 | 1.95 | 2.421 (14) | 113 |
O8—H8A···O8′v | 0.85 | 2.16 | 2.791 (12) | 131 |
O9—H9C···O9′v | 0.85 | 2.00 | 2.761 (10) | 149 |
O9′—H9′C···O1iv | 0.85 | 1.92 | 2.765 (7) | 177 |
O9′—H9′C···O2iv | 0.85 | 2.66 | 3.225 (8) | 125 |
Symmetry codes: (iv) −x+1/2, y+1/2, −z+1; (v) −x, y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C4H4O6)(H2O)]·2H2O |
Mr | 267.49 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 296 |
a, b, c (Å) | 12.8652 (16), 8.7884 (14), 8.3816 (12) |
β (°) | 114.130 (1) |
V (Å3) | 864.9 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.87 |
Crystal size (mm) | 0.50 × 0.48 × 0.45 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.328, 0.358 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2182, 1296, 1262 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.071, 1.10 |
No. of reflections | 1296 |
No. of parameters | 147 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.42 |
Absolute structure | Flack (1983), 481 Friedel pairs |
Absolute structure parameter | 0.01 (2) |
Computer programs: SMART (Sheldrick, 2008), SAINT (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8D···O2i | 0.85 | 2.23 | 3.074 (10) | 173.8 |
O9—H9A···O1i | 0.85 | 2.41 | 2.849 (7) | 112.9 |
O9—H9A···O7i | 0.85 | 2.38 | 3.094 (8) | 141.5 |
O9—H9C···O9ii | 0.85 | 1.95 | 2.421 (14) | 113.4 |
O8—H8A···O8'ii | 0.85 | 2.16 | 2.791 (12) | 131.4 |
O9—H9C···O9'ii | 0.85 | 2.00 | 2.761 (10) | 148.5 |
O9'—H9'C···O1i | 0.85 | 1.92 | 2.765 (7) | 176.6 |
O9'—H9'C···O2i | 0.85 | 2.66 | 3.225 (8) | 125.3 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1; (ii) −x, y, −z+1. |
Acknowledgements
This work was supported by the Foundation of Liaocheng University (No. X071008).
References
Coronado, E., Galln-Mascaros, J.-R., Gomez-Garcia, C.-J. & Murcia-Martinez, A. (2006). Chem. Eur. J. 12, 3484–3492. Web of Science CSD CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gelbrich, T., Threlfall, T. L., Huth, S. & Seeger, E. (2006). Polyhedron, 25, 937–944. Web of Science CSD CrossRef CAS Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Lee, S.-J., Hu, A.-G. & Lin, W.-B. (2002). J. Am. Chem. Soc. 124, 12948–12949. Web of Science CrossRef PubMed CAS Google Scholar
Liu, J.-Q., Wang, Y.-Y., Maa, L.-F., Zhang, W.-H., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2008). Inorg. Chim. Acta, 361, 2327–2334. Web of Science CSD CrossRef CAS Google Scholar
Ma, Y., Han, Z.-B., He, Y.-K. & Yang, L.-G. (2007). Chem. Commun. pp. 4107–4109. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chiral inorganic-organic materials have received much attention, not only because of their numerous potential applications in nonlinear optics, enantioselective catalysis and medicine, but also owing to their intriguing variety of architectures and topologies (Ma et al., 2007; Kitagawa et al., 2004; Lee et al., 2002). L-tartaric acid, a simple and inexpensive chiral ligand source, was often used to construct novel chiral multifunctional materials (Liu et al., 2008; Gelbrich et al., 2006). Firstly, tartaric acid is flexible dicarboxylate ligands with two hydroxyl groups, and can offer more coordination sites and allow the formation of five- or six-membered ring, which can stabilize the solid network. Secondly, the deprotonated carboxylate group possesses polarizable system, it can transfer electrons easily. So, tartrate ligand is a good candidate of constructing chiral magnetic and chiral optical materials. In this paper, we reported the structure of the title compound, which is constructed by the chiral L-tartrate ligand.
X-ray single crystal diffraction studies reveal that the crystallographic unique unit of (I) is composed of one ZnII ion, two halves of L-tartrate ligand, one coordination water and two disordered lattice water molecules with occupancies both in the 0.5:0.5 ratio. As shown in Fig. 1, two kinds of L-tart ligands chelate two Zn centers through the hydroxyl and carboxylate groups in cis confirmation to form [Zn2(L-tart)2] dimmer, which is similar to the reported tartrate salts (Coronado et al., 2006). And, the octahedral geometry of ZnII is completed by one unchelating carboxylate oxygen atom and one water molecule. For compound (I), L-tartrate ligands adopt µ4- and µ2- two coordination modes, which link the [Zn2(L-tart)2] dimmers to form two-dimensional coordination layer. The coordination and lattice water molecules hydrogen bond to the hydroxy and carboxylate groups, so the two-dimensional coordination layers are further linked together to form three-dimensional supramolecular network (shown in Fig. 2). The parameters of hydrogen bonds are listed in Table 1.