inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of hepta­potassium nona­hydrogen bis­­[α-hexa­molybdoplatinate(IV)] undeca­hydrate

aDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea, bDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and cThe Research Institute of Natural Science, Gyeongsan National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 23 February 2010; accepted 6 March 2010; online 13 March 2010)

Previously reported at a temperature of 298 (2) K [Lee & Joo (2007[Lee, U. & Joo, H.-C. (2007). Acta Cryst. E63, i11-i13.]). Acta Cryst. E63, i11–i13], the title compound, K7[H9α-Pt2Mo12O48]·11H2O or K7[H4.5α-PtMo6O24]2·11H2O, was redetermined at 146 (2) K in order to determine whether the H atom in the hydrogen bond that crosses the center of symmetry was located at the center of symmetry or disordered around it as assumed in the previous study. During the present low-temperature study it was found on the center of symmetry. One water molecule shows half-occupancy.

Related literature

For the crystal structure of K3.5[H4.5α-PtMo6O24]·5.5H2O, see: Lee & Joo (2007[Lee, U. & Joo, H.-C. (2007). Acta Cryst. E63, i11-i13.]). For related structures, see: Lee & Sasaki (1994[Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc. 15, 37-45.]); Joo et al. (1994[Joo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659-1661.]); Lee & Joo (2006a[Lee, U. & Joo, H.-C. (2006a). Acta Cryst. E62, i231-i233.],b[Lee, U. & Joo, H.-C. (2006b). Acta Cryst. E62, i241-i243.]).

[Scheme 1]

Experimental

Crystal data
  • K7[H4.5PtMo6O24]2·11H2O

  • Mr = 2790.39

  • Triclinic, [P \overline 1]

  • a = 10.0430 (3) Å

  • b = 12.1512 (4) Å

  • c = 12.4498 (4) Å

  • α = 67.792 (1)°

  • β = 68.542 (1)°

  • γ = 83.465 (2)°

  • V = 1308.58 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 8.78 mm−1

  • T = 148 K

  • 0.15 × 0.09 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.353, Tmax = 0.621

  • 22108 measured reflections

  • 5699 independent reflections

  • 5599 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.056

  • S = 1.23

  • 5699 reflections

  • 430 parameters

  • 20 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −2.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2C—H2⋯O24Ti 0.87 (3) 1.70 (3) 2.561 (3) 168 (5)
O3C—H3⋯O5Wii 0.89 (3) 1.67 (3) 2.552 (4) 177 (5)
O4C—H4⋯O13Ti 0.89 (5) 1.67 (5) 2.562 (3) 176 (5)
O6C—H6⋯O6Ci 1.28 1.28 2.553 (3) 180
O11B—H11⋯O7Bi 0.90 (5) 1.93 (5) 2.826 (3) 172 (4)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The α-β-α geometrical isomerization according to the stepwise protonation in the [PtMo6O24]8- polyoxometalate species is very unusual phenomenon, viz., ([H3.5α-PtMo6O24]4.5- (Lee & Sasaki, 1994), [H4β-PtMo6O24]4- (Lee & Sasaki, 1994; Joo et al., 1994) and [H4.5α-PtMo6O24]3.5- (Lee & Sasaki, 1994; Lee & Joo, 2007).

This study was carried out to identify the position of the hydrogen atom that lies close to the center of symmetry. The structure of the title compound has been discussed in detail (Lee & Joo, 2007). Fig. 1 shows the structure of the polyanion. The O atoms of the clusters were designated as Ot(terminal MoO atom), Ob (O bridged µ2-O atom), and Oc3-O atom). The protonated O atoms in the polyanion were identified by the location in difference Fourier maps of the H atoms bound to O atoms and local structural features as seen previously (Lee & Joo, 2006a,b and Table 1). Fig. 2 shows a symmetrical electron density map around H6 atom. The position of H6 is (1/2, 0, 1/2). The distance of O6c–H6 and O6c···.O6ci are 1.28Å and 2.553 (5) Å, and the bond angle of O6c–H6–O6ci is 180 ° (Table 1 & Fig. 3).

The position of H6 was not found on the diffenence map in the previoius report (Lee & Joo, 2007). Therefore the H atom was considered as having positional disorder. The K2 ion is located on the inversion center. As a result the number of K+ ion is 7 and H+ ion is 9 in the unit cell.

The K+ ions are variously coordinated by O atoms as [K1(Ob)(Ot)2(Ow)4]+, [K2(Ob)2(Ot)6]+, [K3(Ob)(Ot)5(Ow)2]+, and [K4(Ot)5(Ow)2]+, respectively.

Related literature top

For the crystal structure of K3.5[H4.5α-PtMo6O24].5.5H2O, see : Lee & Joo (2007). For related structures, see : Lee & Sasaki (1994); Joo et al. (1994); Lee & Joo (2006a,b).

Experimental top

Crystals of title compound were prepared by the reaction of K2MoO4.2H2O and K2Pt(OH)6 at pH 2.85 as described in a previous report (Lee & Sasaki, 1994).

Refinement top

All H atoms in the polyanion were positioned in a difference Fourier maps and refined freely except H2 and H3. H2 and H3 refined with a distances restraint of O–H = 0.85 (3) Å. The H atoms of all Ow water molecules were placed in calculated positions with a distances restraint of O–H = 0.85 (3) Å. Their displacement parameters were freely refined except the O6w water molecule. The reasonable termal ellipsoid of O6w was obtained by half occupancy. The H atoms of O6w were included in the refinement with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The polyanion structure in the title compound. Displacement ellipsoids are drawn at the 50 % probability level for non-H atoms. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Difference Fourier map around H6 atom where atom H6 is absent.
[Figure 3] Fig. 3. Polyhedral view of the heteropolyanion in the title compound with O–H···O contacts of the inter-anion hydrogen bonds shown as red dashed lines. [Symmetry code: (i) - x + 1, - y, - z + 1.]
heptapotassium nonahydrogen α-dodecamolybdodiplatinate(IV) undecahydrate top
Crystal data top
K7[H4.5PtMo6O24]2·11H2OZ = 1
Mr = 2790.39F(000) = 1296.0
Triclinic, P1Dx = 3.541 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0430 (3) ÅCell parameters from 9000 reflections
b = 12.1512 (4) Åθ = 2.5–28.3°
c = 12.4498 (4) ŵ = 8.78 mm1
α = 67.792 (1)°T = 148 K
β = 68.542 (1)°Block, pale yellow
γ = 83.465 (2)°0.15 × 0.09 × 0.06 mm
V = 1308.58 (7) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
5699 independent reflections
Radiation source: Rotating Anode5599 reflections with I > 2σ(I)
Bruker HELIOS graded multilayer optics monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.8°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1515
Tmin = 0.353, Tmax = 0.621l = 1515
22108 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: difference Fourier map
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.23 w = 1/[σ2(Fo2) + (0.0236P)2 + 1.1372P]
where P = (Fo2 + 2Fc2)/3
5699 reflections(Δ/σ)max = 0.001
430 parametersΔρmax = 0.88 e Å3
20 restraintsΔρmin = 2.50 e Å3
Crystal data top
K7[H4.5PtMo6O24]2·11H2Oγ = 83.465 (2)°
Mr = 2790.39V = 1308.58 (7) Å3
Triclinic, P1Z = 1
a = 10.0430 (3) ÅMo Kα radiation
b = 12.1512 (4) ŵ = 8.78 mm1
c = 12.4498 (4) ÅT = 148 K
α = 67.792 (1)°0.15 × 0.09 × 0.06 mm
β = 68.542 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5699 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5599 reflections with I > 2σ(I)
Tmin = 0.353, Tmax = 0.621Rint = 0.031
22108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02120 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.23Δρmax = 0.88 e Å3
5699 reflectionsΔρmin = 2.50 e Å3
430 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt0.370508 (12)0.214544 (10)0.496464 (11)0.00637 (5)
Mo10.70622 (3)0.22945 (2)0.32045 (3)0.00847 (7)
Mo20.47058 (3)0.32387 (3)0.19019 (3)0.00951 (7)
Mo30.12269 (3)0.31421 (2)0.35851 (3)0.00933 (7)
Mo40.01778 (3)0.22408 (2)0.66624 (3)0.00926 (7)
Mo50.26446 (3)0.14143 (3)0.79903 (3)0.00971 (7)
Mo60.61144 (3)0.14446 (2)0.62239 (3)0.00808 (7)
K10.07055 (10)0.42124 (8)0.85759 (9)0.0273 (2)
K20.00000.00000.50000.0355 (4)
K30.59498 (11)0.36460 (8)0.82891 (9)0.0313 (2)
K40.26045 (10)0.09021 (8)0.12674 (8)0.0281 (2)
O1C0.5151 (2)0.3258 (2)0.3496 (2)0.0090 (5)
O2C0.3163 (3)0.1907 (2)0.3667 (2)0.0097 (5)
H20.316 (5)0.118 (3)0.370 (4)0.039 (14)*
O3C0.2066 (3)0.3296 (2)0.4991 (2)0.0100 (5)
H30.239 (5)0.401 (3)0.484 (5)0.051 (16)*
O4C0.2191 (2)0.1077 (2)0.6475 (2)0.0088 (5)
H40.206 (5)0.034 (4)0.652 (4)0.036 (13)*
O5C0.4239 (2)0.2395 (2)0.6249 (2)0.0095 (5)
O6C0.5309 (3)0.1025 (2)0.4921 (2)0.0098 (5)
H60.50000.00000.50000.07 (3)*
O7B0.6133 (3)0.1997 (2)0.2207 (2)0.0122 (5)
O8B0.2979 (2)0.4051 (2)0.2462 (2)0.0114 (5)
O9B0.0238 (2)0.1989 (2)0.5211 (2)0.0119 (5)
O10B0.1262 (3)0.2514 (2)0.7562 (2)0.0127 (5)
O11B0.4359 (3)0.0325 (2)0.7600 (2)0.0124 (5)
H110.429 (5)0.044 (4)0.767 (5)0.042 (14)*
O12B0.7099 (2)0.2530 (2)0.4686 (2)0.0116 (5)
O13T0.8149 (3)0.1062 (2)0.3315 (2)0.0139 (5)
O14T0.8155 (3)0.3469 (2)0.2130 (2)0.0145 (5)
O15T0.5792 (3)0.4457 (2)0.0911 (2)0.0168 (5)
O16T0.4268 (3)0.2674 (2)0.0998 (2)0.0168 (6)
O17T0.0066 (3)0.4276 (2)0.3516 (3)0.0170 (6)
O18T0.0983 (3)0.2410 (2)0.2724 (2)0.0144 (5)
O19T0.0931 (3)0.3406 (2)0.6643 (3)0.0178 (6)
O20T0.0825 (3)0.1011 (2)0.7766 (2)0.0171 (6)
O21T0.1625 (3)0.0179 (2)0.9083 (2)0.0194 (6)
O22T0.3249 (3)0.2023 (2)0.8760 (2)0.0160 (5)
O23T0.6388 (3)0.1967 (2)0.7219 (2)0.0146 (5)
O24T0.7139 (2)0.0163 (2)0.6320 (2)0.0122 (5)
O1W0.0212 (4)0.1809 (3)1.0680 (3)0.0361 (8)
H1A0.039 (6)0.190 (5)1.132 (4)0.08 (2)*
H1B0.010 (6)0.114 (4)1.070 (6)0.08 (2)*
O2W0.7580 (6)0.2330 (4)0.9609 (4)0.0773 (17)
H2A0.738 (8)0.214 (7)1.039 (3)0.13 (3)*
H2B0.812 (5)0.181 (4)0.942 (5)0.065 (19)*
O3W0.3643 (3)0.4685 (3)0.6662 (3)0.0297 (7)
H3A0.421 (4)0.528 (3)0.642 (5)0.046 (15)*
H3B0.415 (5)0.413 (3)0.652 (5)0.052 (17)*
O4W0.1450 (3)0.4420 (3)1.0368 (3)0.0232 (6)
H4A0.226 (3)0.470 (4)1.000 (4)0.043 (15)*
H4B0.145 (5)0.382 (3)1.100 (3)0.037 (14)*
O5W0.7096 (3)0.4622 (2)0.5447 (3)0.0199 (6)
H5A0.782 (4)0.418 (4)0.548 (4)0.046 (15)*
H5B0.707 (4)0.478 (4)0.474 (3)0.023 (13)*
O6W0.4612 (8)0.0364 (7)0.0153 (7)0.044 (2)0.50
H6A0.534 (8)0.080 (9)0.005 (11)0.066*0.50
H6B0.410 (11)0.064 (11)0.010 (11)0.066*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.00609 (7)0.00591 (7)0.00734 (8)0.00024 (5)0.00257 (6)0.00247 (6)
Mo10.00692 (14)0.00822 (13)0.01040 (15)0.00071 (10)0.00275 (11)0.00396 (12)
Mo20.00948 (14)0.01008 (14)0.00836 (15)0.00072 (10)0.00320 (12)0.00235 (12)
Mo30.00878 (14)0.00899 (14)0.01138 (16)0.00063 (10)0.00517 (12)0.00346 (12)
Mo40.00725 (14)0.00911 (14)0.01092 (15)0.00039 (10)0.00240 (12)0.00391 (12)
Mo50.00970 (14)0.01067 (14)0.00813 (15)0.00112 (11)0.00255 (12)0.00355 (12)
Mo60.00793 (14)0.00677 (13)0.01079 (15)0.00094 (10)0.00482 (12)0.00325 (12)
K10.0422 (5)0.0217 (4)0.0297 (5)0.0106 (4)0.0209 (4)0.0167 (4)
K20.0150 (6)0.0269 (7)0.0648 (10)0.0064 (5)0.0054 (6)0.0334 (7)
K30.0470 (6)0.0201 (4)0.0281 (5)0.0015 (4)0.0120 (5)0.0114 (4)
K40.0356 (5)0.0302 (5)0.0164 (4)0.0166 (4)0.0084 (4)0.0022 (4)
O1C0.0081 (11)0.0091 (11)0.0080 (12)0.0020 (9)0.0016 (9)0.0017 (10)
O2C0.0123 (12)0.0082 (11)0.0106 (13)0.0000 (9)0.0056 (10)0.0041 (10)
O3C0.0088 (12)0.0089 (11)0.0130 (13)0.0002 (9)0.0051 (10)0.0033 (10)
O4C0.0078 (11)0.0066 (11)0.0089 (12)0.0021 (9)0.0010 (10)0.0007 (10)
O5C0.0097 (11)0.0120 (11)0.0097 (12)0.0009 (9)0.0050 (10)0.0057 (10)
O6C0.0080 (11)0.0093 (11)0.0123 (13)0.0008 (9)0.0037 (10)0.0042 (10)
O7B0.0110 (12)0.0144 (12)0.0137 (13)0.0009 (9)0.0044 (10)0.0077 (11)
O8B0.0111 (12)0.0107 (11)0.0127 (13)0.0000 (9)0.0058 (10)0.0030 (10)
O9B0.0109 (12)0.0119 (11)0.0117 (13)0.0029 (9)0.0027 (10)0.0035 (10)
O10B0.0117 (12)0.0141 (12)0.0144 (13)0.0036 (9)0.0056 (10)0.0075 (11)
O11B0.0114 (12)0.0088 (11)0.0143 (13)0.0008 (9)0.0031 (10)0.0023 (10)
O12B0.0120 (12)0.0093 (11)0.0131 (13)0.0008 (9)0.0048 (10)0.0031 (10)
O13T0.0094 (12)0.0129 (12)0.0203 (14)0.0008 (9)0.0046 (11)0.0078 (11)
O14T0.0130 (12)0.0136 (12)0.0145 (13)0.0021 (9)0.0032 (11)0.0035 (11)
O15T0.0126 (12)0.0166 (13)0.0163 (14)0.0034 (10)0.0034 (11)0.0011 (11)
O16T0.0163 (13)0.0204 (13)0.0151 (14)0.0005 (10)0.0063 (11)0.0073 (12)
O17T0.0141 (13)0.0159 (13)0.0213 (15)0.0034 (10)0.0081 (11)0.0062 (12)
O18T0.0148 (12)0.0164 (12)0.0152 (13)0.0002 (10)0.0073 (11)0.0070 (11)
O19T0.0142 (13)0.0168 (13)0.0248 (15)0.0045 (10)0.0078 (12)0.0104 (12)
O20T0.0145 (13)0.0157 (13)0.0159 (14)0.0030 (10)0.0029 (11)0.0017 (11)
O21T0.0166 (14)0.0163 (13)0.0166 (15)0.0011 (10)0.0012 (12)0.0012 (12)
O22T0.0201 (13)0.0196 (13)0.0138 (13)0.0042 (10)0.0092 (11)0.0097 (11)
O23T0.0171 (13)0.0144 (12)0.0156 (14)0.0006 (10)0.0069 (11)0.0076 (11)
O24T0.0108 (12)0.0106 (11)0.0152 (13)0.0011 (9)0.0050 (10)0.0044 (10)
O1W0.0324 (18)0.041 (2)0.0307 (19)0.0046 (15)0.0027 (15)0.0203 (17)
O2W0.099 (4)0.088 (3)0.026 (2)0.072 (3)0.019 (2)0.023 (2)
O3W0.0254 (16)0.0216 (15)0.044 (2)0.0014 (13)0.0079 (15)0.0178 (15)
O4W0.0189 (14)0.0273 (16)0.0163 (15)0.0046 (12)0.0062 (12)0.0009 (13)
O5W0.0227 (15)0.0132 (13)0.0284 (17)0.0015 (11)0.0129 (13)0.0091 (13)
O6W0.051 (6)0.054 (6)0.037 (4)0.030 (4)0.032 (4)0.018 (4)
Geometric parameters (Å, º) top
Pt—O1C1.979 (2)Mo6—O5C2.091 (2)
Pt—O2C2.006 (2)Mo6—O6C2.286 (2)
Pt—O3C2.034 (2)Mo6—O11B2.114 (2)
Pt—O4C2.011 (2)Mo6—O12B1.840 (2)
Pt—O5C1.992 (2)Mo6—O23T1.701 (2)
Pt—O6C1.986 (2)Mo6—O24T1.756 (2)
Pt—Mo63.2149 (3)K1—O10B2.713 (3)
Mo1—Mo23.2140 (4)K1—O14Ti2.854 (3)
Mo1—O1C2.118 (2)K1—O17Tii2.880 (3)
Mo1—O6C2.329 (2)K1—O1W3.039 (4)
Mo1—O7B1.951 (2)K1—O3W2.986 (3)
Mo1—O12B1.984 (2)K1—O4W2.700 (3)
Mo1—O13T1.742 (2)K1—O4Wiii2.815 (3)
Mo1—O14T1.694 (2)K2—O9Biv2.574 (2)
Mo2—O1C2.196 (2)K2—O9B2.574 (2)
Mo2—O2C2.289 (2)K2—O13Tv3.128 (3)
Mo2—O7B1.987 (2)K2—O13Tvi3.128 (3)
Mo2—O8B1.927 (2)K2—O18Tiv3.149 (3)
Mo2—O15T1.704 (2)K2—O18T3.149 (3)
Mo2—O16T1.716 (3)K2—O24Tvi2.767 (2)
Mo3—O2C2.326 (2)K2—O24Tv2.767 (2)
Mo3—O3C2.273 (3)K3—O8Bi2.799 (2)
Mo3—O8B1.936 (2)K3—O15Ti2.985 (3)
Mo3—O9B1.936 (2)K3—O16Tvii2.983 (3)
Mo3—O17T1.698 (2)K3—O19Tviii3.105 (3)
Mo3—O18T1.721 (2)K3—O22T3.282 (3)
Mo4—O3C2.285 (2)K3—O23T2.749 (3)
Mo4—O4C2.323 (2)K3—O2W2.706 (4)
Mo4—O9B1.923 (3)K3—O5W3.068 (3)
Mo4—O10B1.950 (2)K4—O16T2.720 (3)
Mo4—O19T1.697 (2)K4—O18T2.995 (3)
Mo4—O20T1.707 (2)K4—O20Tiv2.702 (3)
Mo5—O4C2.278 (3)K4—O22Tix2.744 (3)
Mo5—O5C2.151 (2)K4—O24Tv2.883 (3)
Mo5—O10B1.892 (2)K4—O1Wix2.756 (4)
Mo5—O11B2.076 (2)K4—O6Wx2.866 (8)
Mo5—O21T1.715 (2)K4—O6W2.687 (8)
Mo5—O22T1.702 (2)O6C—H61.28 (1)
O1C—Pt—O6C83.77 (10)O4W—K1—O3W95.82 (9)
O1C—Pt—O5C97.36 (10)O10B—K1—O3W71.65 (8)
O6C—Pt—O5C83.63 (10)O4Wiii—K1—O3W136.06 (9)
O1C—Pt—O2C82.44 (10)O14Ti—K1—O3W66.24 (8)
O6C—Pt—O2C96.73 (10)O17Tii—K1—O3W82.07 (9)
O5C—Pt—O2C179.57 (9)O4W—K1—O1W71.71 (9)
O1C—Pt—O4C177.47 (9)O10B—K1—O1W72.44 (8)
O6C—Pt—O4C98.47 (10)O4Wiii—K1—O1W102.34 (9)
O5C—Pt—O4C81.74 (10)O14Ti—K1—O1W139.77 (9)
O2C—Pt—O4C98.44 (10)O17Tii—K1—O1W145.67 (9)
O1C—Pt—O3C95.90 (10)O3W—K1—O1W115.70 (9)
O6C—Pt—O3C179.41 (9)O9Biv—K2—O9B180.000 (17)
O5C—Pt—O3C96.90 (10)O9B—K2—O24Tvi83.34 (7)
O2C—Pt—O3C82.74 (10)O9B—K2—O24Tv96.66 (7)
O4C—Pt—O3C81.88 (10)O9B—K2—O13Tvi93.58 (7)
O14T—Mo1—O13T105.35 (12)O9B—K2—O18Tiv123.48 (7)
O14T—Mo1—O7B100.55 (11)O9Biv—K2—O18T123.48 (7)
O13T—Mo1—O7B96.64 (11)O9B—K2—O18T56.52 (7)
O14T—Mo1—O12B96.89 (11)O24Tvi—K2—O18T107.85 (7)
O13T—Mo1—O12B96.56 (11)O24Tv—K2—O18T72.15 (7)
O7B—Mo1—O12B154.46 (10)O13Tv—K2—O18T119.67 (6)
O14T—Mo1—O1C96.38 (10)O13Tvi—K2—O18T60.33 (6)
O13T—Mo1—O1C158.00 (10)O18Tiv—K2—O18T180.00 (14)
O7B—Mo1—O1C75.67 (9)O2W—K3—O23T87.40 (12)
O12B—Mo1—O1C84.01 (10)O2W—K3—O8Bi101.70 (15)
O14T—Mo1—O6C165.54 (10)O23T—K3—O8Bi135.26 (8)
O13T—Mo1—O6C86.23 (10)O2W—K3—O16Tvii68.29 (11)
O7B—Mo1—O6C86.39 (10)O23T—K3—O16Tvii112.47 (8)
O12B—Mo1—O6C72.78 (9)O2W—K3—O15Ti117.98 (11)
O1C—Mo1—O6C72.89 (9)O23T—K3—O15Ti151.29 (8)
O15T—Mo2—O16T106.40 (12)O2W—K3—O5W121.75 (11)
O15T—Mo2—O8B98.22 (11)O23T—K3—O5W64.76 (7)
O16T—Mo2—O8B100.68 (11)O8Bi—K3—O5W73.57 (7)
O15T—Mo2—O7B101.30 (11)O16Tvii—K3—O5W168.39 (8)
O16T—Mo2—O7B92.82 (11)O15Ti—K3—O5W107.09 (7)
O8B—Mo2—O7B152.03 (10)O2W—K3—O19Tviii66.76 (11)
O15T—Mo2—O1C92.44 (11)O23T—K3—O19Tviii63.34 (7)
O16T—Mo2—O1C158.60 (10)O5W—K3—O19Tviii55.12 (7)
O8B—Mo2—O1C86.22 (9)O2W—K3—O22T110.14 (14)
O7B—Mo2—O1C73.19 (9)O23T—K3—O22T59.79 (7)
O15T—Mo2—O2C161.42 (11)O8Bi—K3—O22T145.97 (7)
O16T—Mo2—O2C91.12 (11)O16Tvii—K3—O22T71.25 (7)
O8B—Mo2—O2C71.88 (9)O15Ti—K3—O22T96.63 (7)
O7B—Mo2—O2C83.57 (9)O5W—K3—O22T98.56 (7)
O1C—Mo2—O2C71.63 (9)O19Tviii—K3—O22T123.13 (7)
O17T—Mo3—O18T106.56 (12)O6W—K4—O20Tiv86.85 (17)
O17T—Mo3—O8B98.83 (11)O6W—K4—O16T100.30 (17)
O18T—Mo3—O8B101.53 (11)O20Tiv—K4—O16T163.39 (9)
O17T—Mo3—O9B101.37 (11)O6W—K4—O22Tix72.57 (17)
O18T—Mo3—O9B97.67 (11)O20Tiv—K4—O22Tix112.52 (8)
O8B—Mo3—O9B146.75 (10)O16T—K4—O22Tix84.01 (8)
O17T—Mo3—O3C99.47 (11)O6W—K4—O1Wix125.74 (17)
O18T—Mo3—O3C153.10 (10)O20Tiv—K4—O1Wix75.80 (9)
O8B—Mo3—O3C80.67 (10)O16T—K4—O1Wix110.80 (9)
O9B—Mo3—O3C70.18 (9)O22Tix—K4—O1Wix68.01 (9)
O17T—Mo3—O2C166.65 (11)O6W—K4—O6Wx22.7 (3)
O18T—Mo3—O2C84.31 (10)O20Tiv—K4—O6Wx109.37 (17)
O8B—Mo3—O2C70.90 (9)O16T—K4—O6Wx77.87 (16)
O9B—Mo3—O2C84.41 (10)O22Tix—K4—O6Wx66.98 (16)
O3C—Mo3—O2C70.96 (9)O1Wix—K4—O6Wx132.79 (17)
O19T—Mo4—O20T106.07 (13)O6W—K4—O24Tv97.28 (17)
O19T—Mo4—O9B101.28 (12)O20Tiv—K4—O24Tv80.55 (8)
O20T—Mo4—O9B98.83 (12)O16T—K4—O24Tv83.66 (8)
O19T—Mo4—O10B98.77 (11)O22Tix—K4—O24Tv162.32 (8)
O20T—Mo4—O10B100.44 (12)O1Wix—K4—O24Tv128.57 (9)
O9B—Mo4—O10B147.02 (10)O6Wx—K4—O24Tv98.00 (16)
O19T—Mo4—O3C95.89 (11)O6W—K4—O18T164.77 (16)
O20T—Mo4—O3C157.14 (10)O20Tiv—K4—O18T102.64 (8)
O9B—Mo4—O3C70.14 (9)O16T—K4—O18T67.51 (7)
O10B—Mo4—O3C82.01 (10)O22Tix—K4—O18T113.50 (8)
O19T—Mo4—O4C163.39 (11)O1Wix—K4—O18T68.76 (9)
O20T—Mo4—O4C88.94 (11)O6Wx—K4—O18T144.85 (16)
O9B—Mo4—O4C82.95 (10)O24Tv—K4—O18T72.99 (7)
O10B—Mo4—O4C70.94 (9)Pt—O1C—Mo1105.46 (10)
O3C—Mo4—O4C70.23 (9)Pt—O1C—Mo2104.98 (10)
O22T—Mo5—O21T106.70 (13)Mo1—O1C—Mo296.30 (9)
O22T—Mo5—O10B101.84 (11)Pt—O2C—Mo2100.81 (10)
O21T—Mo5—O10B102.99 (11)Pt—O2C—Mo3102.68 (10)
O22T—Mo5—O11B97.58 (11)Mo2—O2C—Mo392.77 (9)
O21T—Mo5—O11B89.09 (11)Pt—O3C—Mo3103.60 (10)
O10B—Mo5—O11B152.95 (10)Pt—O3C—Mo4104.25 (10)
O22T—Mo5—O5C91.56 (11)Mo3—O3C—Mo494.06 (9)
O21T—Mo5—O5C154.90 (10)Pt—O4C—Mo5100.24 (10)
O10B—Mo5—O5C89.52 (10)Pt—O4C—Mo4103.64 (10)
O11B—Mo5—O5C71.17 (9)Mo5—O4C—Mo492.53 (9)
O22T—Mo5—O4C162.98 (11)Pt—O5C—Mo6103.86 (10)
O21T—Mo5—O4C90.31 (11)Pt—O5C—Mo5105.34 (10)
O10B—Mo5—O4C72.93 (9)Mo6—O5C—Mo5105.12 (10)
O11B—Mo5—O4C83.03 (9)Pt—O6C—Mo697.38 (10)
O5C—Mo5—O4C72.45 (9)Pt—O6C—Mo197.89 (10)
O23T—Mo6—O24T104.61 (11)Mo6—O6C—Mo190.69 (8)
O23T—Mo6—O12B103.60 (11)Mo1—O7B—Mo2109.41 (11)
O24T—Mo6—O12B103.93 (11)Mo2—O8B—Mo3119.78 (12)
O23T—Mo6—O5C92.37 (11)Mo2—O8B—K3i101.44 (9)
O24T—Mo6—O5C154.05 (10)Mo3—O8B—K3i137.03 (11)
O12B—Mo6—O5C90.63 (10)Mo4—O9B—Mo3119.62 (12)
O23T—Mo6—O11B93.94 (11)Mo5—O10B—Mo4119.84 (12)
O24T—Mo6—O11B87.50 (10)Mo5—O11B—Mo6107.00 (11)
O12B—Mo6—O11B155.64 (10)Mo6—O12B—Mo1118.20 (12)
O5C—Mo6—O11B71.63 (9)H1A—O1W—H1B103 (4)
O23T—Mo6—O6C166.81 (10)H2A—O2W—H2B105 (4)
O24T—Mo6—O6C88.05 (10)H3A—O3W—H3B107 (3)
O12B—Mo6—O6C76.34 (10)H4A—O4W—H4B109 (4)
O5C—Mo6—O6C74.46 (9)H5A—O5W—H5B105 (3)
O11B—Mo6—O6C82.73 (9)H6A—O6W—H6B101 (10)
O4W—K1—O10B131.27 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z+2; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) x1, y, z; (vii) x, y, z+1; (viii) x+1, y, z; (ix) x, y, z1; (x) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2C—H2···O24Tv0.87 (3)1.70 (3)2.561 (3)168 (5)
O3C—H3···O5Wi0.89 (3)1.67 (3)2.552 (4)177 (5)
O4C—H4···O13Tv0.89 (5)1.67 (5)2.562 (3)176 (5)
O6C—H6···O6Cv1.281.282.553 (3)180
O11B—H11···O7Bv0.90 (5)1.93 (5)2.826 (3)172 (4)
O1W—H1A···O13Txi0.84 (3)2.27 (4)3.014 (4)149 (5)
O1W—H1B···O21Txii0.89 (3)2.22 (4)3.067 (4)159 (6)
O2W—H2A···O7Bvii0.86 (3)2.10 (4)2.906 (5)157 (7)
O2W—H2B···O21Txiii0.83 (3)2.49 (5)3.038 (5)125 (5)
O3W—H3A···O1Ci0.86 (3)2.01 (3)2.811 (4)154 (5)
O3W—H3B···O5C0.83 (3)2.24 (3)2.973 (4)147 (4)
O4W—H4A···O15Ti0.81 (3)2.03 (3)2.839 (4)175 (5)
O4W—H4B···O18Tvii0.84 (3)2.11 (3)2.938 (4)168 (4)
O5W—H5A···O19Tviii0.86 (3)2.14 (3)2.856 (4)141 (4)
O5W—H5B···O3Wi0.83 (2)1.99 (3)2.787 (4)160 (4)
O6W—H6A···O22Tv0.85 (3)2.41 (8)3.097 (7)138 (11)
Symmetry codes: (i) x+1, y+1, z+1; (v) x+1, y, z+1; (vii) x, y, z+1; (viii) x+1, y, z; (xi) x1, y, z+1; (xii) x, y, z+2; (xiii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaK7[H4.5PtMo6O24]2·11H2O
Mr2790.39
Crystal system, space groupTriclinic, P1
Temperature (K)148
a, b, c (Å)10.0430 (3), 12.1512 (4), 12.4498 (4)
α, β, γ (°)67.792 (1), 68.542 (1), 83.465 (2)
V3)1308.58 (7)
Z1
Radiation typeMo Kα
µ (mm1)8.78
Crystal size (mm)0.15 × 0.09 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.353, 0.621
No. of measured, independent and
observed [I > 2σ(I)] reflections
22108, 5699, 5599
Rint0.031
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.23
No. of reflections5699
No. of parameters430
No. of restraints20
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 2.50

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2C—H2···O24Ti0.87 (3)1.70 (3)2.561 (3)168 (5)
O3C—H3···O5Wii0.89 (3)1.67 (3)2.552 (4)177 (5)
O4C—H4···O13Ti0.89 (5)1.67 (5)2.562 (3)176 (5)
O6C—H6···O6Ci1.2801.2802.553 (3)180.0
O11B—H11···O7Bi0.90 (5)1.93 (5)2.826 (3)172 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Pukyong National University Research Fund in 2008 (PK-2008-018).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJoo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659–1661.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2006a). Acta Cryst. E62, i231–i233.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2006b). Acta Cryst. E62, i241–i243.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2007). Acta Cryst. E63, i11–i13.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc. 15, 37–45.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds