metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m399-m400

Poly[[bis­­{μ3-tris­­[2-(1H-tetra­zol-1-yl)eth­yl]amine}copper(II)] bis­­(perchlorate)]

aAoyama-Gakuin University, College of Science and Engineering, Department of Chemistry and Biological Science, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-8558, Japan, bVienna University of Technology, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060 Vienna, Austria, and cVienna University of Technology, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: hasemiki@chem.aoyama.ac.jp, kurt.mereiter@tuwien.ac.at

(Received 10 February 2010; accepted 9 March 2010; online 13 March 2010)

In the title compound, {[Cu(C9H15N13)2](ClO4)2}n, the Cu2+ cation lies on an inversion center and is coordinated by the tetra­zole N4 atoms of six symmetry-equivalent tris­[2-(1H-tetra­zol-1-yl)eth­yl]amine ligands (t3z) in the form of a Jahn–Teller-distorted octa­hedron with Cu—N bond distances of 2.0210 (8), 2.0259 (8) and 2.4098 (8) Å. The tertiary amine N atom is stereochemically inactive. The cationic part of the structure, viz. [Cu(t3z)2]2+, forms an infinite two-dimensional network parallel to (100), in pockets of which the perchlorate anions reside. The individual networks are partially inter­locked and held together by C—H⋯O inter­actions to the perchlorate anions and C—H⋯N inter­actions to tetra­zole N atoms.

Related literature

For a general procedure for the synthesis of tetra­zoles, see: Kamiya & Saito (1973[Kamiya, T. & Saito, Y. (1973). Offenlegungsschrift 2147023 (Patent).]). For the crystal structures of the t3z ligand and its complex with Cu(NO3)2, see: Hartdegen et al. (2009[Hartdegen, V., Klapötke, T. M. & Sproll, S. M. (2009). Z. Naturforsch. Teil B, 64, 1535-1541.]). For supra­molecular compounds made up of di-tetra­zolylalkanes, see: Liu et al. (2008[Liu, P.-P., Cheng, A.-L., Yue, Q., Liu, N., Sun, W.-W. & Gao, E.-Q. (2008). Cryst. Growth Des. 8, 1668-1674.]); Yu et al. (2008[Yu, J.-H., Mereiter, K., Hassan, N., Feldgitscher, C. & Linert, W. (2008). Cryst. Growth Des. 8, 1535-1540.]). For Fe2+ spin-crossover complexes based on di-tetra­zolylalkanes, see: Grunert et al. (2004[Grunert, M., Schweifer, J., Weinberger, P., Linert, W., Mereiter, K., Hilscher, G., Müller, M., Wiesinger, G. & van Koningsbruggen, P. J. (2004). Inorg. Chem. 43, 155-165.]); Absmeier et al. (2006[Absmeier, A., Bartel, M., Carbonera, C., Jameson, G. N. L., Weinberger, P., Caneschi, A., Mereiter, K., Létard, J.-F. & Linert, W. (2006). Chem. Eur. J. 12, 2235-2243.]); Quesada et al. (2007[Quesada, M., Kooijman, H., Gamez, P., Sanchez Costa, J., van Koningsbruggen, P. J., Weinberger, P., Reissner, M., Spek, A. L., Haasnoot, J. G. & Reedijk, J. (2007). Dalton Trans. pp. 5434-5440.]); Bialonska et al. (2008[Bialonska, A., Bronisz, R. & Weselski, M. (2008). Inorg. Chem. 47, 4436-4438.]). For a related structure, see: Werner et al. (2009[Werner, F., Mereiter, K., Tokuno, K., Inagaki, Y. & Hasegawa, M. (2009). Acta Cryst. E65, o2726-o2727.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H15N13)2](ClO4)2

  • Mr = 873.12

  • Triclinic, [P \overline 1]

  • a = 8.5902 (3) Å

  • b = 9.4932 (4) Å

  • c = 11.8446 (5) Å

  • α = 69.233 (1)°

  • β = 74.652 (1)°

  • γ = 71.602 (1)°

  • V = 844.19 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 100 K

  • 0.60 × 0.38 × 0.35 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.86, Tmax = 1.00

  • 18905 measured reflections

  • 5317 independent reflections

  • 5160 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.072

  • S = 1.07

  • 5317 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N10i 0.99 2.60 3.366 (2) 134
C4—H4⋯O2 0.95 2.33 3.191 (2) 151
C5—H5B⋯O1 0.99 2.58 3.557 (2) 168
C6—H6A⋯O4ii 0.99 2.54 3.459 (2) 154
C7—H7⋯O3ii 0.95 2.41 3.305 (2) 157
C8—H8A⋯N2iii 0.99 2.47 3.361 (2) 149
C8—H8B⋯O4ii 0.99 2.50 3.440 (2) 159
C8—H8B⋯O4iv 0.99 2.59 3.136 (2) 115
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y-1, z; (iii) x-1, y, z; (iv) -x, -y+1, -z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT, SADABS and XPREP (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Polyfunctional molecules containing two or more 1H-tetrazol-1-yl groups linked by flexible spacer moieties are of considerable interest in supramolecular chemistry (e.g. Liu et al. 2008; Yu et al., 2008) and in the construction of new Fe2+-based spin-crossover complexes (e.g. Grunert et al., 2004; Absmeier et al., 2006; Quesada et al., 2007; Bialonska et al., 2008). In continuation of previous studies (Werner et al., 2009) the tris(2-(1H-tetrazol-1-yl)ethyl)-amine ligand (t3z) and the title compound were synthesized as described in the experimental section.

The title compound crystallizes in the triclinic space group P1 with one formula unit, [Cu(C9H15N13)2](ClO4)2, per unit cell. Copper lies on an inversion center (we selected x,y,z = 1/2, 1/2, 1/2 for Cu) and is coordinated by six symmetry equivalent t3z ligands via their 1H-tetrazole N4 atoms. The coordination figure about Cu (Fig. 1) is a Jahn-Teller distorted octahedron with four short Cu—N bonds (N4: 2 × 2.0259 (8) Å; N8: 2 × 2.0210 (8) Å) and two long Cu—N bonds (N12: 2 × 2.4098 (8) Å). The N—Cu—N angles are either 180° or deviate only by up to 2.20 (3)° from 90°. A view of the three-armed ligand with the three copper atoms bonded to it is shown in Fig. 2. The ligand adopts an unsymmetrical conformation with two ethyl groups in trans and one in gauche configuration (N1—C2—C3—N13 = 176.71 (8)°, N5—C5—C6—N13 = 170.74 (7)°, N9—C8—C9—N13 = 66.24 (10)°). It is obvious that the ligand is not chelating a copper atom but forms exclusively bridging links between each three of them. This is not unexpected because 1-alkyl-1H-tetrazoles coordinate transition metals generally via their N4 atoms (i.e. N4, N8 and N12 in the title compound) and the spacer length of four carbon plus one nitrogen atoms between two rigid tetrazole rings is too short to permit a reasonable chelation of a single metal centre. With this in mind it is clear that the structure of the title compound should be a coordination polymer. Instead of an expected three-dimensional network, the cationic part of the structure is an infinite two-dimensional coordination polymer extending parallel to (100), as shown in Figs. 3 and 4. The ClO4 anions are residing in pockets of this coordination polymer and are anchored via intra- as well as inter-layer C—H···O interactions (Table 1). Two of these interactions are depicted in Fig. 2.

Interestingly, the title compound turned out to be isostructural with [Cu(t3z)2](NO3)2 recently described by Hartdegen et al. (2009). This compound crystallizes similar to (I) in the triclinic space group P1 with a = 8.5850 (5) Å, b = 8.9606 (5) Å, c = 11.9532 (7) Å, α = 70.215 (5) Å, β = 76.919 (5)°, γ = 69.639 (5)°, V = 805.02 (8) Å3, and Z = 2 at T = 200 K. A view of this structure is presented in Fig. 5. After suitable origin selection the atomic coordinates of equivalent atomic positions of the [Cu(t3z)2] layers in the ClO4 and the NO3 salt differ for non-hydrogen atoms between 0 and 0.40 Å and on the average by 0.22 Å. The flat NO3 group is close in location to Cl1, O1, O2, and O3 in (I).

Related literature top

For a general procedure for the synthesis of tetrazoles, see: Kamiya & Saito (1973). For the crystal structures of the t3z ligand and its complex with Cu(NO3)2, see: Hartdegen et al. (2009). For supramolecular compounds made up of di-tetrazolylalkanes, see: Liu et al. (2008); Yu et al. (2008). For Fe2+ spin-crossover complexes based on di-tetrazolylalkanes, see: Grunert et al. (2004); Absmeier et al. (2006); Quesada et al. (2007); Bialonska et al. (2008). For a related structure, see: Werner et al. (2009).

Experimental top

CAUTION! Tetrazoles and perchlorates are energetic compounds sensitive towards heat and impact. Proper precautions and care should be applied. The ligand tris(2-(1H-tetrazol-1-yl)ethyl)-amine, t3z, was prepared according to the general procedure of Kamiya & Saito (1973). A solution of 2.0 g tris(2-aminoethyl)-amine (13.7 mmol, Aldrich, 96%), 3.07 g sodium azide (47.2 mmol, Wako, min. 98.0%) and 9.12 g triethyl orthoformate (61.5 mmol, Sigma-Aldrich, 98%) in 120 ml glacial acetic acid (Kanto Chemical, 99.5%), was stirred for 3 h at a temperature of 343 - 353 K. After cooling to rt overnight the solvent was removed under reduced pressure. The solid residue was dissolved in 20 ml H2O, the solution was made alkaline (pH>11) by adding 100 ml of aqueous 4 N NaOH, and was then extracted with ethyl acetate. The combined organic layers were dried with sodium sulphate and the solvent was distilled off. The raw product was recrystallised from methanol yielding 178 mg (4.3%) of t3z. Elemental analysis (Micro Corder JM10, J-Science Lab): C (calculated 35.41%/found 35.85%), H (4.95/4.94), N (59.64/59.37). NMR (JEOL JNM-ECP 500): 1H(DMSO-d6) δ 3.01 (t, 6 H, CH2), 4.42 (t, 6H, CH2), 9.15 (s, 3 H, CH); 13C (DMSO-d6) δ 45.3 (CH2), 52.1 (CH2), 144.6 (CH).

Single crystals of the title complex, [Cu(t3z)2](ClO4)2, developed overnight from the combined solutions of 15.5 mg of Cu(ClO4)2.6H2O (0.041 mmol, Kanto Chemical) in 2.5 ml H2O and of 25.1 mg of t3z (0.082 mmol) in 5 ml H2O. Yield 28.2 mg (79%), blue needles (Fig. 6). Elemental analysis: C (calculated 24.76%/found 24.96%), H(3.46/3.52), N (41.71/42.62).

Refinement top

All H atoms were placed in calculated positions and thereafter treated as riding. Uiso(H) = 1.2Ueq(C) was used.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT, SADABS and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The coordination octahedron of Cu in (I) with incomplete t3z ligands. Displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Symmetry codes for the t3z fragments are given in italics.
[Figure 2] Fig. 2. Asymmetric unit of (I) viewed along approximately perpendicular to the plane C3—C6—C9 of the t3z ligand. Displacement ellipsoids drawn at the 50% probability level. Symmetry codes of Cu atoms in italics. Two C—H···O hydrogen bonds shown as red broken lines.
[Figure 3] Fig. 3. The two-dimensional coordination polymer in (I) extending parallel to (100) in a projection down the a-axis. H-atoms omitted for clarity.
[Figure 4] Fig. 4. The two-dimensional coordination polymer in (I) extending parallel to (100) in a projection along the b-axis. H-atoms omitted for clarity.
[Figure 5] Fig. 5. The structure of [Cu(t3z)2](NO3)2 (Hartdegen et al., 2009) in a view corresponding to Fig. 4 after shifting the coordinates by x' = x+1/2.
[Figure 6] Fig. 6. Crystals of [Cu(t3z)2](ClO4)2, as-grown from water.
Poly[[bis{µ3-tris[2-(1H-tetrazol-1-yl)ethyl]amine}copper(II)] bis(perchlorate)] top
Crystal data top
[Cu(C9H15N13)2](ClO4)2Z = 1
Mr = 873.12F(000) = 447
Triclinic, P1Dx = 1.717 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5902 (3) ÅCell parameters from 7355 reflections
b = 9.4932 (4) Åθ = 2.4–31.0°
c = 11.8446 (5) ŵ = 0.89 mm1
α = 69.233 (1)°T = 100 K
β = 74.652 (1)°Prism, blue
γ = 71.602 (1)°0.60 × 0.38 × 0.35 mm
V = 844.19 (6) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
5317 independent reflections
Radiation source: normal-focus sealed tube5160 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 31.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1212
Tmin = 0.86, Tmax = 1.00k = 1313
18905 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.303P]
where P = (Fo2 + 2Fc2)/3
5317 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu(C9H15N13)2](ClO4)2γ = 71.602 (1)°
Mr = 873.12V = 844.19 (6) Å3
Triclinic, P1Z = 1
a = 8.5902 (3) ÅMo Kα radiation
b = 9.4932 (4) ŵ = 0.89 mm1
c = 11.8446 (5) ÅT = 100 K
α = 69.233 (1)°0.60 × 0.38 × 0.35 mm
β = 74.652 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5317 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
5160 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 1.00Rint = 0.015
18905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.07Δρmax = 0.53 e Å3
5317 reflectionsΔρmin = 0.36 e Å3
250 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.01041 (5)
N10.42188 (10)0.17443 (9)0.37722 (7)0.01129 (14)
N20.58575 (11)0.11927 (10)0.38325 (8)0.01522 (16)
N30.62835 (11)0.21526 (10)0.41688 (8)0.01499 (15)
N40.49368 (10)0.33358 (9)0.43272 (7)0.01173 (14)
N50.23080 (11)0.34128 (10)0.15509 (8)0.01398 (15)
N60.19378 (16)0.26607 (14)0.21840 (9)0.0293 (2)
N70.27560 (15)0.30387 (14)0.32835 (9)0.0271 (2)
N80.36562 (11)0.40410 (10)0.33836 (8)0.01278 (15)
N90.05800 (10)0.15980 (9)0.33579 (7)0.01167 (14)
N100.01294 (11)0.20876 (10)0.45440 (8)0.01605 (16)
N110.09776 (11)0.32341 (11)0.50942 (8)0.01675 (16)
N120.24167 (11)0.35052 (10)0.42864 (8)0.01439 (15)
N130.19387 (10)0.11244 (9)0.17899 (7)0.01133 (14)
C10.36653 (12)0.30591 (11)0.40781 (9)0.01306 (16)
H10.25570.36870.41120.016*
C20.33577 (12)0.09397 (11)0.33747 (9)0.01269 (16)
H2A0.24190.06500.40260.015*
H2B0.41360.00250.32300.015*
C30.27031 (12)0.19884 (11)0.22024 (9)0.01354 (16)
H3A0.18700.29250.23570.016*
H3B0.36290.23270.15620.016*
C40.33503 (12)0.42623 (11)0.22978 (8)0.01214 (16)
H40.37970.49140.20880.015*
C50.16668 (12)0.31649 (11)0.02381 (9)0.01354 (16)
H5A0.04340.34620.00950.016*
H5B0.20540.38230.00630.016*
C60.22876 (12)0.14415 (11)0.04621 (9)0.01244 (16)
H6A0.17550.08110.02430.015*
H6B0.35050.11110.01950.015*
C70.21343 (12)0.24693 (11)0.32171 (9)0.01360 (16)
H70.29120.23650.24720.016*
C80.02967 (11)0.02595 (11)0.24720 (9)0.01210 (16)
H8A0.15140.01190.27490.015*
H8B0.00110.04550.16650.015*
C90.01822 (12)0.12133 (11)0.23426 (9)0.01177 (15)
H9A0.05250.21220.18250.014*
H9B0.00210.13600.31610.014*
Cl10.29526 (3)0.69679 (3)0.01464 (2)0.01452 (6)
O10.24265 (13)0.56699 (11)0.10773 (11)0.0356 (2)
O20.35608 (12)0.66142 (13)0.10061 (10)0.0316 (2)
O30.42605 (10)0.72936 (10)0.04944 (8)0.02103 (16)
O40.15606 (10)0.83116 (9)0.00141 (8)0.02162 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01374 (8)0.01175 (8)0.00772 (8)0.00612 (6)0.00085 (5)0.00332 (5)
N10.0123 (3)0.0121 (3)0.0110 (3)0.0033 (3)0.0029 (3)0.0042 (3)
N20.0129 (4)0.0158 (4)0.0190 (4)0.0018 (3)0.0050 (3)0.0074 (3)
N30.0136 (4)0.0153 (4)0.0181 (4)0.0028 (3)0.0040 (3)0.0070 (3)
N40.0125 (3)0.0134 (3)0.0104 (3)0.0041 (3)0.0019 (3)0.0041 (3)
N50.0185 (4)0.0172 (4)0.0095 (3)0.0102 (3)0.0011 (3)0.0035 (3)
N60.0471 (7)0.0421 (6)0.0132 (4)0.0352 (5)0.0045 (4)0.0111 (4)
N70.0437 (6)0.0366 (5)0.0132 (4)0.0315 (5)0.0040 (4)0.0091 (4)
N80.0164 (4)0.0140 (3)0.0101 (3)0.0072 (3)0.0023 (3)0.0031 (3)
N90.0117 (3)0.0124 (3)0.0110 (3)0.0044 (3)0.0009 (3)0.0029 (3)
N100.0147 (4)0.0186 (4)0.0122 (4)0.0052 (3)0.0001 (3)0.0022 (3)
N110.0160 (4)0.0192 (4)0.0129 (4)0.0049 (3)0.0015 (3)0.0026 (3)
N120.0149 (4)0.0151 (4)0.0128 (4)0.0031 (3)0.0029 (3)0.0040 (3)
N130.0128 (3)0.0144 (3)0.0091 (3)0.0069 (3)0.0012 (3)0.0036 (3)
C10.0133 (4)0.0136 (4)0.0144 (4)0.0036 (3)0.0026 (3)0.0063 (3)
C20.0162 (4)0.0120 (4)0.0126 (4)0.0052 (3)0.0049 (3)0.0037 (3)
C30.0180 (4)0.0141 (4)0.0117 (4)0.0083 (3)0.0051 (3)0.0019 (3)
C40.0144 (4)0.0132 (4)0.0099 (4)0.0059 (3)0.0017 (3)0.0029 (3)
C50.0174 (4)0.0154 (4)0.0083 (4)0.0066 (3)0.0001 (3)0.0035 (3)
C60.0148 (4)0.0138 (4)0.0096 (4)0.0055 (3)0.0006 (3)0.0038 (3)
C70.0134 (4)0.0141 (4)0.0128 (4)0.0025 (3)0.0017 (3)0.0045 (3)
C80.0114 (4)0.0120 (4)0.0130 (4)0.0036 (3)0.0035 (3)0.0022 (3)
C90.0126 (4)0.0120 (4)0.0111 (4)0.0043 (3)0.0009 (3)0.0036 (3)
Cl10.01424 (10)0.01325 (10)0.01848 (11)0.00314 (7)0.00498 (8)0.00616 (8)
O10.0351 (5)0.0191 (4)0.0465 (6)0.0144 (4)0.0063 (4)0.0039 (4)
O20.0295 (5)0.0418 (5)0.0332 (5)0.0009 (4)0.0087 (4)0.0285 (4)
O30.0167 (3)0.0320 (4)0.0204 (4)0.0103 (3)0.0048 (3)0.0099 (3)
O40.0195 (4)0.0178 (3)0.0286 (4)0.0029 (3)0.0097 (3)0.0106 (3)
Geometric parameters (Å, º) top
Cu1—N8i2.0210 (8)N13—C61.4579 (12)
Cu1—N8ii2.0210 (8)N13—C31.4617 (12)
Cu1—N42.0259 (8)N13—C91.4656 (12)
Cu1—N4iii2.0259 (8)C1—H10.9500
Cu1—N12iv2.4098 (8)C2—C31.5215 (13)
Cu1—N12v2.4098 (8)C2—H2A0.9900
N1—C11.3305 (12)C2—H2B0.9900
N1—N21.3500 (11)C3—H3A0.9900
N1—C21.4657 (12)C3—H3B0.9900
N2—N31.2915 (12)C4—H40.9500
N3—N41.3599 (12)C5—C61.5395 (13)
N4—C11.3249 (12)C5—H5A0.9900
N5—C41.3286 (12)C5—H5B0.9900
N5—N61.3500 (12)C6—H6A0.9900
N5—C51.4649 (12)C6—H6B0.9900
N6—N71.2892 (13)C7—H70.9500
N7—N81.3614 (12)C8—H8A0.9900
N8—C41.3210 (12)C8—H8B0.9900
N8—Cu1vi2.0209 (8)C9—C81.5248 (13)
N9—C71.3332 (12)C9—H9A0.9900
N9—N101.3505 (11)C9—H9B0.9900
N9—C81.4668 (12)Cl1—O11.4362 (9)
N10—N111.2982 (12)Cl1—O41.4409 (8)
N11—N121.3630 (12)Cl1—O31.4430 (8)
N12—C71.3262 (12)Cl1—O21.4442 (10)
N12—Cu1vii2.4098 (8)
N8i—Cu1—N8ii180.0C3—C2—H2A109.7
N8i—Cu1—N489.54 (3)N1—C2—H2B109.7
N8ii—Cu1—N490.46 (3)C3—C2—H2B109.7
N8i—Cu1—N4iii90.46 (3)H2A—C2—H2B108.2
N8ii—Cu1—N4iii89.54 (3)N13—C3—C2108.77 (7)
N4—Cu1—N4iii180.0N13—C3—H3A109.9
N8i—Cu1—N12iv88.33 (3)C2—C3—H3A109.9
N8ii—Cu1—N12iv91.67 (3)N13—C3—H3B109.9
N4—Cu1—N12iv92.20 (3)C2—C3—H3B109.9
N4iii—Cu1—N12iv87.80 (3)H3A—C3—H3B108.3
N8i—Cu1—N12v91.67 (3)N8—C4—N5108.02 (8)
N8ii—Cu1—N12v88.33 (3)N8—C4—H4126.0
N4—Cu1—N12v87.80 (3)N5—C4—H4126.0
N4iii—Cu1—N12v92.20 (3)N5—C5—C6109.51 (8)
N12iv—Cu1—N12v180.0N5—C5—H5A109.8
C1—N1—N2108.62 (8)C6—C5—H5A109.8
C1—N1—C2130.53 (8)N5—C5—H5B109.8
N2—N1—C2120.81 (8)C6—C5—H5B109.8
N3—N2—N1107.19 (8)H5A—C5—H5B108.2
N2—N3—N4109.54 (8)N13—C6—C5113.54 (8)
C1—N4—N3106.88 (8)N13—C6—H6A108.9
C1—N4—Cu1130.20 (7)C5—C6—H6A108.9
N3—N4—Cu1122.61 (6)N13—C6—H6B108.9
C4—N5—N6108.65 (8)C5—C6—H6B108.9
C4—N5—C5129.94 (8)H6A—C6—H6B107.7
N6—N5—C5121.31 (8)N12—C7—N9108.87 (9)
N7—N6—N5106.93 (9)N12—C7—H7125.6
N6—N7—N8109.82 (9)N9—C7—H7125.6
C4—N8—N7106.58 (8)N9—C8—C9110.61 (7)
C4—N8—Cu1vi131.67 (7)N9—C8—H8A109.5
N7—N8—Cu1vi121.62 (7)C9—C8—H8A109.5
C7—N9—N10108.17 (8)N9—C8—H8B109.5
C7—N9—C8129.90 (8)C9—C8—H8B109.5
N10—N9—C8121.83 (8)H8A—C8—H8B108.1
N11—N10—N9106.94 (8)N13—C9—C8111.13 (8)
N10—N11—N12110.25 (8)N13—C9—H9A109.4
C7—N12—N11105.77 (8)C8—C9—H9A109.4
C7—N12—Cu1vii130.45 (7)N13—C9—H9B109.4
N11—N12—Cu1vii120.86 (6)C8—C9—H9B109.4
C6—N13—C3112.76 (7)H9A—C9—H9B108.0
C6—N13—C9114.58 (7)O1—Cl1—O4109.30 (6)
C3—N13—C9113.41 (8)O1—Cl1—O3109.62 (6)
N4—C1—N1107.78 (8)O4—Cl1—O3109.26 (5)
N4—C1—H1126.1O1—Cl1—O2109.78 (7)
N1—C1—H1126.1O4—Cl1—O2109.38 (6)
N1—C2—C3110.04 (7)O3—Cl1—O2109.49 (6)
N1—C2—H2A109.7
C1—N1—N2—N30.07 (11)N2—N1—C1—N40.06 (11)
C2—N1—N2—N3178.01 (8)C2—N1—C1—N4177.61 (9)
N1—N2—N3—N40.17 (11)C1—N1—C2—C360.09 (13)
N2—N3—N4—C10.21 (11)N2—N1—C2—C3117.34 (9)
N2—N3—N4—Cu1174.39 (7)C6—N13—C3—C2140.77 (8)
N8i—Cu1—N4—C1113.40 (9)C9—N13—C3—C286.92 (10)
N8ii—Cu1—N4—C166.60 (9)N1—C2—C3—N13176.71 (8)
N12iv—Cu1—N4—C1158.29 (9)N7—N8—C4—N50.55 (12)
N12v—Cu1—N4—C121.71 (9)Cu1vi—N8—C4—N5176.20 (7)
N8i—Cu1—N4—N373.91 (8)N6—N5—C4—N80.77 (12)
N8ii—Cu1—N4—N3106.09 (8)C5—N5—C4—N8175.60 (9)
N12iv—Cu1—N4—N314.40 (8)C4—N5—C5—C6115.73 (11)
N12v—Cu1—N4—N3165.60 (8)N6—N5—C5—C660.24 (13)
C4—N5—N6—N70.68 (15)C3—N13—C6—C559.54 (10)
C5—N5—N6—N7176.05 (11)C9—N13—C6—C572.20 (10)
N5—N6—N7—N80.34 (16)N5—C5—C6—N13170.74 (7)
N6—N7—N8—C40.13 (14)C6—N13—C9—C879.11 (9)
N6—N7—N8—Cu1vi176.32 (9)C3—N13—C9—C8149.46 (8)
C7—N9—N10—N110.45 (11)C7—N9—C8—C980.18 (12)
C8—N9—N10—N11177.15 (8)N10—N9—C8—C995.73 (10)
N9—N10—N11—N120.29 (11)N13—C9—C8—N966.24 (10)
N10—N11—N12—C70.02 (11)N11—N12—C7—N90.27 (11)
N10—N11—N12—Cu1vii162.54 (7)Cu1vii—N12—C7—N9160.50 (7)
N3—N4—C1—N10.17 (11)N10—N9—C7—N120.45 (11)
Cu1—N4—C1—N1173.74 (6)C8—N9—C7—N12176.79 (9)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y+1, z; (vi) x, y, z1; (vii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N10viii0.992.603.366 (2)134
C4—H4···O20.952.333.191 (2)151
C5—H5B···O10.992.583.557 (2)168
C6—H6A···O4vii0.992.543.459 (2)154
C7—H7···O3vii0.952.413.305 (2)157
C8—H8A···N2ix0.992.473.361 (2)149
C8—H8B···O4vii0.992.503.440 (2)159
C8—H8B···O4x0.992.593.136 (2)115
Symmetry codes: (vii) x, y1, z; (viii) x, y, z+1; (ix) x1, y, z; (x) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C9H15N13)2](ClO4)2
Mr873.12
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.5902 (3), 9.4932 (4), 11.8446 (5)
α, β, γ (°)69.233 (1), 74.652 (1), 71.602 (1)
V3)844.19 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.60 × 0.38 × 0.35
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.86, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
18905, 5317, 5160
Rint0.015
(sin θ/λ)max1)0.724
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 1.07
No. of reflections5317
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.36

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SADABS and XPREP (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N10i0.992.603.366 (2)133.8
C4—H4···O20.952.333.191 (2)151.2
C5—H5B···O10.992.583.557 (2)168.0
C6—H6A···O4ii0.992.543.459 (2)153.9
C7—H7···O3ii0.952.413.305 (2)157.3
C8—H8A···N2iii0.992.473.361 (2)148.8
C8—H8B···O4ii0.992.503.440 (2)158.6
C8—H8B···O4iv0.992.593.136 (2)115.0
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x1, y, z; (iv) x, y+1, z.
 

Footnotes

Present address: Tallinn University of Technology, Department of Chemistry, Chair of Organic Chemistry, Akadeemia tee 15, 12618 Tallinn, Estonia.

Acknowledgements

The authors wish to thank Ms Yuki Inagaki (Aoyama-Gakuin University) for her assistance during the preparation of the complex. FW is grateful to the Japan Society for the Promotion of Science for financial support through a fellowship. MH acknowledges support from a grant-in-aid for Young Scientists A (No. 20685011) and a High-Tech Research Center project for private universities with the matching fund subsidy of MEXT in Japan.

References

First citationAbsmeier, A., Bartel, M., Carbonera, C., Jameson, G. N. L., Weinberger, P., Caneschi, A., Mereiter, K., Létard, J.-F. & Linert, W. (2006). Chem. Eur. J. 12, 2235–2243.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBialonska, A., Bronisz, R. & Weselski, M. (2008). Inorg. Chem. 47, 4436–4438.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2003). SMART, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrunert, M., Schweifer, J., Weinberger, P., Linert, W., Mereiter, K., Hilscher, G., Müller, M., Wiesinger, G. & van Koningsbruggen, P. J. (2004). Inorg. Chem. 43, 155–165.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHartdegen, V., Klapötke, T. M. & Sproll, S. M. (2009). Z. Naturforsch. Teil B, 64, 1535–1541.  CAS Google Scholar
First citationKamiya, T. & Saito, Y. (1973). Offenlegungsschrift 2147023 (Patent).  Google Scholar
First citationLiu, P.-P., Cheng, A.-L., Yue, Q., Liu, N., Sun, W.-W. & Gao, E.-Q. (2008). Cryst. Growth Des. 8, 1668–1674.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQuesada, M., Kooijman, H., Gamez, P., Sanchez Costa, J., van Koningsbruggen, P. J., Weinberger, P., Reissner, M., Spek, A. L., Haasnoot, J. G. & Reedijk, J. (2007). Dalton Trans. pp. 5434–5440.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWerner, F., Mereiter, K., Tokuno, K., Inagaki, Y. & Hasegawa, M. (2009). Acta Cryst. E65, o2726–o2727.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationYu, J.-H., Mereiter, K., Hassan, N., Feldgitscher, C. & Linert, W. (2008). Cryst. Growth Des. 8, 1535–1540.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m399-m400
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds