metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{1,1′-[2,2-Di­methyl­propane-1,3-diylbis(nitrilo­methyl­­idyne)]di-2-naphtholato}nickel(II)

aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan
*Correspondence e-mail: iuklodhi@yahoo.com

(Received 20 February 2010; accepted 26 February 2010; online 3 March 2010)

In the title Schiff base complex, [Ni(C27H24N2O2)], the NiII atom shows a slightly distorted square-planar geometry. The dihedral angle between the mean planes of the two aromatic rings is 6.16 (6)°. In the crystal, pairs of inter­molecular weak C—H⋯O hydrogen bonds link neighboring mol­ecules into a chain along the a axis. The crystal structure is further stabilized by two inter­molecular ππ inter­actions with centroid–centroid distances of 3.7252 (13) and 3.8323 (13) Å.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to Schiff base–metal complexes, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Blower et al. (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]); Elmali et al. (2000[Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423-424.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C27H24N2O2)]

  • Mr = 467.19

  • Triclinic, [P \overline 1]

  • a = 7.5016 (2) Å

  • b = 11.3583 (3) Å

  • c = 13.0173 (3) Å

  • α = 87.846 (2)°

  • β = 89.496 (1)°

  • γ = 76.196 (1)°

  • V = 1076.35 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 296 K

  • 0.45 × 0.23 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.680, Tmax = 0.897

  • 23454 measured reflections

  • 5293 independent reflections

  • 3802 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.02

  • 5293 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O2 1.8453 (12)
Ni1—O1 1.8501 (12)
Ni1—N1 1.8617 (14)
Ni1—N2 1.8632 (14)
O2—Ni1—O1 84.48 (5)
O1—Ni1—N1 92.08 (6)
O2—Ni1—N2 92.02 (6)
N1—Ni1—N2 91.51 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O1i 0.97 2.46 3.422 (2) 171
C14—H14B⋯O2ii 0.97 2.54 3.502 (2) 170
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of the Schiff bases have been studied extensively, and Ni(II) and Cu(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower et al., 1998). The asymmetric unit of the title compound, Fig. 1, comprises one unit of the Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The geometry around the Ni(II) atom is a slightly distorted square-planar which is coordinated by the N2O2 donor atoms of the desired potentially tetradenate Schiff base ligand (Table 1). Pairs of weak intermolecular C—H···O hydrogen bonds (Table 2) link neighboring molecules into a chain along the a-axis. The dihedral angle between the mean planes of the two aromatic rings is 6.16 (6)°. The crystal structure is further stabilized by the intermolecular ππ interactions [Cg1···Cg2i = 3.7252 (13) and Cg1···Cg2ii = 3.8323 (13) Å; Cg1 and Cg2 are the centroids of the C4/C5/C6/C7/C8/C9 and C17/C18/C19/C20/C21/C22 benzene rings].

Related literature top

For bond-length data, see: Allen et al. (1987). For background to Schiff base–metal complexes, see: Granovski et al. (1993); Blower et al. (1998); Elmali et al. (2000).

Experimental top

The title compound was synthesized by adding bis(naphthaldiminato)-2,3- propanediamine (2 mmol) to a solution of NiCl2. 6 H2O (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant red solution was filtered. Red single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

All hydrogen atoms were positioned geometrically with C-H = 0.93-0.97 Å and included in a riding model approximation with Uiso (H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The packing diagram of the title compound, showing a 1-D infinite chain along the a-axis by the intermolecular C—H···O interactions. The intermolecular h-bonds are shown as dashed lines.
{1,1'-[2,2-Dimethylpropane-1,3-diylbis(nitrilomethylidyne)]di-2- naphtholato}nickel(II) top
Crystal data top
[Ni(C27H24N2O2)]Z = 2
Mr = 467.19F(000) = 488
Triclinic, P1Dx = 1.442 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5016 (2) ÅCell parameters from 7107 reflections
b = 11.3583 (3) Åθ = 2.4–28.2°
c = 13.0173 (3) ŵ = 0.93 mm1
α = 87.846 (2)°T = 296 K
β = 89.496 (1)°Block, red
γ = 76.196 (1)°0.45 × 0.23 × 0.12 mm
V = 1076.35 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5293 independent reflections
Radiation source: fine-focus sealed tube3802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 910
Tmin = 0.680, Tmax = 0.897k = 1515
23454 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.2515P]
where P = (Fo2 + 2Fc2)/3
5293 reflections(Δ/σ)max = 0.002
289 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Ni(C27H24N2O2)]γ = 76.196 (1)°
Mr = 467.19V = 1076.35 (5) Å3
Triclinic, P1Z = 2
a = 7.5016 (2) ÅMo Kα radiation
b = 11.3583 (3) ŵ = 0.93 mm1
c = 13.0173 (3) ÅT = 296 K
α = 87.846 (2)°0.45 × 0.23 × 0.12 mm
β = 89.496 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5293 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3802 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.897Rint = 0.034
23454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
5293 reflectionsΔρmin = 0.28 e Å3
289 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25048 (3)1.00150 (2)0.002820 (16)0.03427 (8)
O10.22183 (18)1.16579 (11)0.01506 (9)0.0429 (3)
O20.20302 (18)1.04717 (11)0.13928 (9)0.0417 (3)
N10.30698 (19)0.96456 (13)0.13543 (11)0.0351 (3)
N20.26661 (19)0.83899 (13)0.02841 (10)0.0337 (3)
C10.1646 (2)1.22188 (16)0.09929 (14)0.0376 (4)
C20.1041 (3)1.35083 (18)0.09098 (15)0.0473 (5)
H2A0.11291.39090.02820.057*
C30.0340 (3)1.41573 (19)0.17329 (17)0.0528 (5)
H3A0.00491.49970.16550.063*
C40.0180 (3)1.35973 (19)0.27082 (15)0.0468 (5)
C50.0599 (3)1.4277 (2)0.35586 (19)0.0611 (6)
H5A0.10161.51140.34810.073*
C60.0747 (3)1.3721 (3)0.44875 (19)0.0672 (7)
H6A0.12481.41790.50430.081*
C70.0150 (3)1.2469 (3)0.46062 (16)0.0607 (6)
H7A0.02651.20910.52410.073*
C80.0610 (3)1.1785 (2)0.37951 (15)0.0503 (5)
H8A0.09881.09470.38870.060*
C90.0826 (2)1.23247 (18)0.28295 (14)0.0410 (4)
C100.1613 (2)1.16358 (17)0.19568 (13)0.0365 (4)
C110.2568 (2)1.03958 (17)0.20838 (13)0.0373 (4)
H11A0.28571.00990.27520.045*
C120.4315 (2)0.84660 (16)0.15985 (14)0.0395 (4)
H12A0.47240.84520.23050.047*
H12B0.53870.83690.11590.047*
C130.3433 (3)0.73967 (16)0.14614 (14)0.0402 (4)
C140.2095 (3)0.76569 (17)0.05547 (13)0.0405 (4)
H14A0.19800.68930.02880.049*
H14B0.08960.80790.07980.049*
C150.3060 (2)0.79094 (16)0.11691 (13)0.0357 (4)
H15A0.31790.70770.11980.043*
C160.3326 (2)0.85414 (16)0.21032 (13)0.0334 (4)
C170.4069 (2)0.78886 (16)0.30034 (13)0.0349 (4)
C180.4910 (3)0.66487 (18)0.29783 (15)0.0467 (5)
H18A0.50030.62100.23550.056*
C190.5602 (3)0.6063 (2)0.38503 (17)0.0543 (5)
H19A0.61470.52360.38100.065*
C200.5499 (3)0.6689 (2)0.47890 (16)0.0553 (6)
H20A0.59660.62840.53770.066*
C210.4713 (3)0.7895 (2)0.48451 (15)0.0490 (5)
H21A0.46450.83140.54770.059*
C220.3996 (2)0.85265 (17)0.39621 (13)0.0385 (4)
C230.3185 (3)0.97905 (18)0.40085 (14)0.0437 (4)
H23A0.30931.02090.46410.052*
C240.2541 (3)1.04042 (17)0.31591 (13)0.0418 (4)
H24A0.20271.12340.32190.050*
C250.2638 (2)0.98001 (16)0.21745 (13)0.0345 (4)
C260.2337 (3)0.7194 (2)0.24235 (16)0.0643 (6)
H26A0.13850.79100.25350.096*
H26B0.31410.70270.30080.096*
H26C0.17980.65190.23300.096*
C270.4978 (3)0.6277 (2)0.1266 (2)0.0680 (7)
H27A0.56470.64250.06620.102*
H27B0.44650.55920.11680.102*
H27C0.57930.61130.18460.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.04204 (14)0.03339 (13)0.02735 (13)0.00840 (9)0.00091 (9)0.00494 (9)
O10.0599 (8)0.0363 (7)0.0329 (7)0.0114 (6)0.0073 (6)0.0074 (5)
O20.0568 (8)0.0342 (7)0.0299 (6)0.0021 (6)0.0002 (6)0.0039 (5)
N10.0380 (8)0.0368 (8)0.0313 (8)0.0099 (7)0.0004 (6)0.0037 (6)
N20.0391 (8)0.0354 (8)0.0276 (7)0.0105 (6)0.0005 (6)0.0014 (6)
C10.0387 (9)0.0386 (10)0.0374 (10)0.0116 (8)0.0002 (7)0.0094 (8)
C20.0562 (12)0.0402 (11)0.0469 (11)0.0134 (9)0.0001 (9)0.0071 (9)
C30.0546 (12)0.0410 (11)0.0629 (14)0.0090 (10)0.0027 (10)0.0165 (10)
C40.0404 (10)0.0527 (12)0.0483 (12)0.0096 (9)0.0003 (8)0.0236 (10)
C50.0497 (12)0.0629 (15)0.0685 (16)0.0042 (11)0.0026 (11)0.0362 (13)
C60.0504 (13)0.096 (2)0.0538 (15)0.0083 (13)0.0074 (10)0.0419 (14)
C70.0506 (12)0.091 (2)0.0405 (12)0.0154 (13)0.0052 (9)0.0209 (12)
C80.0456 (11)0.0685 (14)0.0376 (11)0.0138 (10)0.0017 (8)0.0140 (10)
C90.0319 (9)0.0539 (12)0.0391 (10)0.0115 (8)0.0010 (7)0.0177 (9)
C100.0355 (9)0.0435 (10)0.0329 (9)0.0125 (8)0.0004 (7)0.0113 (8)
C110.0387 (9)0.0454 (11)0.0294 (9)0.0125 (8)0.0002 (7)0.0048 (8)
C120.0404 (10)0.0402 (10)0.0363 (10)0.0063 (8)0.0045 (8)0.0014 (8)
C130.0485 (11)0.0368 (10)0.0352 (10)0.0102 (9)0.0012 (8)0.0023 (8)
C140.0496 (11)0.0424 (10)0.0336 (10)0.0193 (9)0.0020 (8)0.0008 (8)
C150.0395 (9)0.0326 (9)0.0360 (10)0.0098 (8)0.0021 (7)0.0038 (8)
C160.0348 (9)0.0371 (10)0.0294 (9)0.0100 (8)0.0010 (7)0.0043 (7)
C170.0334 (9)0.0414 (10)0.0317 (9)0.0118 (8)0.0014 (7)0.0060 (8)
C180.0531 (12)0.0439 (11)0.0412 (11)0.0070 (9)0.0023 (9)0.0063 (9)
C190.0575 (13)0.0458 (12)0.0558 (14)0.0030 (10)0.0071 (10)0.0158 (10)
C200.0583 (13)0.0654 (15)0.0435 (12)0.0148 (11)0.0142 (10)0.0235 (11)
C210.0558 (12)0.0631 (14)0.0321 (10)0.0212 (11)0.0073 (9)0.0093 (9)
C220.0397 (10)0.0471 (11)0.0313 (9)0.0148 (8)0.0004 (7)0.0075 (8)
C230.0534 (11)0.0492 (12)0.0297 (9)0.0150 (9)0.0035 (8)0.0023 (8)
C240.0522 (11)0.0379 (10)0.0343 (10)0.0087 (9)0.0045 (8)0.0003 (8)
C250.0372 (9)0.0373 (10)0.0297 (9)0.0093 (8)0.0022 (7)0.0054 (7)
C260.0814 (16)0.0800 (17)0.0403 (12)0.0387 (14)0.0001 (11)0.0106 (11)
C270.0766 (16)0.0431 (13)0.0787 (17)0.0029 (12)0.0123 (13)0.0017 (11)
Geometric parameters (Å, º) top
Ni1—O21.8453 (12)C12—H12B0.9700
Ni1—O11.8501 (12)C13—C271.530 (3)
Ni1—N11.8617 (14)C13—C141.530 (2)
Ni1—N21.8632 (14)C13—C261.532 (3)
O1—C11.306 (2)C14—H14A0.9700
O2—C251.308 (2)C14—H14B0.9700
N1—C111.293 (2)C15—C161.426 (2)
N1—C121.464 (2)C15—H15A0.9300
N2—C151.295 (2)C16—C251.399 (2)
N2—C141.470 (2)C16—C171.446 (2)
C1—C101.399 (3)C17—C181.398 (3)
C1—C21.426 (3)C17—C221.414 (2)
C2—C31.354 (3)C18—C191.372 (3)
C2—H2A0.9300C18—H18A0.9300
C3—C41.416 (3)C19—C201.384 (3)
C3—H3A0.9300C19—H19A0.9300
C4—C91.414 (3)C20—C211.356 (3)
C4—C51.414 (3)C20—H20A0.9300
C5—C61.359 (3)C21—C221.411 (2)
C5—H5A0.9300C21—H21A0.9300
C6—C71.388 (3)C22—C231.419 (3)
C6—H6A0.9300C23—C241.353 (2)
C7—C81.372 (3)C23—H23A0.9300
C7—H7A0.9300C24—C251.425 (2)
C8—C91.403 (3)C24—H24A0.9300
C8—H8A0.9300C26—H26A0.9600
C9—C101.444 (2)C26—H26B0.9600
C10—C111.424 (3)C26—H26C0.9600
C11—H11A0.9300C27—H27A0.9600
C12—C131.532 (2)C27—H27B0.9600
C12—H12A0.9700C27—H27C0.9600
O2—Ni1—O184.48 (5)C14—C13—C12110.48 (14)
O2—Ni1—N1175.84 (6)C27—C13—C26110.90 (18)
O1—Ni1—N192.08 (6)C14—C13—C26107.42 (16)
O2—Ni1—N292.02 (6)C12—C13—C26110.25 (16)
O1—Ni1—N2175.83 (6)N2—C14—C13113.35 (14)
N1—Ni1—N291.51 (6)N2—C14—H14A108.9
C1—O1—Ni1125.17 (12)C13—C14—H14A108.9
C25—O2—Ni1125.40 (11)N2—C14—H14B108.9
C11—N1—C12118.80 (15)C13—C14—H14B108.9
C11—N1—Ni1124.30 (13)H14A—C14—H14B107.7
C12—N1—Ni1116.62 (11)N2—C15—C16125.85 (16)
C15—N2—C14118.61 (15)N2—C15—H15A117.1
C15—N2—Ni1124.48 (12)C16—C15—H15A117.1
C14—N2—Ni1116.51 (11)C25—C16—C15118.56 (15)
O1—C1—C10124.15 (17)C25—C16—C17120.04 (16)
O1—C1—C2116.95 (17)C15—C16—C17120.90 (16)
C10—C1—C2118.90 (17)C18—C17—C22117.34 (16)
C3—C2—C1120.88 (19)C18—C17—C16123.42 (16)
C3—C2—H2A119.6C22—C17—C16119.22 (16)
C1—C2—H2A119.6C19—C18—C17121.63 (19)
C2—C3—C4122.0 (2)C19—C18—H18A119.2
C2—C3—H3A119.0C17—C18—H18A119.2
C4—C3—H3A119.0C18—C19—C20120.7 (2)
C9—C4—C5119.5 (2)C18—C19—H19A119.6
C9—C4—C3118.73 (17)C20—C19—H19A119.6
C5—C4—C3121.8 (2)C21—C20—C19119.53 (19)
C6—C5—C4120.9 (2)C21—C20—H20A120.2
C6—C5—H5A119.6C19—C20—H20A120.2
C4—C5—H5A119.6C20—C21—C22121.19 (19)
C5—C6—C7119.9 (2)C20—C21—H21A119.4
C5—C6—H6A120.0C22—C21—H21A119.4
C7—C6—H6A120.0C21—C22—C17119.57 (18)
C8—C7—C6120.6 (2)C21—C22—C23121.76 (18)
C8—C7—H7A119.7C17—C22—C23118.68 (16)
C6—C7—H7A119.7C24—C23—C22121.89 (17)
C7—C8—C9121.3 (2)C24—C23—H23A119.1
C7—C8—H8A119.3C22—C23—H23A119.1
C9—C8—H8A119.3C23—C24—C25121.08 (18)
C8—C9—C4117.77 (18)C23—C24—H24A119.5
C8—C9—C10122.98 (19)C25—C24—H24A119.5
C4—C9—C10119.22 (18)O2—C25—C16124.25 (16)
C1—C10—C11118.64 (16)O2—C25—C24116.85 (16)
C1—C10—C9120.05 (18)C16—C25—C24118.88 (16)
C11—C10—C9120.84 (17)C13—C26—H26A109.5
N1—C11—C10125.94 (17)C13—C26—H26B109.5
N1—C11—H11A117.0H26A—C26—H26B109.5
C10—C11—H11A117.0C13—C26—H26C109.5
N1—C12—C13113.23 (14)H26A—C26—H26C109.5
N1—C12—H12A108.9H26B—C26—H26C109.5
C13—C12—H12A108.9C13—C27—H27A109.5
N1—C12—H12B108.9C13—C27—H27B109.5
C13—C12—H12B108.9H27A—C27—H27B109.5
H12A—C12—H12B107.7C13—C27—H27C109.5
C27—C13—C14110.24 (16)H27A—C27—H27C109.5
C27—C13—C12107.57 (17)H27B—C27—H27C109.5
O2—Ni1—O1—C1151.46 (15)C9—C10—C11—N1168.37 (17)
N1—Ni1—O1—C130.88 (15)C11—N1—C12—C13114.41 (18)
O1—Ni1—O2—C25151.58 (14)Ni1—N1—C12—C1371.51 (17)
N2—Ni1—O2—C2530.68 (14)N1—C12—C13—C27155.32 (16)
O1—Ni1—N1—C1124.19 (15)N1—C12—C13—C1435.0 (2)
N2—Ni1—N1—C11153.69 (15)N1—C12—C13—C2683.63 (19)
O1—Ni1—N1—C12149.53 (12)C15—N2—C14—C13115.85 (17)
N2—Ni1—N1—C1232.58 (12)Ni1—N2—C14—C1371.04 (18)
O2—Ni1—N2—C1523.74 (14)C27—C13—C14—N285.4 (2)
N1—Ni1—N2—C15154.06 (14)C12—C13—C14—N233.4 (2)
O2—Ni1—N2—C14148.93 (12)C26—C13—C14—N2153.68 (16)
N1—Ni1—N2—C1433.28 (12)C14—N2—C15—C16168.55 (16)
Ni1—O1—C1—C1017.2 (2)Ni1—N2—C15—C164.0 (2)
Ni1—O1—C1—C2163.52 (13)N2—C15—C16—C2518.9 (3)
O1—C1—C2—C3176.67 (17)N2—C15—C16—C17169.17 (16)
C10—C1—C2—C34.0 (3)C25—C16—C17—C18174.81 (17)
C1—C2—C3—C40.3 (3)C15—C16—C17—C1813.4 (3)
C2—C3—C4—C92.0 (3)C25—C16—C17—C223.5 (2)
C2—C3—C4—C5178.28 (19)C15—C16—C17—C22168.25 (16)
C9—C4—C5—C60.5 (3)C22—C17—C18—C191.5 (3)
C3—C4—C5—C6179.7 (2)C16—C17—C18—C19179.85 (18)
C4—C5—C6—C70.8 (3)C17—C18—C19—C200.4 (3)
C5—C6—C7—C80.7 (3)C18—C19—C20—C210.3 (3)
C6—C7—C8—C90.8 (3)C19—C20—C21—C220.0 (3)
C7—C8—C9—C42.0 (3)C20—C21—C22—C171.1 (3)
C7—C8—C9—C10179.83 (18)C20—C21—C22—C23179.44 (19)
C5—C4—C9—C81.9 (3)C18—C17—C22—C211.8 (2)
C3—C4—C9—C8178.36 (18)C16—C17—C22—C21179.80 (16)
C5—C4—C9—C10179.77 (17)C18—C17—C22—C23178.73 (17)
C3—C4—C9—C100.5 (3)C16—C17—C22—C230.3 (2)
O1—C1—C10—C1112.5 (3)C21—C22—C23—C24178.18 (18)
C2—C1—C10—C11166.77 (16)C17—C22—C23—C242.3 (3)
O1—C1—C10—C9175.30 (16)C22—C23—C24—C250.5 (3)
C2—C1—C10—C95.5 (2)Ni1—O2—C25—C1617.6 (2)
C8—C9—C10—C1174.51 (17)Ni1—O2—C25—C24163.95 (12)
C4—C9—C10—C13.3 (2)C15—C16—C25—O211.7 (3)
C8—C9—C10—C1113.4 (3)C17—C16—C25—O2176.29 (15)
C4—C9—C10—C11168.79 (16)C15—C16—C25—C24166.67 (16)
C12—N1—C11—C10169.46 (16)C17—C16—C25—C245.3 (2)
Ni1—N1—C11—C104.1 (2)C23—C24—C25—O2178.13 (17)
C1—C10—C11—N119.5 (3)C23—C24—C25—C163.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O1i0.972.463.422 (2)171
C14—H14B···O2ii0.972.543.502 (2)170
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Ni(C27H24N2O2)]
Mr467.19
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5016 (2), 11.3583 (3), 13.0173 (3)
α, β, γ (°)87.846 (2), 89.496 (1), 76.196 (1)
V3)1076.35 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.45 × 0.23 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.680, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
23454, 5293, 3802
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.02
No. of reflections5293
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Ni1—O21.8453 (12)Ni1—N11.8617 (14)
Ni1—O11.8501 (12)Ni1—N21.8632 (14)
O2—Ni1—O184.48 (5)O2—Ni1—N292.02 (6)
O1—Ni1—N192.08 (6)N1—Ni1—N291.51 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O1i0.97002.46003.422 (2)171.00
C14—H14B···O2ii0.97002.54003.502 (2)170.00
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z.
 

Footnotes

Thomson Reuters Researcher ID: A-5471-2009. Additional corresponding author, e-mail: zsrkk@yahoo.com.

Acknowledgements

HK and RK thank PNU for financial support and RK also thanks Islamic Azad University. IUK thanks GC University of Lahore, Pakistan, for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds