organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-N-(4-methyl­benzo­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 21 February 2010; accepted 26 February 2010; online 6 March 2010)

The asymmetric unit of the title compound, C15H15NO3S, contains two independent mol­ecules. The conformations of the N—C bonds in the C—SO2—NH—C(O) segments have gauche torsions with respect to the SO bonds. Further, the mol­ecules are twisted at the S atoms with torsion angles of −53.1 (2) and 61.2 (2)° in the two mol­ecules. The dihedral angles between the sulfonyl benzene rings and the —SO2—NH—C—O segments are 86.0 (1) and 87.9 (1)°. Furthermore, the dihedral angles between the sulfonyl and the benzoyl benzene rings are 88.1 (1) and 83.5 (1)° in the two mol­ecules. In the crystal, mol­ecules are linked by N—H⋯O(S) hydrogen bonds.

Related literature

For background to our study of the effect of ring and the side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.]; 2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o433.]); Suchetan et al. (2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o327.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO3S

  • Mr = 289.34

  • Triclinic, [P \overline 1]

  • a = 10.9085 (8) Å

  • b = 12.1392 (9) Å

  • c = 12.3140 (9) Å

  • α = 118.846 (8)°

  • β = 95.965 (6)°

  • γ = 90.136 (6)°

  • V = 1417.98 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 299 K

  • 0.48 × 0.44 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD Detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.896, Tmax = 0.972

  • 9669 measured reflections

  • 5139 independent reflections

  • 4302 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.05

  • 5139 reflections

  • 371 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.82 (2) 2.18 (2) 2.978 (2) 165 (2)
N2—H2N⋯O2i 0.83 (2) 2.20 (2) 3.022 (2) 171 (2)
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009; 2010; Suchetan et al., 2010), the structure of 2-methyl-N-(4-methylbenzoyl)benzenesulfonamide (I) has been determined. The asymmetric unit of the structure contains two independent molecules (Fig. 1). The conformations of the N—C bonds in the C—SO2—NH—C(O) segments have gauche torsions with respect to the SO bonds. Further, the conformations of the N—H bonds in the C—SO2—NH—C(O) segments are anti to the C=O bonds, similar to those observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009), 2-methyl-N-(3-methylbenzoyl)benzenesulfonamide (III) (Gowda et al., 2010) and N-(4-chlorobenzoyl)4-methyl- benzenesulfonamide (IV) (Suchetan et al., 2010).

The molecules are twisted at the S atoms with the torsion angles of -53.1 (2)° and 61.2 (2)° in the two independent molecules. The dihedral angles between the sulfonyl benzene rings and the —SO2—NH—C—O segments are 86.0 (1)° (molecule 1) and 87.9 (1)° (molecule 2), compared to the values of 86.5 (1) in (II), 83.1 (1)° in (III), and 83.6 (1)° (molecule 1) and 81.0 (1)° (molecule 2) in (IV). Furthermore, the dihedral angles between the benzene rings are 88.1 (1)° (molecule 1) and 83.5 (1)° (molecule 2) in (I), compared to the values of 80.3 (1) in (II), 74.8 (1)° in (III), and 81.0 (1)° (molecule 1) and 76.3 (1)° (molecule 2) in (IV). The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For background to our study of the effect of ring and the side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2009; 2010); Suchetan et al. (2010).

Experimental top

The title compound was prepared by refluxing a mixture of 4-methylbenzoic acid, 2-methylbenzenesulfonamide and phosphorous oxy chloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid, 2-methyl-N-(4-methylbenzoyl)benzenesulfonamide obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried compound was recrystallized to the constant melting point. Plate like colorless single crystals of the title compound used in X-ray diffraction studies were grown from a slow evaporation of its toluene solution at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
2-Methyl-N-(4-methylbenzoyl)benzenesulfonamide top
Crystal data top
C15H15NO3SZ = 4
Mr = 289.34F(000) = 608
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9085 (8) ÅCell parameters from 5092 reflections
b = 12.1392 (9) Åθ = 2.5–27.9°
c = 12.3140 (9) ŵ = 0.23 mm1
α = 118.846 (8)°T = 299 K
β = 95.965 (6)°Plate, colourless
γ = 90.136 (6)°0.48 × 0.44 × 0.12 mm
V = 1417.98 (18) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD Detector
5139 independent reflections
Radiation source: fine-focus sealed tube4302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Rotation method data acquisition using ω and phi scansθmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1013
Tmin = 0.896, Tmax = 0.972k = 1414
9669 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.5865P]
where P = (Fo2 + 2Fc2)/3
5139 reflections(Δ/σ)max = 0.020
371 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.34 e Å3
Crystal data top
C15H15NO3Sγ = 90.136 (6)°
Mr = 289.34V = 1417.98 (18) Å3
Triclinic, P1Z = 4
a = 10.9085 (8) ÅMo Kα radiation
b = 12.1392 (9) ŵ = 0.23 mm1
c = 12.3140 (9) ÅT = 299 K
α = 118.846 (8)°0.48 × 0.44 × 0.12 mm
β = 95.965 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD Detector
5139 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
4302 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.972Rint = 0.013
9669 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
5139 reflectionsΔρmin = 0.34 e Å3
371 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26147 (4)0.15226 (4)0.32500 (4)0.03838 (13)
O10.18593 (13)0.11786 (14)0.39241 (14)0.0545 (4)
O20.29413 (13)0.05502 (12)0.20811 (12)0.0494 (4)
O30.19313 (14)0.40481 (14)0.48858 (12)0.0534 (4)
N10.19457 (15)0.25319 (14)0.28899 (14)0.0391 (4)
H1N0.1743 (19)0.2237 (19)0.2135 (15)0.047*
C10.39707 (17)0.23373 (17)0.42492 (17)0.0390 (4)
C20.49086 (19)0.2806 (2)0.38683 (19)0.0498 (5)
C30.5950 (2)0.3360 (2)0.4727 (2)0.0669 (7)
H30.66000.36790.45070.080*
C40.6055 (2)0.3455 (3)0.5890 (2)0.0717 (7)
H40.67700.38290.64390.086*
C50.5115 (2)0.3006 (2)0.6245 (2)0.0653 (6)
H50.51870.30740.70350.078*
C60.4062 (2)0.2453 (2)0.54305 (18)0.0487 (5)
H60.34120.21570.56710.058*
C70.16838 (17)0.37305 (17)0.37906 (16)0.0381 (4)
C80.11559 (17)0.45739 (16)0.33317 (16)0.0374 (4)
C90.07548 (18)0.57174 (18)0.42108 (19)0.0453 (5)
H90.07990.59100.50430.054*
C100.0294 (2)0.65630 (18)0.3854 (2)0.0524 (5)
H100.00130.73140.44480.063*
C110.0240 (2)0.63239 (19)0.2635 (2)0.0528 (5)
C120.0645 (2)0.5187 (2)0.1765 (2)0.0560 (6)
H120.06230.50100.09390.067*
C130.1078 (2)0.43154 (18)0.20990 (18)0.0468 (5)
H130.13210.35480.14940.056*
C140.4853 (3)0.2737 (3)0.2615 (2)0.0750 (8)
H14A0.41840.32080.25210.090*
H14B0.47240.18740.19710.090*
H14C0.56160.30860.25520.090*
C150.0234 (3)0.7268 (2)0.2253 (3)0.0799 (8)
H15A0.04100.79000.24550.096*
H15B0.09250.76570.26900.096*
H15C0.04890.68460.13690.096*
S20.86754 (5)0.02893 (4)0.09718 (4)0.03994 (14)
O40.82660 (15)0.14503 (12)0.01285 (12)0.0534 (4)
O50.99533 (14)0.00545 (16)0.13898 (14)0.0603 (4)
O60.87360 (17)0.24170 (13)0.25506 (13)0.0618 (4)
N20.81576 (16)0.07925 (14)0.06276 (14)0.0394 (4)
H2N0.7862 (19)0.0503 (19)0.0110 (15)0.047*
C160.78770 (19)0.01250 (16)0.22121 (16)0.0394 (4)
C170.6610 (2)0.04204 (19)0.2040 (2)0.0492 (5)
C180.6095 (3)0.0268 (2)0.3090 (3)0.0672 (7)
H180.52520.04480.30210.081*
C190.6791 (3)0.0136 (2)0.4219 (2)0.0740 (8)
H190.64160.02250.48990.089*
C200.8024 (3)0.0410 (2)0.4359 (2)0.0670 (7)
H200.84910.06720.51280.080*
C210.8582 (2)0.02962 (18)0.33558 (18)0.0504 (5)
H210.94220.05010.34480.060*
C220.82979 (18)0.20707 (17)0.14844 (17)0.0410 (4)
C230.78477 (18)0.29425 (17)0.10290 (17)0.0398 (4)
C240.7648 (2)0.41595 (19)0.1922 (2)0.0531 (5)
H240.78030.43980.27660.064*
C250.7219 (2)0.5015 (2)0.1563 (2)0.0610 (6)
H250.70760.58230.21730.073*
C260.6995 (2)0.4704 (2)0.0320 (2)0.0567 (6)
C270.7227 (2)0.3500 (2)0.0563 (2)0.0609 (6)
H270.71060.32760.14040.073*
C280.7637 (2)0.26236 (19)0.02221 (19)0.0513 (5)
H280.77720.18140.08340.062*
C290.5796 (2)0.0874 (3)0.0826 (2)0.0685 (7)
H29A0.59120.03080.05020.082*
H29B0.49490.09010.09620.082*
H29C0.60080.17020.02380.082*
C300.6541 (3)0.5661 (3)0.0056 (3)0.0815 (8)
H30A0.58040.59980.03170.098*
H30B0.63650.52620.09490.098*
H30C0.71660.63310.02250.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0424 (3)0.0321 (2)0.0363 (2)0.00049 (18)0.00347 (19)0.01476 (19)
O10.0526 (9)0.0604 (9)0.0576 (9)0.0133 (7)0.0069 (7)0.0368 (8)
O20.0572 (9)0.0328 (7)0.0423 (7)0.0068 (6)0.0058 (6)0.0078 (6)
O30.0694 (10)0.0543 (9)0.0313 (7)0.0173 (7)0.0115 (6)0.0156 (6)
N10.0493 (9)0.0338 (8)0.0276 (8)0.0066 (7)0.0003 (7)0.0106 (7)
C10.0397 (10)0.0329 (9)0.0374 (10)0.0011 (7)0.0001 (8)0.0123 (8)
C20.0490 (12)0.0469 (11)0.0472 (11)0.0026 (9)0.0048 (9)0.0182 (9)
C30.0514 (13)0.0710 (16)0.0677 (16)0.0165 (12)0.0002 (11)0.0269 (13)
C40.0541 (14)0.0795 (17)0.0605 (15)0.0170 (12)0.0168 (12)0.0221 (13)
C50.0617 (15)0.0782 (17)0.0444 (12)0.0048 (12)0.0100 (11)0.0238 (12)
C60.0490 (12)0.0526 (12)0.0400 (11)0.0006 (9)0.0003 (9)0.0201 (9)
C70.0394 (10)0.0374 (10)0.0324 (10)0.0041 (8)0.0083 (8)0.0121 (8)
C80.0383 (10)0.0315 (9)0.0358 (9)0.0022 (7)0.0060 (7)0.0108 (8)
C90.0480 (11)0.0370 (10)0.0410 (10)0.0031 (8)0.0119 (9)0.0099 (8)
C100.0547 (12)0.0299 (10)0.0612 (14)0.0085 (9)0.0158 (10)0.0113 (9)
C110.0576 (13)0.0351 (10)0.0616 (14)0.0066 (9)0.0018 (10)0.0213 (10)
C120.0790 (16)0.0432 (11)0.0425 (11)0.0102 (11)0.0011 (11)0.0192 (9)
C130.0642 (13)0.0321 (10)0.0360 (10)0.0107 (9)0.0056 (9)0.0100 (8)
C140.0736 (17)0.093 (2)0.0635 (16)0.0173 (15)0.0087 (13)0.0424 (15)
C150.099 (2)0.0528 (14)0.089 (2)0.0193 (14)0.0012 (16)0.0377 (14)
S20.0519 (3)0.0363 (2)0.0295 (2)0.0112 (2)0.00847 (19)0.01357 (19)
O40.0870 (11)0.0333 (7)0.0325 (7)0.0155 (7)0.0102 (7)0.0095 (6)
O50.0500 (9)0.0811 (11)0.0515 (9)0.0161 (8)0.0107 (7)0.0325 (8)
O60.1017 (13)0.0407 (8)0.0329 (8)0.0081 (8)0.0062 (8)0.0127 (6)
N20.0574 (10)0.0313 (8)0.0256 (7)0.0011 (7)0.0023 (7)0.0112 (6)
C160.0574 (12)0.0287 (9)0.0347 (9)0.0100 (8)0.0114 (8)0.0164 (8)
C170.0594 (13)0.0407 (11)0.0552 (12)0.0117 (9)0.0148 (10)0.0277 (10)
C180.0759 (17)0.0620 (15)0.0802 (18)0.0143 (12)0.0339 (14)0.0427 (14)
C190.117 (2)0.0593 (15)0.0607 (16)0.0138 (15)0.0431 (16)0.0346 (13)
C200.113 (2)0.0522 (13)0.0367 (12)0.0010 (14)0.0115 (13)0.0217 (10)
C210.0743 (15)0.0393 (10)0.0363 (10)0.0023 (10)0.0055 (10)0.0176 (9)
C220.0527 (11)0.0329 (9)0.0318 (10)0.0041 (8)0.0071 (8)0.0110 (8)
C230.0464 (11)0.0326 (9)0.0383 (10)0.0030 (8)0.0080 (8)0.0151 (8)
C240.0708 (14)0.0391 (11)0.0442 (11)0.0037 (10)0.0172 (10)0.0141 (9)
C250.0727 (16)0.0378 (11)0.0713 (16)0.0128 (10)0.0285 (13)0.0216 (11)
C260.0493 (12)0.0495 (12)0.0794 (16)0.0028 (10)0.0068 (11)0.0377 (12)
C270.0815 (17)0.0501 (13)0.0525 (13)0.0046 (11)0.0090 (12)0.0293 (11)
C280.0741 (15)0.0347 (10)0.0398 (11)0.0019 (10)0.0001 (10)0.0153 (9)
C290.0557 (14)0.0772 (17)0.0816 (18)0.0049 (12)0.0001 (12)0.0473 (15)
C300.0750 (18)0.0709 (17)0.119 (2)0.0144 (14)0.0097 (16)0.0620 (18)
Geometric parameters (Å, º) top
S1—O11.4204 (15)S2—O51.4131 (16)
S1—O21.4357 (14)S2—O41.4318 (14)
S1—N11.6407 (16)S2—N21.6474 (16)
S1—C11.7665 (18)S2—C161.7648 (18)
O3—C71.209 (2)O6—C221.210 (2)
N1—C71.393 (2)N2—C221.389 (2)
N1—H1N0.823 (15)N2—H2N0.826 (15)
C1—C61.385 (3)C16—C211.384 (3)
C1—C21.394 (3)C16—C171.395 (3)
C2—C31.386 (3)C17—C181.395 (3)
C2—C141.500 (3)C17—C291.501 (3)
C3—C41.372 (4)C18—C191.368 (4)
C3—H30.9300C18—H180.9300
C4—C51.364 (4)C19—C201.358 (4)
C4—H40.9300C19—H190.9300
C5—C61.372 (3)C20—C211.381 (3)
C5—H50.9300C20—H200.9300
C6—H60.9300C21—H210.9300
C7—C81.481 (3)C22—C231.481 (3)
C8—C131.387 (3)C23—C241.387 (3)
C8—C91.393 (2)C23—C281.388 (3)
C9—C101.375 (3)C24—C251.376 (3)
C9—H90.9300C24—H240.9300
C10—C111.379 (3)C25—C261.382 (3)
C10—H100.9300C25—H250.9300
C11—C121.386 (3)C26—C271.381 (3)
C11—C151.508 (3)C26—C301.511 (3)
C12—C131.376 (3)C27—C281.379 (3)
C12—H120.9300C27—H270.9300
C13—H130.9300C28—H280.9300
C14—H14A0.9600C29—H29A0.9600
C14—H14B0.9600C29—H29B0.9600
C14—H14C0.9600C29—H29C0.9600
C15—H15A0.9600C30—H30A0.9600
C15—H15B0.9600C30—H30B0.9600
C15—H15C0.9600C30—H30C0.9600
O1—S1—O2118.37 (9)O5—S2—O4118.33 (9)
O1—S1—N1110.91 (9)O5—S2—N2110.40 (9)
O2—S1—N1103.89 (8)O4—S2—N2103.58 (8)
O1—S1—C1108.05 (9)O5—S2—C16108.84 (9)
O2—S1—C1109.46 (9)O4—S2—C16109.58 (9)
N1—S1—C1105.41 (8)N2—S2—C16105.28 (8)
C7—N1—S1122.55 (13)C22—N2—S2122.31 (13)
C7—N1—H1N124.3 (15)C22—N2—H2N124.1 (15)
S1—N1—H1N113.0 (15)S2—N2—H2N113.5 (15)
C6—C1—C2121.80 (18)C21—C16—C17122.16 (19)
C6—C1—S1115.72 (15)C21—C16—S2116.18 (16)
C2—C1—S1122.45 (15)C17—C16—S2121.65 (15)
C3—C2—C1116.1 (2)C18—C17—C16116.0 (2)
C3—C2—C14119.5 (2)C18—C17—C29119.4 (2)
C1—C2—C14124.38 (19)C16—C17—C29124.64 (19)
C4—C3—C2122.3 (2)C19—C18—C17122.0 (3)
C4—C3—H3118.9C19—C18—H18119.0
C2—C3—H3118.9C17—C18—H18119.0
C5—C4—C3120.4 (2)C20—C19—C18120.8 (2)
C5—C4—H4119.8C20—C19—H19119.6
C3—C4—H4119.8C18—C19—H19119.6
C4—C5—C6119.6 (2)C19—C20—C21119.8 (2)
C4—C5—H5120.2C19—C20—H20120.1
C6—C5—H5120.2C21—C20—H20120.1
C5—C6—C1119.8 (2)C20—C21—C16119.3 (2)
C5—C6—H6120.1C20—C21—H21120.4
C1—C6—H6120.1C16—C21—H21120.4
O3—C7—N1119.72 (17)O6—C22—N2119.92 (17)
O3—C7—C8123.46 (16)O6—C22—C23123.46 (17)
N1—C7—C8116.76 (15)N2—C22—C23116.58 (16)
C13—C8—C9118.46 (18)C24—C23—C28118.56 (19)
C13—C8—C7124.17 (16)C24—C23—C22117.17 (17)
C9—C8—C7117.33 (17)C28—C23—C22124.26 (17)
C10—C9—C8120.27 (19)C25—C24—C23120.2 (2)
C10—C9—H9119.9C25—C24—H24119.9
C8—C9—H9119.9C23—C24—H24119.9
C9—C10—C11121.55 (18)C24—C25—C26121.7 (2)
C9—C10—H10119.2C24—C25—H25119.1
C11—C10—H10119.2C26—C25—H25119.1
C10—C11—C12117.92 (19)C27—C26—C25117.7 (2)
C10—C11—C15121.4 (2)C27—C26—C30121.3 (2)
C12—C11—C15120.6 (2)C25—C26—C30121.0 (2)
C13—C12—C11121.3 (2)C28—C27—C26121.4 (2)
C13—C12—H12119.3C28—C27—H27119.3
C11—C12—H12119.3C26—C27—H27119.3
C12—C13—C8120.41 (18)C27—C28—C23120.39 (19)
C12—C13—H13119.8C27—C28—H28119.8
C8—C13—H13119.8C23—C28—H28119.8
C2—C14—H14A109.5C17—C29—H29A109.5
C2—C14—H14B109.5C17—C29—H29B109.5
H14A—C14—H14B109.5H29A—C29—H29B109.5
C2—C14—H14C109.5C17—C29—H29C109.5
H14A—C14—H14C109.5H29A—C29—H29C109.5
H14B—C14—H14C109.5H29B—C29—H29C109.5
C11—C15—H15A109.5C26—C30—H30A109.5
C11—C15—H15B109.5C26—C30—H30B109.5
H15A—C15—H15B109.5H30A—C30—H30B109.5
C11—C15—H15C109.5C26—C30—H30C109.5
H15A—C15—H15C109.5H30A—C30—H30C109.5
H15B—C15—H15C109.5H30B—C30—H30C109.5
O1—S1—N1—C763.65 (17)O5—S2—N2—C2256.08 (17)
O2—S1—N1—C7168.15 (15)O4—S2—N2—C22176.27 (15)
C1—S1—N1—C753.06 (17)C16—S2—N2—C2261.22 (17)
O1—S1—C1—C61.77 (18)O5—S2—C16—C215.46 (17)
O2—S1—C1—C6128.41 (15)O4—S2—C16—C21136.28 (15)
N1—S1—C1—C6120.41 (15)N2—S2—C16—C21112.89 (15)
O1—S1—C1—C2179.98 (16)O5—S2—C16—C17173.72 (15)
O2—S1—C1—C249.84 (19)O4—S2—C16—C1742.90 (17)
N1—S1—C1—C261.34 (18)N2—S2—C16—C1767.92 (17)
C6—C1—C2—C31.8 (3)C21—C16—C17—C180.1 (3)
S1—C1—C2—C3176.38 (17)S2—C16—C17—C18178.99 (15)
C6—C1—C2—C14178.5 (2)C21—C16—C17—C29179.6 (2)
S1—C1—C2—C143.4 (3)S2—C16—C17—C291.2 (3)
C1—C2—C3—C40.5 (4)C16—C17—C18—C190.5 (3)
C14—C2—C3—C4179.7 (3)C29—C17—C18—C19179.7 (2)
C2—C3—C4—C50.5 (4)C17—C18—C19—C200.1 (4)
C3—C4—C5—C60.2 (4)C18—C19—C20—C210.9 (4)
C4—C5—C6—C11.1 (4)C19—C20—C21—C161.5 (3)
C2—C1—C6—C52.1 (3)C17—C16—C21—C201.2 (3)
S1—C1—C6—C5176.18 (18)S2—C16—C21—C20178.02 (16)
S1—N1—C7—O31.4 (3)S2—N2—C22—O65.3 (3)
S1—N1—C7—C8175.96 (13)S2—N2—C22—C23176.83 (13)
O3—C7—C8—C13167.5 (2)O6—C22—C23—C2415.9 (3)
N1—C7—C8—C139.7 (3)N2—C22—C23—C24161.89 (18)
O3—C7—C8—C910.1 (3)O6—C22—C23—C28163.0 (2)
N1—C7—C8—C9172.63 (17)N2—C22—C23—C2819.2 (3)
C13—C8—C9—C100.0 (3)C28—C23—C24—C251.6 (3)
C7—C8—C9—C10177.76 (17)C22—C23—C24—C25179.42 (19)
C8—C9—C10—C111.5 (3)C23—C24—C25—C261.1 (4)
C9—C10—C11—C121.2 (3)C24—C25—C26—C270.6 (4)
C9—C10—C11—C15178.4 (2)C24—C25—C26—C30179.1 (2)
C10—C11—C12—C130.6 (4)C25—C26—C27—C281.8 (4)
C15—C11—C12—C13179.9 (2)C30—C26—C27—C28179.7 (2)
C11—C12—C13—C82.0 (3)C26—C27—C28—C231.2 (4)
C9—C8—C13—C121.7 (3)C24—C23—C28—C270.5 (3)
C7—C8—C13—C12175.89 (19)C22—C23—C28—C27179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.82 (2)2.18 (2)2.978 (2)165 (2)
N2—H2N···O2i0.83 (2)2.20 (2)3.022 (2)171 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H15NO3S
Mr289.34
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)10.9085 (8), 12.1392 (9), 12.3140 (9)
α, β, γ (°)118.846 (8), 95.965 (6), 90.136 (6)
V3)1417.98 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.48 × 0.44 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD Detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.896, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
9669, 5139, 4302
Rint0.013
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.05
No. of reflections5139
No. of parameters371
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.823 (15)2.175 (16)2.978 (2)165 (2)
N2—H2N···O2i0.826 (15)2.203 (16)3.022 (2)171 (2)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o433.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o327.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds