metal-organic compounds
Poly[[bis{μ3-tris[2-(1H-tetrazol-1-yl)ethyl]amine}copper(II)] bis(perchlorate)]
aAoyama-Gakuin University, College of Science and Engineering, Department of Chemistry and Biological Science, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-8558, Japan, bVienna University of Technology, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060 Vienna, Austria, and cVienna University of Technology, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: hasemiki@chem.aoyama.ac.jp, kurt.mereiter@tuwien.ac.at
In the title compound, {[Cu(C9H15N13)2](ClO4)2}n, the Cu2+ cation lies on an inversion center and is coordinated by the tetrazole N4 atoms of six symmetry-equivalent tris[2-(1H-tetrazol-1-yl)ethyl]amine ligands (t3z) in the form of a Jahn–Teller-distorted octahedron with Cu—N bond distances of 2.0210 (8), 2.0259 (8) and 2.4098 (8) Å. The tertiary amine N atom is stereochemically inactive. The cationic part of the structure, viz. [Cu(t3z)2]2+, forms an infinite two-dimensional network parallel to (100), in pockets of which the perchlorate anions reside. The individual networks are partially interlocked and held together by C—H⋯O interactions to the perchlorate anions and C—H⋯N interactions to tetrazole N atoms.
Related literature
For a general procedure for the synthesis of tetrazoles, see: Kamiya & Saito (1973). For the crystal structures of the t3z ligand and its complex with Cu(NO3)2, see: Hartdegen et al. (2009). For supramolecular compounds made up of di-tetrazolylalkanes, see: Liu et al. (2008); Yu et al. (2008). For Fe2+ spin-crossover complexes based on di-tetrazolylalkanes, see: Grunert et al. (2004); Absmeier et al. (2006); Quesada et al. (2007); Bialonska et al. (2008). For a related structure, see: Werner et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT, SADABS and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810008998/bq2196sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810008998/bq2196Isup2.hkl
CAUTION! Tetrazoles and perchlorates are energetic compounds sensitive towards heat and impact. Proper precautions and care should be applied. The ligand tris(2-(1H-tetrazol-1-yl)ethyl)-amine, t3z, was prepared according to the general procedure of Kamiya & Saito (1973). A solution of 2.0 g tris(2-aminoethyl)-amine (13.7 mmol, Aldrich, 96%), 3.07 g sodium azide (47.2 mmol, Wako, min. 98.0%) and 9.12 g triethyl orthoformate (61.5 mmol, Sigma-Aldrich, 98%) in 120 ml glacial acetic acid (Kanto Chemical, 99.5%), was stirred for 3 h at a temperature of 343 - 353 K. After cooling to rt overnight the solvent was removed under reduced pressure. The solid residue was dissolved in 20 ml H2O, the solution was made alkaline (pH>11) by adding 100 ml of aqueous 4 N NaOH, and was then extracted with ethyl acetate. The combined organic layers were dried with sodium sulphate and the solvent was distilled off. The raw product was recrystallised from methanol yielding 178 mg (4.3%) of t3z. Elemental analysis (Micro Corder JM10, J-Science Lab): C (calculated 35.41%/found 35.85%), H (4.95/4.94), N (59.64/59.37). NMR (JEOL JNM-ECP 500): 1H(DMSO-d6) δ 3.01 (t, 6 H, CH2), 4.42 (t, 6H, CH2), 9.15 (s, 3 H, CH); 13C (DMSO-d6) δ 45.3 (CH2), 52.1 (CH2), 144.6 (CH).
Single crystals of the title complex, [Cu(t3z)2](ClO4)2, developed overnight from the combined solutions of 15.5 mg of Cu(ClO4)2.6H2O (0.041 mmol, Kanto Chemical) in 2.5 ml H2O and of 25.1 mg of t3z (0.082 mmol) in 5 ml H2O. Yield 28.2 mg (79%), blue needles (Fig. 6). Elemental analysis: C (calculated 24.76%/found 24.96%), H(3.46/3.52), N (41.71/42.62).
All H atoms were placed in calculated positions and thereafter treated as riding. Uiso(H) = 1.2Ueq(C) was used.
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT, SADABS and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).Fig. 1. The coordination octahedron of Cu in (I) with incomplete t3z ligands. Displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Symmetry codes for the t3z fragments are given in italics. | |
Fig. 2. Asymmetric unit of (I) viewed along approximately perpendicular to the plane C3—C6—C9 of the t3z ligand. Displacement ellipsoids drawn at the 50% probability level. Symmetry codes of Cu atoms in italics. Two C—H···O hydrogen bonds shown as red broken lines. | |
Fig. 3. The two-dimensional coordination polymer in (I) extending parallel to (100) in a projection down the a-axis. H-atoms omitted for clarity. | |
Fig. 4. The two-dimensional coordination polymer in (I) extending parallel to (100) in a projection along the b-axis. H-atoms omitted for clarity. | |
Fig. 5. The structure of [Cu(t3z)2](NO3)2 (Hartdegen et al., 2009) in a view corresponding to Fig. 4 after shifting the coordinates by x' = x+1/2. | |
Fig. 6. Crystals of [Cu(t3z)2](ClO4)2, as-grown from water. |
[Cu(C9H15N13)2](ClO4)2 | Z = 1 |
Mr = 873.12 | F(000) = 447 |
Triclinic, P1 | Dx = 1.717 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5902 (3) Å | Cell parameters from 7355 reflections |
b = 9.4932 (4) Å | θ = 2.4–31.0° |
c = 11.8446 (5) Å | µ = 0.89 mm−1 |
α = 69.233 (1)° | T = 100 K |
β = 74.652 (1)° | Prism, blue |
γ = 71.602 (1)° | 0.60 × 0.38 × 0.35 mm |
V = 844.19 (6) Å3 |
Bruker SMART APEX CCD diffractometer | 5317 independent reflections |
Radiation source: normal-focus sealed tube | 5160 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
ϕ and ω scans | θmax = 31.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −12→12 |
Tmin = 0.86, Tmax = 1.00 | k = −13→13 |
18905 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0428P)2 + 0.303P] where P = (Fo2 + 2Fc2)/3 |
5317 reflections | (Δ/σ)max = 0.001 |
250 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
[Cu(C9H15N13)2](ClO4)2 | γ = 71.602 (1)° |
Mr = 873.12 | V = 844.19 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.5902 (3) Å | Mo Kα radiation |
b = 9.4932 (4) Å | µ = 0.89 mm−1 |
c = 11.8446 (5) Å | T = 100 K |
α = 69.233 (1)° | 0.60 × 0.38 × 0.35 mm |
β = 74.652 (1)° |
Bruker SMART APEX CCD diffractometer | 5317 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 5160 reflections with I > 2σ(I) |
Tmin = 0.86, Tmax = 1.00 | Rint = 0.015 |
18905 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.53 e Å−3 |
5317 reflections | Δρmin = −0.36 e Å−3 |
250 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.01041 (5) | |
N1 | 0.42188 (10) | 0.17443 (9) | 0.37722 (7) | 0.01129 (14) | |
N2 | 0.58575 (11) | 0.11927 (10) | 0.38325 (8) | 0.01522 (16) | |
N3 | 0.62835 (11) | 0.21526 (10) | 0.41688 (8) | 0.01499 (15) | |
N4 | 0.49368 (10) | 0.33358 (9) | 0.43272 (7) | 0.01173 (14) | |
N5 | 0.23080 (11) | 0.34128 (10) | −0.15509 (8) | 0.01398 (15) | |
N6 | 0.19378 (16) | 0.26607 (14) | −0.21840 (9) | 0.0293 (2) | |
N7 | 0.27560 (15) | 0.30387 (14) | −0.32835 (9) | 0.0271 (2) | |
N8 | 0.36562 (11) | 0.40410 (10) | −0.33836 (8) | 0.01278 (15) | |
N9 | 0.05800 (10) | −0.15980 (9) | 0.33579 (7) | 0.01167 (14) | |
N10 | −0.01294 (11) | −0.20876 (10) | 0.45440 (8) | 0.01605 (16) | |
N11 | 0.09776 (11) | −0.32341 (11) | 0.50942 (8) | 0.01675 (16) | |
N12 | 0.24167 (11) | −0.35052 (10) | 0.42864 (8) | 0.01439 (15) | |
N13 | 0.19387 (10) | 0.11244 (9) | 0.17899 (7) | 0.01133 (14) | |
C1 | 0.36653 (12) | 0.30591 (11) | 0.40781 (9) | 0.01306 (16) | |
H1 | 0.2557 | 0.3687 | 0.4112 | 0.016* | |
C2 | 0.33577 (12) | 0.09397 (11) | 0.33747 (9) | 0.01269 (16) | |
H2A | 0.2419 | 0.0650 | 0.4026 | 0.015* | |
H2B | 0.4136 | −0.0025 | 0.3230 | 0.015* | |
C3 | 0.27031 (12) | 0.19884 (11) | 0.22024 (9) | 0.01354 (16) | |
H3A | 0.1870 | 0.2925 | 0.2357 | 0.016* | |
H3B | 0.3629 | 0.2327 | 0.1562 | 0.016* | |
C4 | 0.33503 (12) | 0.42623 (11) | −0.22978 (8) | 0.01214 (16) | |
H4 | 0.3797 | 0.4914 | −0.2088 | 0.015* | |
C5 | 0.16668 (12) | 0.31649 (11) | −0.02381 (9) | 0.01354 (16) | |
H5A | 0.0434 | 0.3462 | −0.0095 | 0.016* | |
H5B | 0.2054 | 0.3823 | 0.0063 | 0.016* | |
C6 | 0.22876 (12) | 0.14415 (11) | 0.04621 (9) | 0.01244 (16) | |
H6A | 0.1755 | 0.0811 | 0.0243 | 0.015* | |
H6B | 0.3505 | 0.1111 | 0.0195 | 0.015* | |
C7 | 0.21343 (12) | −0.24693 (11) | 0.32171 (9) | 0.01360 (16) | |
H7 | 0.2912 | −0.2365 | 0.2472 | 0.016* | |
C8 | −0.02967 (11) | −0.02595 (11) | 0.24720 (9) | 0.01210 (16) | |
H8A | −0.1514 | −0.0119 | 0.2749 | 0.015* | |
H8B | −0.0011 | −0.0455 | 0.1665 | 0.015* | |
C9 | 0.01822 (12) | 0.12133 (11) | 0.23426 (9) | 0.01177 (15) | |
H9A | −0.0525 | 0.2122 | 0.1825 | 0.014* | |
H9B | −0.0021 | 0.1360 | 0.3161 | 0.014* | |
Cl1 | 0.29526 (3) | 0.69679 (3) | 0.01464 (2) | 0.01452 (6) | |
O1 | 0.24265 (13) | 0.56699 (11) | 0.10773 (11) | 0.0356 (2) | |
O2 | 0.35608 (12) | 0.66142 (13) | −0.10061 (10) | 0.0316 (2) | |
O3 | 0.42605 (10) | 0.72936 (10) | 0.04944 (8) | 0.02103 (16) | |
O4 | 0.15606 (10) | 0.83116 (9) | 0.00141 (8) | 0.02162 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01374 (8) | 0.01175 (8) | 0.00772 (8) | −0.00612 (6) | −0.00085 (5) | −0.00332 (5) |
N1 | 0.0123 (3) | 0.0121 (3) | 0.0110 (3) | −0.0033 (3) | −0.0029 (3) | −0.0042 (3) |
N2 | 0.0129 (4) | 0.0158 (4) | 0.0190 (4) | −0.0018 (3) | −0.0050 (3) | −0.0074 (3) |
N3 | 0.0136 (4) | 0.0153 (4) | 0.0181 (4) | −0.0028 (3) | −0.0040 (3) | −0.0070 (3) |
N4 | 0.0125 (3) | 0.0134 (3) | 0.0104 (3) | −0.0041 (3) | −0.0019 (3) | −0.0041 (3) |
N5 | 0.0185 (4) | 0.0172 (4) | 0.0095 (3) | −0.0102 (3) | −0.0011 (3) | −0.0035 (3) |
N6 | 0.0471 (7) | 0.0421 (6) | 0.0132 (4) | −0.0352 (5) | 0.0045 (4) | −0.0111 (4) |
N7 | 0.0437 (6) | 0.0366 (5) | 0.0132 (4) | −0.0315 (5) | 0.0040 (4) | −0.0091 (4) |
N8 | 0.0164 (4) | 0.0140 (3) | 0.0101 (3) | −0.0072 (3) | −0.0023 (3) | −0.0031 (3) |
N9 | 0.0117 (3) | 0.0124 (3) | 0.0110 (3) | −0.0044 (3) | −0.0009 (3) | −0.0029 (3) |
N10 | 0.0147 (4) | 0.0186 (4) | 0.0122 (4) | −0.0052 (3) | 0.0001 (3) | −0.0022 (3) |
N11 | 0.0160 (4) | 0.0192 (4) | 0.0129 (4) | −0.0049 (3) | −0.0015 (3) | −0.0026 (3) |
N12 | 0.0149 (4) | 0.0151 (4) | 0.0128 (4) | −0.0031 (3) | −0.0029 (3) | −0.0040 (3) |
N13 | 0.0128 (3) | 0.0144 (3) | 0.0091 (3) | −0.0069 (3) | −0.0012 (3) | −0.0036 (3) |
C1 | 0.0133 (4) | 0.0136 (4) | 0.0144 (4) | −0.0036 (3) | −0.0026 (3) | −0.0063 (3) |
C2 | 0.0162 (4) | 0.0120 (4) | 0.0126 (4) | −0.0052 (3) | −0.0049 (3) | −0.0037 (3) |
C3 | 0.0180 (4) | 0.0141 (4) | 0.0117 (4) | −0.0083 (3) | −0.0051 (3) | −0.0019 (3) |
C4 | 0.0144 (4) | 0.0132 (4) | 0.0099 (4) | −0.0059 (3) | −0.0017 (3) | −0.0029 (3) |
C5 | 0.0174 (4) | 0.0154 (4) | 0.0083 (4) | −0.0066 (3) | 0.0001 (3) | −0.0035 (3) |
C6 | 0.0148 (4) | 0.0138 (4) | 0.0096 (4) | −0.0055 (3) | −0.0006 (3) | −0.0038 (3) |
C7 | 0.0134 (4) | 0.0141 (4) | 0.0128 (4) | −0.0025 (3) | −0.0017 (3) | −0.0045 (3) |
C8 | 0.0114 (4) | 0.0120 (4) | 0.0130 (4) | −0.0036 (3) | −0.0035 (3) | −0.0022 (3) |
C9 | 0.0126 (4) | 0.0120 (4) | 0.0111 (4) | −0.0043 (3) | −0.0009 (3) | −0.0036 (3) |
Cl1 | 0.01424 (10) | 0.01325 (10) | 0.01848 (11) | −0.00314 (7) | −0.00498 (8) | −0.00616 (8) |
O1 | 0.0351 (5) | 0.0191 (4) | 0.0465 (6) | −0.0144 (4) | −0.0063 (4) | 0.0039 (4) |
O2 | 0.0295 (5) | 0.0418 (5) | 0.0332 (5) | 0.0009 (4) | −0.0087 (4) | −0.0285 (4) |
O3 | 0.0167 (3) | 0.0320 (4) | 0.0204 (4) | −0.0103 (3) | −0.0048 (3) | −0.0099 (3) |
O4 | 0.0195 (4) | 0.0178 (3) | 0.0286 (4) | 0.0029 (3) | −0.0097 (3) | −0.0106 (3) |
Cu1—N8i | 2.0210 (8) | N13—C6 | 1.4579 (12) |
Cu1—N8ii | 2.0210 (8) | N13—C3 | 1.4617 (12) |
Cu1—N4 | 2.0259 (8) | N13—C9 | 1.4656 (12) |
Cu1—N4iii | 2.0259 (8) | C1—H1 | 0.9500 |
Cu1—N12iv | 2.4098 (8) | C2—C3 | 1.5215 (13) |
Cu1—N12v | 2.4098 (8) | C2—H2A | 0.9900 |
N1—C1 | 1.3305 (12) | C2—H2B | 0.9900 |
N1—N2 | 1.3500 (11) | C3—H3A | 0.9900 |
N1—C2 | 1.4657 (12) | C3—H3B | 0.9900 |
N2—N3 | 1.2915 (12) | C4—H4 | 0.9500 |
N3—N4 | 1.3599 (12) | C5—C6 | 1.5395 (13) |
N4—C1 | 1.3249 (12) | C5—H5A | 0.9900 |
N5—C4 | 1.3286 (12) | C5—H5B | 0.9900 |
N5—N6 | 1.3500 (12) | C6—H6A | 0.9900 |
N5—C5 | 1.4649 (12) | C6—H6B | 0.9900 |
N6—N7 | 1.2892 (13) | C7—H7 | 0.9500 |
N7—N8 | 1.3614 (12) | C8—H8A | 0.9900 |
N8—C4 | 1.3210 (12) | C8—H8B | 0.9900 |
N8—Cu1vi | 2.0209 (8) | C9—C8 | 1.5248 (13) |
N9—C7 | 1.3332 (12) | C9—H9A | 0.9900 |
N9—N10 | 1.3505 (11) | C9—H9B | 0.9900 |
N9—C8 | 1.4668 (12) | Cl1—O1 | 1.4362 (9) |
N10—N11 | 1.2982 (12) | Cl1—O4 | 1.4409 (8) |
N11—N12 | 1.3630 (12) | Cl1—O3 | 1.4430 (8) |
N12—C7 | 1.3262 (12) | Cl1—O2 | 1.4442 (10) |
N12—Cu1vii | 2.4098 (8) | ||
N8i—Cu1—N8ii | 180.0 | C3—C2—H2A | 109.7 |
N8i—Cu1—N4 | 89.54 (3) | N1—C2—H2B | 109.7 |
N8ii—Cu1—N4 | 90.46 (3) | C3—C2—H2B | 109.7 |
N8i—Cu1—N4iii | 90.46 (3) | H2A—C2—H2B | 108.2 |
N8ii—Cu1—N4iii | 89.54 (3) | N13—C3—C2 | 108.77 (7) |
N4—Cu1—N4iii | 180.0 | N13—C3—H3A | 109.9 |
N8i—Cu1—N12iv | 88.33 (3) | C2—C3—H3A | 109.9 |
N8ii—Cu1—N12iv | 91.67 (3) | N13—C3—H3B | 109.9 |
N4—Cu1—N12iv | 92.20 (3) | C2—C3—H3B | 109.9 |
N4iii—Cu1—N12iv | 87.80 (3) | H3A—C3—H3B | 108.3 |
N8i—Cu1—N12v | 91.67 (3) | N8—C4—N5 | 108.02 (8) |
N8ii—Cu1—N12v | 88.33 (3) | N8—C4—H4 | 126.0 |
N4—Cu1—N12v | 87.80 (3) | N5—C4—H4 | 126.0 |
N4iii—Cu1—N12v | 92.20 (3) | N5—C5—C6 | 109.51 (8) |
N12iv—Cu1—N12v | 180.0 | N5—C5—H5A | 109.8 |
C1—N1—N2 | 108.62 (8) | C6—C5—H5A | 109.8 |
C1—N1—C2 | 130.53 (8) | N5—C5—H5B | 109.8 |
N2—N1—C2 | 120.81 (8) | C6—C5—H5B | 109.8 |
N3—N2—N1 | 107.19 (8) | H5A—C5—H5B | 108.2 |
N2—N3—N4 | 109.54 (8) | N13—C6—C5 | 113.54 (8) |
C1—N4—N3 | 106.88 (8) | N13—C6—H6A | 108.9 |
C1—N4—Cu1 | 130.20 (7) | C5—C6—H6A | 108.9 |
N3—N4—Cu1 | 122.61 (6) | N13—C6—H6B | 108.9 |
C4—N5—N6 | 108.65 (8) | C5—C6—H6B | 108.9 |
C4—N5—C5 | 129.94 (8) | H6A—C6—H6B | 107.7 |
N6—N5—C5 | 121.31 (8) | N12—C7—N9 | 108.87 (9) |
N7—N6—N5 | 106.93 (9) | N12—C7—H7 | 125.6 |
N6—N7—N8 | 109.82 (9) | N9—C7—H7 | 125.6 |
C4—N8—N7 | 106.58 (8) | N9—C8—C9 | 110.61 (7) |
C4—N8—Cu1vi | 131.67 (7) | N9—C8—H8A | 109.5 |
N7—N8—Cu1vi | 121.62 (7) | C9—C8—H8A | 109.5 |
C7—N9—N10 | 108.17 (8) | N9—C8—H8B | 109.5 |
C7—N9—C8 | 129.90 (8) | C9—C8—H8B | 109.5 |
N10—N9—C8 | 121.83 (8) | H8A—C8—H8B | 108.1 |
N11—N10—N9 | 106.94 (8) | N13—C9—C8 | 111.13 (8) |
N10—N11—N12 | 110.25 (8) | N13—C9—H9A | 109.4 |
C7—N12—N11 | 105.77 (8) | C8—C9—H9A | 109.4 |
C7—N12—Cu1vii | 130.45 (7) | N13—C9—H9B | 109.4 |
N11—N12—Cu1vii | 120.86 (6) | C8—C9—H9B | 109.4 |
C6—N13—C3 | 112.76 (7) | H9A—C9—H9B | 108.0 |
C6—N13—C9 | 114.58 (7) | O1—Cl1—O4 | 109.30 (6) |
C3—N13—C9 | 113.41 (8) | O1—Cl1—O3 | 109.62 (6) |
N4—C1—N1 | 107.78 (8) | O4—Cl1—O3 | 109.26 (5) |
N4—C1—H1 | 126.1 | O1—Cl1—O2 | 109.78 (7) |
N1—C1—H1 | 126.1 | O4—Cl1—O2 | 109.38 (6) |
N1—C2—C3 | 110.04 (7) | O3—Cl1—O2 | 109.49 (6) |
N1—C2—H2A | 109.7 | ||
C1—N1—N2—N3 | 0.07 (11) | N2—N1—C1—N4 | 0.06 (11) |
C2—N1—N2—N3 | 178.01 (8) | C2—N1—C1—N4 | −177.61 (9) |
N1—N2—N3—N4 | −0.17 (11) | C1—N1—C2—C3 | 60.09 (13) |
N2—N3—N4—C1 | 0.21 (11) | N2—N1—C2—C3 | −117.34 (9) |
N2—N3—N4—Cu1 | 174.39 (7) | C6—N13—C3—C2 | −140.77 (8) |
N8i—Cu1—N4—C1 | −113.40 (9) | C9—N13—C3—C2 | 86.92 (10) |
N8ii—Cu1—N4—C1 | 66.60 (9) | N1—C2—C3—N13 | 176.71 (8) |
N12iv—Cu1—N4—C1 | 158.29 (9) | N7—N8—C4—N5 | 0.55 (12) |
N12v—Cu1—N4—C1 | −21.71 (9) | Cu1vi—N8—C4—N5 | 176.20 (7) |
N8i—Cu1—N4—N3 | 73.91 (8) | N6—N5—C4—N8 | −0.77 (12) |
N8ii—Cu1—N4—N3 | −106.09 (8) | C5—N5—C4—N8 | 175.60 (9) |
N12iv—Cu1—N4—N3 | −14.40 (8) | C4—N5—C5—C6 | −115.73 (11) |
N12v—Cu1—N4—N3 | 165.60 (8) | N6—N5—C5—C6 | 60.24 (13) |
C4—N5—N6—N7 | 0.68 (15) | C3—N13—C6—C5 | −59.54 (10) |
C5—N5—N6—N7 | −176.05 (11) | C9—N13—C6—C5 | 72.20 (10) |
N5—N6—N7—N8 | −0.34 (16) | N5—C5—C6—N13 | 170.74 (7) |
N6—N7—N8—C4 | −0.13 (14) | C6—N13—C9—C8 | 79.11 (9) |
N6—N7—N8—Cu1vi | −176.32 (9) | C3—N13—C9—C8 | −149.46 (8) |
C7—N9—N10—N11 | −0.45 (11) | C7—N9—C8—C9 | −80.18 (12) |
C8—N9—N10—N11 | −177.15 (8) | N10—N9—C8—C9 | 95.73 (10) |
N9—N10—N11—N12 | 0.29 (11) | N13—C9—C8—N9 | 66.24 (10) |
N10—N11—N12—C7 | −0.02 (11) | N11—N12—C7—N9 | −0.27 (11) |
N10—N11—N12—Cu1vii | 162.54 (7) | Cu1vii—N12—C7—N9 | −160.50 (7) |
N3—N4—C1—N1 | −0.17 (11) | N10—N9—C7—N12 | 0.45 (11) |
Cu1—N4—C1—N1 | −173.74 (6) | C8—N9—C7—N12 | 176.79 (9) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y, z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) x, y+1, z; (vi) x, y, z−1; (vii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···N10viii | 0.99 | 2.60 | 3.366 (2) | 134 |
C4—H4···O2 | 0.95 | 2.33 | 3.191 (2) | 151 |
C5—H5B···O1 | 0.99 | 2.58 | 3.557 (2) | 168 |
C6—H6A···O4vii | 0.99 | 2.54 | 3.459 (2) | 154 |
C7—H7···O3vii | 0.95 | 2.41 | 3.305 (2) | 157 |
C8—H8A···N2ix | 0.99 | 2.47 | 3.361 (2) | 149 |
C8—H8B···O4vii | 0.99 | 2.50 | 3.440 (2) | 159 |
C8—H8B···O4x | 0.99 | 2.59 | 3.136 (2) | 115 |
Symmetry codes: (vii) x, y−1, z; (viii) −x, −y, −z+1; (ix) x−1, y, z; (x) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C9H15N13)2](ClO4)2 |
Mr | 873.12 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 8.5902 (3), 9.4932 (4), 11.8446 (5) |
α, β, γ (°) | 69.233 (1), 74.652 (1), 71.602 (1) |
V (Å3) | 844.19 (6) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.89 |
Crystal size (mm) | 0.60 × 0.38 × 0.35 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.86, 1.00 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18905, 5317, 5160 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.724 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.072, 1.07 |
No. of reflections | 5317 |
No. of parameters | 250 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.36 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SADABS and XPREP (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···N10i | 0.99 | 2.60 | 3.366 (2) | 133.8 |
C4—H4···O2 | 0.95 | 2.33 | 3.191 (2) | 151.2 |
C5—H5B···O1 | 0.99 | 2.58 | 3.557 (2) | 168.0 |
C6—H6A···O4ii | 0.99 | 2.54 | 3.459 (2) | 153.9 |
C7—H7···O3ii | 0.95 | 2.41 | 3.305 (2) | 157.3 |
C8—H8A···N2iii | 0.99 | 2.47 | 3.361 (2) | 148.8 |
C8—H8B···O4ii | 0.99 | 2.50 | 3.440 (2) | 158.6 |
C8—H8B···O4iv | 0.99 | 2.59 | 3.136 (2) | 115.0 |
Symmetry codes: (i) −x, −y, −z+1; (ii) x, y−1, z; (iii) x−1, y, z; (iv) −x, −y+1, −z. |
Footnotes
‡Present address: Tallinn University of Technology, Department of Chemistry, Chair of Organic Chemistry, Akadeemia tee 15, 12618 Tallinn, Estonia.
Acknowledgements
The authors wish to thank Ms Yuki Inagaki (Aoyama-Gakuin University) for her assistance during the preparation of the complex. FW is grateful to the Japan Society for the Promotion of Science for financial support through a fellowship. MH acknowledges support from a grant-in-aid for Young Scientists A (No. 20685011) and a High-Tech Research Center project for private universities with the matching fund subsidy of MEXT in Japan.
References
Absmeier, A., Bartel, M., Carbonera, C., Jameson, G. N. L., Weinberger, P., Caneschi, A., Mereiter, K., Létard, J.-F. & Linert, W. (2006). Chem. Eur. J. 12, 2235–2243. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bialonska, A., Bronisz, R. & Weselski, M. (2008). Inorg. Chem. 47, 4436–4438. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Grunert, M., Schweifer, J., Weinberger, P., Linert, W., Mereiter, K., Hilscher, G., Müller, M., Wiesinger, G. & van Koningsbruggen, P. J. (2004). Inorg. Chem. 43, 155–165. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hartdegen, V., Klapötke, T. M. & Sproll, S. M. (2009). Z. Naturforsch. Teil B, 64, 1535–1541. CAS Google Scholar
Kamiya, T. & Saito, Y. (1973). Offenlegungsschrift 2147023 (Patent). Google Scholar
Liu, P.-P., Cheng, A.-L., Yue, Q., Liu, N., Sun, W.-W. & Gao, E.-Q. (2008). Cryst. Growth Des. 8, 1668–1674. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Quesada, M., Kooijman, H., Gamez, P., Sanchez Costa, J., van Koningsbruggen, P. J., Weinberger, P., Reissner, M., Spek, A. L., Haasnoot, J. G. & Reedijk, J. (2007). Dalton Trans. pp. 5434–5440. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Werner, F., Mereiter, K., Tokuno, K., Inagaki, Y. & Hasegawa, M. (2009). Acta Cryst. E65, o2726–o2727. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
Yu, J.-H., Mereiter, K., Hassan, N., Feldgitscher, C. & Linert, W. (2008). Cryst. Growth Des. 8, 1535–1540. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polyfunctional molecules containing two or more 1H-tetrazol-1-yl groups linked by flexible spacer moieties are of considerable interest in supramolecular chemistry (e.g. Liu et al. 2008; Yu et al., 2008) and in the construction of new Fe2+-based spin-crossover complexes (e.g. Grunert et al., 2004; Absmeier et al., 2006; Quesada et al., 2007; Bialonska et al., 2008). In continuation of previous studies (Werner et al., 2009) the tris(2-(1H-tetrazol-1-yl)ethyl)-amine ligand (t3z) and the title compound were synthesized as described in the experimental section.
The title compound crystallizes in the triclinic space group P1 with one formula unit, [Cu(C9H15N13)2](ClO4)2, per unit cell. Copper lies on an inversion center (we selected x,y,z = 1/2, 1/2, 1/2 for Cu) and is coordinated by six symmetry equivalent t3z ligands via their 1H-tetrazole N4 atoms. The coordination figure about Cu (Fig. 1) is a Jahn-Teller distorted octahedron with four short Cu—N bonds (N4: 2 × 2.0259 (8) Å; N8: 2 × 2.0210 (8) Å) and two long Cu—N bonds (N12: 2 × 2.4098 (8) Å). The N—Cu—N angles are either 180° or deviate only by up to 2.20 (3)° from 90°. A view of the three-armed ligand with the three copper atoms bonded to it is shown in Fig. 2. The ligand adopts an unsymmetrical conformation with two ethyl groups in trans and one in gauche configuration (N1—C2—C3—N13 = 176.71 (8)°, N5—C5—C6—N13 = 170.74 (7)°, N9—C8—C9—N13 = 66.24 (10)°). It is obvious that the ligand is not chelating a copper atom but forms exclusively bridging links between each three of them. This is not unexpected because 1-alkyl-1H-tetrazoles coordinate transition metals generally via their N4 atoms (i.e. N4, N8 and N12 in the title compound) and the spacer length of four carbon plus one nitrogen atoms between two rigid tetrazole rings is too short to permit a reasonable chelation of a single metal centre. With this in mind it is clear that the structure of the title compound should be a coordination polymer. Instead of an expected three-dimensional network, the cationic part of the structure is an infinite two-dimensional coordination polymer extending parallel to (100), as shown in Figs. 3 and 4. The ClO4 anions are residing in pockets of this coordination polymer and are anchored via intra- as well as inter-layer C—H···O interactions (Table 1). Two of these interactions are depicted in Fig. 2.
Interestingly, the title compound turned out to be isostructural with [Cu(t3z)2](NO3)2 recently described by Hartdegen et al. (2009). This compound crystallizes similar to (I) in the triclinic space group P1 with a = 8.5850 (5) Å, b = 8.9606 (5) Å, c = 11.9532 (7) Å, α = 70.215 (5) Å, β = 76.919 (5)°, γ = 69.639 (5)°, V = 805.02 (8) Å3, and Z = 2 at T = 200 K. A view of this structure is presented in Fig. 5. After suitable origin selection the atomic coordinates of equivalent atomic positions of the [Cu(t3z)2] layers in the ClO4 and the NO3 salt differ for non-hydrogen atoms between 0 and 0.40 Å and on the average by 0.22 Å. The flat NO3 group is close in location to Cl1, O1, O2, and O3 in (I).