metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­(μ4-L-tartrato)(μ2-L-tartrato)dizinc(II)] tetra­hydrate]

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: liuhouting@lcu.edu.cn

(Received 9 February 2010; accepted 27 February 2010; online 6 March 2010)

In the title compound, {[Zn(C4H4O6)(H2O)]·2H2O}n, the L-tartrate ligands adopt μ4- and μ2-coordination modes. The ZnII atom adopts an octa­hedral geometry and is chelated by two kinds of L-tartrate ligands through the hydr­oxy and carboxyl­ate groups and coordinated by one unchelating carboxyl­ate O atom and one water mol­ecule. In the crystal, the L-tartrate ligands link the ZnII atoms, forming a two-dimensional coordination layer; these layers are futher linked into a three-dimensional supra­molecular network by O—H⋯O hydrogen bonds between the two-dimensional coordin­ation layers and the uncoordinated water mol­ecules. The latter are equally disordered over two positions.

Related literature

For the potential applications and varied architectures and topologies of chiral inorganic–organic materials, see: Ma et al. (2007[Ma, Y., Han, Z.-B., He, Y.-K. & Yang, L.-G. (2007). Chem. Commun. pp. 4107-4109.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Lee et al. (2002[Lee, S.-J., Hu, A.-G. & Lin, W.-B. (2002). J. Am. Chem. Soc. 124, 12948-12949.]). For chiral multifunctional materials constructed from tartrate, see: Liu et al. (2008[Liu, J.-Q., Wang, Y.-Y., Maa, L.-F., Zhang, W.-H., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2008). Inorg. Chim. Acta, 361, 2327-2334.]) Gelbrich et al. (2006[Gelbrich, T., Threlfall, T. L., Huth, S. & Seeger, E. (2006). Polyhedron, 25, 937-944.]). For magnetic properties of transition metal tartrates, see: Coronado et al. (2006[Coronado, E., Galln-Mascaros, J.-R., Gomez-Garcia, C.-J. & Murcia-Martinez, A. (2006). Chem. Eur. J. 12, 3484-3492.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C4H4O6)(H2O)]·2H2O

  • Mr = 267.49

  • Monoclinic, C 2

  • a = 12.8652 (16) Å

  • b = 8.7884 (14) Å

  • c = 8.3816 (12) Å

  • β = 114.130 (1)°

  • V = 864.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.87 mm−1

  • T = 296 K

  • 0.50 × 0.48 × 0.45 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.328, Tmax = 0.358

  • 2182 measured reflections

  • 1296 independent reflections

  • 1262 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.071

  • S = 1.10

  • 1296 reflections

  • 147 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 481 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8D⋯O2i 0.85 2.23 3.074 (10) 174
O9—H9A⋯O1i 0.85 2.41 2.849 (7) 113
O9—H9A⋯O7i 0.85 2.38 3.094 (8) 142
O9—H9C⋯O9ii 0.85 1.95 2.421 (14) 113
O8—H8A⋯O8′ii 0.85 2.16 2.791 (12) 131
O9—H9C⋯O9′ii 0.85 2.00 2.761 (10) 149
O9′—H9′C⋯O1i 0.85 1.92 2.765 (7) 177
O9′—H9′C⋯O2i 0.85 2.66 3.225 (8) 125
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) -x, y, -z+1.

Data collection: SMART (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); cell refinement: SAINT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chiral inorganic-organic materials have received much attention, not only because of their numerous potential applications in nonlinear optics, enantioselective catalysis and medicine, but also owing to their intriguing variety of architectures and topologies (Ma et al., 2007; Kitagawa et al., 2004; Lee et al., 2002). L-tartaric acid, a simple and inexpensive chiral ligand source, was often used to construct novel chiral multifunctional materials (Liu et al., 2008; Gelbrich et al., 2006). Firstly, tartaric acid is flexible dicarboxylate ligands with two hydroxyl groups, and can offer more coordination sites and allow the formation of five- or six-membered ring, which can stabilize the solid network. Secondly, the deprotonated carboxylate group possesses polarizable system, it can transfer electrons easily. So, tartrate ligand is a good candidate of constructing chiral magnetic and chiral optical materials. In this paper, we reported the structure of the title compound, which is constructed by the chiral L-tartrate ligand.

X-ray single crystal diffraction studies reveal that the crystallographic unique unit of (I) is composed of one ZnII ion, two halves of L-tartrate ligand, one coordination water and two disordered lattice water molecules with occupancies both in the 0.5:0.5 ratio. As shown in Fig. 1, two kinds of L-tart ligands chelate two Zn centers through the hydroxyl and carboxylate groups in cis confirmation to form [Zn2(L-tart)2] dimmer, which is similar to the reported tartrate salts (Coronado et al., 2006). And, the octahedral geometry of ZnII is completed by one unchelating carboxylate oxygen atom and one water molecule. For compound (I), L-tartrate ligands adopt µ4- and µ2- two coordination modes, which link the [Zn2(L-tart)2] dimmers to form two-dimensional coordination layer. The coordination and lattice water molecules hydrogen bond to the hydroxy and carboxylate groups, so the two-dimensional coordination layers are further linked together to form three-dimensional supramolecular network (shown in Fig. 2). The parameters of hydrogen bonds are listed in Table 1.

Related literature top

For the potential applications and varied architectures and topologies of chiral inorganic–organic materials, see: Ma et al. (2007); Kitagawa et al. (2004); Lee et al. (2002). For chiral multifunctional materials constructed from tartrate, see: Liu et al. (2008) Gelbrich et al. (2006). For tartrate slats, see: Coronado et al. (2006).

Experimental top

Compound (I) was obtained at room temperature. An aqueous solution (5 ml) of L-tartaric acid (0.51 g, 3.4 mmol) was added dropwise into an aqueous solution (10 ml) of Zn(OAc)2˙2H2O (0.37 g, 1.7 mmol). White crystals were obtained in yield about 60% (based on Zn) after the solution was allowed to stand for several days. Elemental analysis, Found: C 17.36, H 3.23%. Calc. for C4H10O9Zn : calcd. C 17.94, H 3.74%.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C–H 0.980, O(aqua)–H 0.850, O(hydroxyl)–H 0.970 and with Uiso(H) = 1.2Ueq(C). The O8 and O9 atom is resolved into two positions by PART instructions. The geometries and anisotropic displacement parameters of disordered atoms were refined with soft restraints using the SHELXL commands damp.

Computing details top

Data collection: SMART (Sheldrick, 2008); cell refinement: SAINT (Sheldrick, 2008); data reduction: SAINT (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement elliposolids (hydrogen atoms are omitted for clarity). Symmetry codes: (A) 0.5-x, -0.5+y, -z; (B) -x, -2+y, -z.
[Figure 2] Fig. 2. The two-dimensional structure of the title compound, with atom labels.
[Figure 3] Fig. 3. The three-dimensional supramolecular layer construcuted by hydrogen bonds.
Poly[[diaqua(µ4-L-tartrato)(µ2-L-tartrato)dizinc(II)] tetrahydrate] top
Crystal data top
[Zn(C4H4O6)(H2O)]·2H2OF(000) = 544
Mr = 267.49Dx = 2.054 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 1296 reflections
a = 12.8652 (16) Åθ = 2.7–25.0°
b = 8.7884 (14) ŵ = 2.87 mm1
c = 8.3816 (12) ÅT = 296 K
β = 114.130 (1)°Block, white
V = 864.9 (2) Å30.50 × 0.48 × 0.45 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1296 independent reflections
Radiation source: fine-focus sealed tube1262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
phi and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1514
Tmin = 0.328, Tmax = 0.358k = 810
2182 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.821P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1296 reflectionsΔρmax = 0.34 e Å3
147 parametersΔρmin = 0.42 e Å3
1 restraintAbsolute structure: Flack (1983), 481 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[Zn(C4H4O6)(H2O)]·2H2OV = 864.9 (2) Å3
Mr = 267.49Z = 4
Monoclinic, C2Mo Kα radiation
a = 12.8652 (16) ŵ = 2.87 mm1
b = 8.7884 (14) ÅT = 296 K
c = 8.3816 (12) Å0.50 × 0.48 × 0.45 mm
β = 114.130 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1296 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1262 reflections with I > 2σ(I)
Tmin = 0.328, Tmax = 0.358Rint = 0.017
2182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.34 e Å3
S = 1.10Δρmin = 0.42 e Å3
1296 reflectionsAbsolute structure: Flack (1983), 481 Friedel pairs
147 parametersAbsolute structure parameter: 0.01 (2)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.23251 (3)0.52758 (7)0.15818 (5)0.02164 (15)
O10.2031 (2)0.3568 (4)0.2954 (4)0.0271 (7)
O20.1296 (3)0.1272 (4)0.2844 (4)0.0418 (9)
O30.2105 (2)0.7016 (4)0.0093 (4)0.0289 (7)
O40.1403 (2)0.9327 (3)0.1022 (4)0.0307 (7)
O50.0911 (2)0.4067 (3)0.0441 (4)0.0270 (7)
H50.05310.44210.15790.032*
O60.0846 (2)0.6635 (4)0.1705 (4)0.0265 (7)
H60.04380.63400.23490.032*
O70.3436 (3)0.6376 (5)0.3781 (4)0.0447 (9)
H7B0.33390.60970.46810.054*
H7C0.33520.73350.36660.054*
O80.1503 (7)0.4516 (9)0.6526 (9)0.042 (3)0.499 (12)
H8A0.09550.49910.57450.050*0.499 (12)
H8D0.21210.50070.67840.050*0.499 (12)
O90.0715 (6)0.8274 (9)0.4409 (8)0.038 (2)0.495 (11)
H9A0.09550.88380.53120.057*0.495 (11)
H9C0.02990.75720.45310.057*0.495 (11)
O8'0.0611 (7)0.4189 (9)0.6283 (8)0.042 (3)0.501 (12)
H8'A0.00750.39390.56600.050*0.501 (12)
H8'D0.07510.50590.59740.050*0.501 (12)
O9'0.1034 (6)0.6981 (9)0.4957 (8)0.038 (2)0.505 (11)
H9'A0.04530.74530.49370.045*0.505 (11)
H9'C0.16360.74730.55630.045*0.505 (11)
C10.1372 (3)0.2489 (5)0.2135 (6)0.0242 (9)
C20.0635 (4)0.2672 (5)0.0178 (6)0.0213 (10)
H20.07860.18210.04530.026*
C30.0619 (4)0.8000 (5)0.0673 (6)0.0240 (11)
H30.07370.88790.14470.029*
C40.1442 (3)0.8113 (5)0.0218 (6)0.0233 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0224 (2)0.0192 (2)0.0234 (2)0.0043 (2)0.00947 (16)0.0007 (2)
O10.0278 (14)0.0253 (17)0.0275 (16)0.0077 (13)0.0104 (12)0.0035 (14)
O20.070 (2)0.026 (2)0.0321 (18)0.0124 (17)0.0231 (17)0.0034 (15)
O30.0307 (15)0.0190 (16)0.0466 (19)0.0052 (13)0.0257 (14)0.0091 (14)
O40.0287 (14)0.0182 (18)0.0502 (19)0.0017 (13)0.0212 (14)0.0064 (15)
O50.0375 (15)0.0179 (17)0.0333 (17)0.0090 (13)0.0224 (13)0.0027 (13)
O60.0287 (14)0.0259 (17)0.0260 (15)0.0033 (12)0.0124 (12)0.0001 (12)
O70.051 (2)0.048 (2)0.0279 (16)0.0214 (18)0.0087 (15)0.0063 (17)
O80.050 (6)0.041 (5)0.030 (4)0.001 (3)0.012 (3)0.002 (3)
O90.043 (4)0.044 (6)0.023 (4)0.007 (3)0.010 (3)0.007 (3)
O8'0.050 (5)0.041 (4)0.029 (4)0.001 (4)0.012 (3)0.002 (3)
O9'0.043 (4)0.044 (5)0.023 (4)0.007 (3)0.010 (3)0.008 (3)
C10.0273 (19)0.023 (2)0.027 (2)0.0014 (18)0.0157 (17)0.0015 (18)
C20.028 (2)0.014 (2)0.026 (2)0.0046 (17)0.0149 (18)0.0000 (18)
C30.028 (2)0.012 (2)0.036 (3)0.0012 (18)0.017 (2)0.0045 (19)
C40.0201 (18)0.017 (2)0.034 (2)0.0032 (15)0.0125 (17)0.0028 (18)
Geometric parameters (Å, º) top
Zn1—O32.016 (3)O8—H8A0.8501
Zn1—O12.019 (3)O8—H8D0.8500
Zn1—O4i2.054 (3)O8—H8'D1.0056
Zn1—O72.054 (3)O9—H9A0.8500
Zn1—O52.189 (3)O9—H9C0.8500
Zn1—O62.285 (3)O9—H9'A0.9764
O1—C11.270 (6)O8'—H8A1.0296
O2—C11.247 (6)O8'—H8'A0.8500
O3—C41.264 (5)O8'—H8'D0.8500
O4—C41.252 (5)O9'—H9'A0.8500
O4—Zn1ii2.054 (3)O9'—H9'C0.8500
O5—C21.431 (5)C1—C21.531 (6)
O5—H50.9300C2—C2iii1.537 (9)
O6—C31.437 (6)C2—H20.9800
O6—H60.9300C3—C41.529 (6)
O7—H7B0.8500C3—C3iii1.529 (10)
O7—H7C0.8500C3—H30.9800
O3—Zn1—O1162.78 (11)H8D—O8—H8'D120.0
O3—Zn1—O4i92.67 (13)H9A—O9—H9C109.5
O1—Zn1—O4i100.41 (13)H9A—O9—H9'A95.4
O3—Zn1—O796.64 (15)H9A—O9—H9'C77.2
O1—Zn1—O793.60 (14)H9C—O9—H9'C87.0
O4i—Zn1—O793.97 (14)H9'A—O9—H9'C70.2
O3—Zn1—O589.61 (13)H8A—O8'—H8'A115.6
O1—Zn1—O577.90 (12)H8'A—O8'—H8'D110.0
O4i—Zn1—O596.51 (12)H9C—O9'—H9'C116.2
O7—Zn1—O5167.53 (13)H9'A—O9'—H9'C110.0
O3—Zn1—O675.68 (11)O2—C1—O1123.2 (4)
O1—Zn1—O690.55 (12)O2—C1—C2117.8 (4)
O4i—Zn1—O6168.07 (12)O1—C1—C2119.0 (4)
O7—Zn1—O690.00 (14)O5—C2—C1110.0 (4)
O5—Zn1—O681.09 (11)O5—C2—C2iii109.4 (3)
C1—O1—Zn1119.1 (3)C1—C2—C2iii110.6 (5)
C4—O3—Zn1122.3 (3)O5—C2—H2109.0
C4—O4—Zn1ii127.5 (3)C1—C2—H2109.0
C2—O5—Zn1112.7 (3)C2iii—C2—H2109.0
C2—O5—H5123.7O6—C3—C4109.7 (4)
Zn1—O5—H5123.7O6—C3—C3iii109.8 (3)
C3—O6—Zn1112.2 (3)C4—C3—C3iii111.1 (5)
C3—O6—H6123.9O6—C3—H3108.7
Zn1—O6—H6123.9C4—C3—H3108.7
Zn1—O7—H7B111.1C3iii—C3—H3108.7
Zn1—O7—H7C110.8O4—C4—O3124.9 (4)
H7B—O7—H7C109.2O4—C4—C3115.8 (4)
H8A—O8—H8D110.0O3—C4—C3119.3 (4)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8D···O2iv0.852.233.074 (10)174
O9—H9A···O1iv0.852.412.849 (7)113
O9—H9A···O7iv0.852.383.094 (8)142
O9—H9C···O9v0.851.952.421 (14)113
O8—H8A···O8v0.852.162.791 (12)131
O9—H9C···O9v0.852.002.761 (10)149
O9—H9C···O1iv0.851.922.765 (7)177
O9—H9C···O2iv0.852.663.225 (8)125
Symmetry codes: (iv) x+1/2, y+1/2, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C4H4O6)(H2O)]·2H2O
Mr267.49
Crystal system, space groupMonoclinic, C2
Temperature (K)296
a, b, c (Å)12.8652 (16), 8.7884 (14), 8.3816 (12)
β (°) 114.130 (1)
V3)864.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.50 × 0.48 × 0.45
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.328, 0.358
No. of measured, independent and
observed [I > 2σ(I)] reflections
2182, 1296, 1262
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.071, 1.10
No. of reflections1296
No. of parameters147
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.42
Absolute structureFlack (1983), 481 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: SMART (Sheldrick, 2008), SAINT (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8D···O2i0.852.233.074 (10)173.8
O9—H9A···O1i0.852.412.849 (7)112.9
O9—H9A···O7i0.852.383.094 (8)141.5
O9—H9C···O9ii0.851.952.421 (14)113.4
O8—H8A···O8'ii0.852.162.791 (12)131.4
O9—H9C···O9'ii0.852.002.761 (10)148.5
O9'—H9'C···O1i0.851.922.765 (7)176.6
O9'—H9'C···O2i0.852.663.225 (8)125.3
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1.
 

Acknowledgements

This work was supported by the Foundation of Liaocheng University (No. X071008).

References

First citationCoronado, E., Galln-Mascaros, J.-R., Gomez-Garcia, C.-J. & Murcia-Martinez, A. (2006). Chem. Eur. J. 12, 3484–3492.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelbrich, T., Threlfall, T. L., Huth, S. & Seeger, E. (2006). Polyhedron, 25, 937–944.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLee, S.-J., Hu, A.-G. & Lin, W.-B. (2002). J. Am. Chem. Soc. 124, 12948–12949.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, J.-Q., Wang, Y.-Y., Maa, L.-F., Zhang, W.-H., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2008). Inorg. Chim. Acta, 361, 2327–2334.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Y., Han, Z.-B., He, Y.-K. & Yang, L.-G. (2007). Chem. Commun. pp. 4107–4109.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds