organic compounds
2-Bromoethyl 2-chloro-6-methylquinoline-3-carboxylate
aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine 25000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouraiou.abdelmalek@yahoo.fr
In the title compound, C13H11BrClNO2, the two rings of the quinoline group are fused in an axial fashion at a dihedral angle of 1.28 (9)°. In the crystal, molecules are arranged in zigzag layers along the c axis. The crystal packing is stabilized by weak C—H⋯O hydrogen bonds and intermolecular interactions between Br and O atoms [Br⋯O= 3.076 (2) Å], resulting in the formation of a three-dimensional network.
Related literature
For our previous work on the preparation of quinoline derivatives, see: Benzerka et al. (2008); Ladraa et al. (2009, 2010). For radical bromination, see: Kikichi et al. (1998); Xu et al. (2003); Djerassi (1948); Newman & Lee (1972). For radical bromination of ketone and acetal functions, see: Marvell & Joncich (1951); Markees (1958).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810010160/bq2201sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810010160/bq2201Isup2.hkl
The title compound (I) was synthesized by treating 1 mmol. of 2-chloro-3-(1,3-dioxolan-2-yl)-6-methylquinoline with 1 mmol. of N-bromosuccinimide in the presence of 0.5 mmol. of dibenzoylperoxide in CCl4 under photocatalytic conditions. The contents were then cooled and filtered off and the filtrate was concentrated under reduced pressure. The residue was subjected to
(silica gel, CH2Cl2) to afford pure product. Crystals suitable for x-ray analysis were obtained by slow evaporation of a dichloromethane solution of (I).All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom. (with C—H = 0.93Å, 0.96Å, 0.97Å and Uiso(H) =1.2 or 1.5(carrier atom)).
Data collection: APEX2 (Bruker, 2001); cell
SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C13H11BrClNO2 | F(000) = 656 |
Mr = 328.59 | Dx = 1.691 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.1740 (4) Å | Cell parameters from 3765 reflections |
b = 29.0515 (14) Å | θ = 2.8–27.3° |
c = 7.2875 (4) Å | µ = 3.39 mm−1 |
β = 99.167 (3)° | T = 100 K |
V = 1290.42 (13) Å3 | Prism, colourless |
Z = 4 | 0.45 × 0.38 × 0.11 mm |
Bruker APEXII diffractometer | 2938 independent reflections |
Radiation source: Enraf–Nonius FR590 | 2430 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
CCD rotation images, thick slices scans | θmax = 27.5°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −7→7 |
Tmin = 0.238, Tmax = 0.689 | k = −37→37 |
11364 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0397P)2 + 1.2764P] where P = (Fo2 + 2Fc2)/3 |
2938 reflections | (Δ/σ)max = 0.001 |
164 parameters | Δρmax = 0.74 e Å−3 |
0 restraints | Δρmin = −0.85 e Å−3 |
C13H11BrClNO2 | V = 1290.42 (13) Å3 |
Mr = 328.59 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.1740 (4) Å | µ = 3.39 mm−1 |
b = 29.0515 (14) Å | T = 100 K |
c = 7.2875 (4) Å | 0.45 × 0.38 × 0.11 mm |
β = 99.167 (3)° |
Bruker APEXII diffractometer | 2938 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 2430 reflections with I > 2σ(I) |
Tmin = 0.238, Tmax = 0.689 | Rint = 0.054 |
11364 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.74 e Å−3 |
2938 reflections | Δρmin = −0.85 e Å−3 |
164 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7808 (4) | 0.08966 (9) | 0.2084 (4) | 0.0164 (5) | |
C2 | 1.0027 (4) | 0.10023 (8) | 0.2862 (4) | 0.0152 (5) | |
C3 | 1.1423 (4) | 0.06355 (9) | 0.3242 (4) | 0.0151 (5) | |
H3 | 1.2874 | 0.0687 | 0.3775 | 0.018* | |
C4 | 1.0694 (4) | 0.01828 (9) | 0.2837 (4) | 0.0147 (5) | |
C5 | 1.2083 (4) | −0.02083 (9) | 0.3149 (4) | 0.0167 (6) | |
H5 | 1.3551 | −0.0169 | 0.3657 | 0.02* | |
C6 | 1.1299 (4) | −0.06439 (9) | 0.2713 (4) | 0.0161 (5) | |
C7 | 0.9057 (5) | −0.06973 (9) | 0.1919 (4) | 0.0180 (6) | |
H7 | 0.8517 | −0.0991 | 0.1616 | 0.022* | |
C8 | 0.7665 (4) | −0.03275 (9) | 0.1586 (4) | 0.0181 (6) | |
H8 | 0.6206 | −0.0371 | 0.1057 | 0.022* | |
C9 | 0.8464 (4) | 0.01207 (9) | 0.2053 (4) | 0.0147 (5) | |
C10 | 1.2752 (5) | −0.10631 (9) | 0.3046 (4) | 0.0204 (6) | |
H10A | 1.425 | −0.0968 | 0.3394 | 0.031* | |
H10B | 1.2613 | −0.1244 | 0.193 | 0.031* | |
H10C | 1.2317 | −0.1244 | 0.4027 | 0.031* | |
C11 | 1.0855 (4) | 0.14836 (9) | 0.3158 (4) | 0.0188 (6) | |
C12 | 1.3409 (5) | 0.19567 (9) | 0.5055 (5) | 0.0263 (7) | |
H12A | 1.3736 | 0.2075 | 0.3885 | 0.032* | |
H12B | 1.4788 | 0.1915 | 0.5883 | 0.032* | |
C13 | 1.2040 (5) | 0.23018 (9) | 0.5886 (5) | 0.0247 (7) | |
H13A | 1.065 | 0.2342 | 0.507 | 0.03* | |
H13B | 1.2789 | 0.2596 | 0.6002 | 0.03* | |
N1 | 0.7035 (4) | 0.04864 (7) | 0.1709 (3) | 0.0164 (5) | |
O1 | 1.0343 (4) | 0.17987 (7) | 0.2112 (3) | 0.0292 (5) | |
O2 | 1.2320 (3) | 0.15146 (6) | 0.4733 (3) | 0.0199 (4) | |
Cl1 | 0.58811 (11) | 0.13419 (2) | 0.16345 (10) | 0.02179 (17) | |
Br1 | 1.15019 (5) | 0.209908 (9) | 0.83386 (5) | 0.02814 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0161 (13) | 0.0178 (12) | 0.0153 (13) | 0.0059 (10) | 0.0026 (11) | 0.0012 (11) |
C2 | 0.0163 (13) | 0.0125 (11) | 0.0176 (13) | −0.0006 (9) | 0.0050 (11) | −0.0013 (10) |
C3 | 0.0117 (12) | 0.0159 (12) | 0.0180 (13) | 0.0001 (9) | 0.0030 (11) | 0.0004 (11) |
C4 | 0.0134 (12) | 0.0140 (11) | 0.0169 (13) | −0.0012 (9) | 0.0035 (11) | 0.0000 (10) |
C5 | 0.0124 (12) | 0.0174 (12) | 0.0200 (14) | 0.0012 (10) | 0.0018 (11) | −0.0007 (11) |
C6 | 0.0177 (13) | 0.0160 (12) | 0.0150 (13) | 0.0031 (9) | 0.0039 (11) | 0.0005 (11) |
C7 | 0.0207 (14) | 0.0130 (12) | 0.0198 (14) | −0.0013 (10) | 0.0019 (12) | −0.0006 (11) |
C8 | 0.0151 (13) | 0.0179 (12) | 0.0202 (14) | −0.0014 (10) | −0.0004 (11) | −0.0036 (11) |
C9 | 0.0147 (13) | 0.0142 (12) | 0.0151 (13) | 0.0016 (9) | 0.0017 (11) | 0.0002 (10) |
C10 | 0.0207 (14) | 0.0147 (12) | 0.0261 (16) | 0.0042 (10) | 0.0045 (12) | −0.0006 (11) |
C11 | 0.0169 (13) | 0.0144 (12) | 0.0281 (16) | 0.0005 (10) | 0.0123 (12) | −0.0014 (12) |
C12 | 0.0254 (15) | 0.0119 (12) | 0.043 (2) | −0.0056 (11) | 0.0098 (14) | −0.0054 (13) |
C13 | 0.0291 (16) | 0.0125 (12) | 0.0335 (18) | −0.0003 (11) | 0.0079 (14) | −0.0005 (12) |
N1 | 0.0133 (11) | 0.0173 (10) | 0.0179 (12) | 0.0036 (8) | 0.0005 (9) | −0.0005 (10) |
O1 | 0.0349 (12) | 0.0158 (9) | 0.0376 (13) | 0.0016 (8) | 0.0084 (11) | 0.0066 (10) |
O2 | 0.0208 (10) | 0.0117 (8) | 0.0280 (11) | −0.0022 (7) | 0.0062 (9) | −0.0040 (8) |
Cl1 | 0.0196 (3) | 0.0190 (3) | 0.0273 (4) | 0.0092 (2) | 0.0050 (3) | 0.0016 (3) |
Br1 | 0.03431 (19) | 0.01765 (15) | 0.0334 (2) | 0.00054 (11) | 0.00824 (14) | −0.00443 (13) |
C1—N1 | 1.296 (3) | C8—C9 | 1.415 (3) |
C1—C2 | 1.430 (4) | C8—H8 | 0.93 |
C1—Cl1 | 1.753 (3) | C9—N1 | 1.378 (3) |
C2—C3 | 1.371 (3) | C10—H10A | 0.96 |
C2—C11 | 1.493 (3) | C10—H10B | 0.96 |
C3—C4 | 1.406 (3) | C10—H10C | 0.96 |
C3—H3 | 0.93 | C11—O1 | 1.201 (3) |
C4—C9 | 1.416 (4) | C11—O2 | 1.346 (3) |
C4—C5 | 1.420 (3) | C12—O2 | 1.451 (3) |
C5—C6 | 1.374 (4) | C12—C13 | 1.500 (4) |
C5—H5 | 0.93 | C12—H12A | 0.97 |
C6—C7 | 1.422 (4) | C12—H12B | 0.97 |
C6—C10 | 1.509 (3) | C13—Br1 | 1.960 (3) |
C7—C8 | 1.373 (4) | C13—H13A | 0.97 |
C7—H7 | 0.93 | C13—H13B | 0.97 |
N1—C1—C2 | 125.3 (2) | N1—C9—C4 | 121.9 (2) |
N1—C1—Cl1 | 115.0 (2) | C8—C9—C4 | 119.6 (2) |
C2—C1—Cl1 | 119.6 (2) | C6—C10—H10A | 109.5 |
C3—C2—C1 | 116.4 (2) | C6—C10—H10B | 109.5 |
C3—C2—C11 | 120.6 (2) | H10A—C10—H10B | 109.5 |
C1—C2—C11 | 122.9 (2) | C6—C10—H10C | 109.5 |
C2—C3—C4 | 121.0 (2) | H10A—C10—H10C | 109.5 |
C2—C3—H3 | 119.5 | H10B—C10—H10C | 109.5 |
C4—C3—H3 | 119.5 | O1—C11—O2 | 124.3 (2) |
C3—C4—C9 | 117.5 (2) | O1—C11—C2 | 125.0 (3) |
C3—C4—C5 | 123.4 (2) | O2—C11—C2 | 110.7 (2) |
C9—C4—C5 | 119.1 (2) | O2—C12—C13 | 112.4 (2) |
C6—C5—C4 | 121.2 (2) | O2—C12—H12A | 109.1 |
C6—C5—H5 | 119.4 | C13—C12—H12A | 109.1 |
C4—C5—H5 | 119.4 | O2—C12—H12B | 109.1 |
C5—C6—C7 | 118.6 (2) | C13—C12—H12B | 109.1 |
C5—C6—C10 | 121.9 (2) | H12A—C12—H12B | 107.9 |
C7—C6—C10 | 119.5 (2) | C12—C13—Br1 | 110.8 (2) |
C8—C7—C6 | 121.9 (2) | C12—C13—H13A | 109.5 |
C8—C7—H7 | 119.1 | Br1—C13—H13A | 109.5 |
C6—C7—H7 | 119.1 | C12—C13—H13B | 109.5 |
C7—C8—C9 | 119.5 (2) | Br1—C13—H13B | 109.5 |
C7—C8—H8 | 120.2 | H13A—C13—H13B | 108.1 |
C9—C8—H8 | 120.2 | C1—N1—C9 | 117.9 (2) |
N1—C9—C8 | 118.5 (2) | C11—O2—C12 | 115.3 (2) |
N1—C1—C2—C3 | −0.3 (4) | C3—C4—C9—N1 | −0.6 (4) |
Cl1—C1—C2—C3 | 177.6 (2) | C5—C4—C9—N1 | −179.7 (3) |
N1—C1—C2—C11 | 176.2 (3) | C3—C4—C9—C8 | 178.7 (3) |
Cl1—C1—C2—C11 | −5.9 (4) | C5—C4—C9—C8 | −0.4 (4) |
C1—C2—C3—C4 | 1.4 (4) | C3—C2—C11—O1 | 137.8 (3) |
C11—C2—C3—C4 | −175.2 (3) | C1—C2—C11—O1 | −38.6 (4) |
C2—C3—C4—C9 | −1.0 (4) | C3—C2—C11—O2 | −40.1 (4) |
C2—C3—C4—C5 | 178.1 (3) | C1—C2—C11—O2 | 143.5 (3) |
C3—C4—C5—C6 | −179.3 (3) | O2—C12—C13—Br1 | 62.8 (3) |
C9—C4—C5—C6 | −0.3 (4) | C2—C1—N1—C9 | −1.2 (4) |
C4—C5—C6—C7 | 0.6 (4) | Cl1—C1—N1—C9 | −179.2 (2) |
C4—C5—C6—C10 | −179.6 (3) | C8—C9—N1—C1 | −177.6 (3) |
C5—C6—C7—C8 | −0.3 (4) | C4—C9—N1—C1 | 1.7 (4) |
C10—C6—C7—C8 | −180.0 (3) | O1—C11—O2—C12 | −4.3 (4) |
C6—C7—C8—C9 | −0.4 (4) | C2—C11—O2—C12 | 173.6 (2) |
C7—C8—C9—N1 | −179.9 (3) | C13—C12—O2—C11 | 81.8 (3) |
C7—C8—C9—C4 | 0.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13B···O1i | 0.97 | 2.41 | 3.347 (4) | 162 |
Symmetry code: (i) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C13H11BrClNO2 |
Mr | 328.59 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 6.1740 (4), 29.0515 (14), 7.2875 (4) |
β (°) | 99.167 (3) |
V (Å3) | 1290.42 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.39 |
Crystal size (mm) | 0.45 × 0.38 × 0.11 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.238, 0.689 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11364, 2938, 2430 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.092, 1.02 |
No. of reflections | 2938 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.74, −0.85 |
Computer programs: APEX2 (Bruker, 2001), SMART (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13B···O1i | 0.9700 | 2.4100 | 3.347 (4) | 162.00 |
Symmetry code: (i) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
We are grateful to all personnel at the PHYSYNOR Laboratory, Université Mentouri-Constantine, for their assistance. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.
References
Benzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089–o2090. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Djerassi, C. (1948). Chem. Rev. 43, 271–317. CrossRef PubMed CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kikichi, D., Sakaguchi, S. & Ishii, Y. (1998). J. Org. Chem. 63, 6023–6026. PubMed Google Scholar
Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475–o478. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693. Web of Science CSD CrossRef IUCr Journals Google Scholar
Markees, D. G. (1958). J. Org. Chem. 23, 1490–1492. CrossRef CAS Web of Science Google Scholar
Marvell, E. N. & Joncich, M. J. (1951). J. Am. Chem. Soc. 73, 973–975. CrossRef CAS Web of Science Google Scholar
Newman, M. S. & Lee, L. F. (1972). J. Org. Chem. 37, 4468–4469. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, F., Savary, K., Williams, J. M., Grabowski, E. J. J. & Reider, P. J. (2003). Tetrahedron Lett. 44, 1283–1286. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzylic bromination can be carried out using N-bromosuccinimide (NBS) under photocatalytic conditions (Djerassi, 1948; Newman et al., 1972). It is also known that NBS react with benzaldehyde diethylacetal to give corresponding ester (Marvell et al., 1951; Markees et al., 1958). Although extensive studies have been carried out in the past, selectivity clearly remains a common problem in radical bromination (Kikichi et al., 1998; Xu et al., 2003). In previous works, we have reported structure determination of some new quinoline derivatives (Benzerka et al., 2008; Ladraa et al., 2009; Ladraa et al., 2010). In this paper, we report the synthesis and structure determination of new compound, resulting from the radical bromination of 2-chloro-3-(1,3-dioxolan-2-yl)-6-methylquinoline, (I), under photocatalytic conditions. Our attempt to brominate the methyl group linked at C-6 position of quinoline ring, which has an acetal function at C-3, was failed and led to the 2-bromoethyl 2-chloro-6-methylquinoline-3-carboxylate (I). This compound is the result of the unwanted conversion of the acetal to the corresponding ester.
The molecular geometry and the atom-numbering scheme of (I) are shown in Figure 1. The asymmetric unit of title molecule contains a 2-bromoethylcarboxylate group linked to quinolyl moiety. The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 1.28 (9)° The crystal structure can be described as layers in zig zag along of c-axis which quinoline rings are parallel to the (110) plane. The crystal packing is stabilized by weak hydrogen bonds [C—H···O] and intermolecular interactions between Br and O atoms [Br···O= 3.076 (2)] (Figure 2), resulting in the formation of a three dimensional network and reinforcing a cohesion of structure. Hydrogen-bonding parameters are listed in Table 1.