inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages i30-i31

Hexa­kis­(tetra­aqua­sodium) deca­vanadate(V) dihydrate

aInorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden, and bChemistry Department, University of Hamburg, D-20146 Hamburg, Germany
*Correspondence e-mail: rehder@chemie.uni-hamburg.de

(Received 9 March 2010; accepted 18 March 2010; online 24 March 2010)

The title compound, {[Na(H2O)4]6[V10O28]·2H2O}n, crystallized from a H2O/THF/CH3CN solution (pH ca 6) containing equimolar amounts of NaVO3 and N-(2-hydroxy­benz­yl)-N-(2-picol­yl)glycine. In the crystal structure, the deca­vanadate [V10O28]6− anion ([\overline1] symmetry) is coordinated, via four terminal oxide ligands of V centres, to two dinuclear [{Na(H2O)3}2(μ-H2O)2]2+ units. Inter­connection of these aquasodium-ion-sandwiched deca­vanadates to chains parallel to [001] is effected by μ-[{Na(H2O)3}2(μ-H2O)2]2+ units, bridging adjacent deca­vanadates via O=V. The structure is consolidated by an extensive network of O—H⋯O hydrogen bonds.

Related literature

Decavanadates with hydrated inorganic cations (Na+, K+), though with different mol­ecular and supra­molecular arrangements from that in the title structure, have been reported by, for example, Durif et al. (1980[Durif, A., Averbuch-Pouchot, M. T. & Guitel, J. C. (1980). Acta Cryst. B36, 680-682.]); Matias et al. (2000[Matias, P. M., Pessoa, J. C., Duarte, M. T. & Madeira, C. (2000). Acta Cryst. C56, e75-e76.]); Lee & Joo (2003[Lee, U. & Joo, H.-C. (2003). Acta Cryst. E59, i122-i124.]); Wang et al. (2003[Wang, D., Zhang, W., Gruening, K. & Rehder, D. (2003). J. Mol. Struct. 656, 79-91.]); Guo & Yao (2007[Guo, H.-X. & Yao, Z.-L. (2007). Acta Cryst. C63, i51-i53.]). More common are deca- and other polyoxido­vanadates with organic counter-ions such as glycyl-glycinium (Crans et al., 1994[Crans, D. C., Mahroof-Tahir, M., Anderson, O. P. & Miller, M. M. (1994). Inorg. Chem. 33, 5586-5590.]) or cryptands and related macrocyclic OxN2 cations (Farahbakhsh et al., 1998[Farahbakhsh, M., Koegeler, P., Schmidt, H. & Rehder, D. (1998). Inorg. Chem. Commun. 1, 111-114.]; Wang et al., 2003[Wang, D., Zhang, W., Gruening, K. & Rehder, D. (2003). J. Mol. Struct. 656, 79-91.]). For the impact of deca­vanadates as building blocks for supermolecular assemblies, see: Ferreira da Silva et al. (2003[Ferreira da Silva, J. L., Minas da Piedade, M. F. & Duarte, M. T. (2003). Inorg. Chim. Acta, 356, 222-242.]). For the inter­action of deca­vanadate with reverse micelles, see: Baruah et al. (2006[Baruah, B., Roden, J. M., Sedgwick, M., Correra, N. M., Crans, D. C. & Levinger, N. E. (2006). J. Am. Chem. Soc. 128, 12758-12765.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(H2O)4]6[V10O28]·2H2O

  • Mr = 1563.76

  • Triclinic, [P \overline 1]

  • a = 9.6144 (9) Å

  • b = 11.7260 (11) Å

  • c = 11.8691 (11) Å

  • α = 92.446 (1)°

  • β = 113.582 (1)°

  • γ = 100.274 (1)°

  • V = 1197.01 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 100 K

  • 0.50 × 0.24 × 0.10 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.428, Tmax = 0.822

  • 7584 measured reflections

  • 5049 independent reflections

  • 4621 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.057

  • S = 1.06

  • 5049 reflections

  • 396 parameters

  • 39 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O15—H15B⋯O19i 0.84 (2) 2.04 (2) 2.862 (2) 169 (3)
O16—H16B⋯O18ii 0.84 (2) 1.99 (2) 2.820 (2) 171 (2)
O17—H17A⋯O13ii 0.84 (2) 1.99 (2) 2.816 (2) 166 (3)
O17—H17B⋯O10i 0.84 (2) 2.01 (2) 2.837 (2) 168 (3)
O18—H18A⋯O4iii 0.84 (3) 1.98 (3) 2.815 (2) 176 (2)
O18—H18B⋯O22iv 0.84 (2) 2.01 (2) 2.822 (2) 164 (2)
O19—H19A⋯O5i 0.84 (2) 1.97 (2) 2.804 (2) 175 (2)
O20—H20A⋯O14v 0.84 (2) 2.02 (2) 2.846 (2) 170 (2)
O20—H20B⋯O6vi 0.84 (2) 1.91 (2) 2.724 (2) 164 (2)
O22—H22A⋯O27v 0.84 (2) 1.93 (2) 2.752 (2) 168 (2)
O23—H23B⋯O7vii 0.84 (2) 1.86 (2) 2.694 (2) 173 (2)
O25—H25A⋯O23viii 0.84 (2) 1.88 (2) 2.706 (2) 170 (3)
O25—H25B⋯O27ix 0.84 (2) 1.99 (2) 2.810 (3) 167 (2)
O26—H26A⋯O21viii 0.84 (2) 1.97 (2) 2.796 (2) 167 (3)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) x, y, z-1; (iv) -x, -y, -z; (v) x-1, y, z; (vi) -x, -y, -z+1; (vii) -x+1, -y, -z+1; (viii) -x+1, -y, -z; (ix) -x+2, -y, -z.

Data collection: SMART (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Decavanadates HnV10O28(6-n)- (n = 0-3) form in aqueous solutions containing vanadates (mainly mono- and diprotonated mono- and divanadate, cyclic tetra- and pentavanadate) at a pH < 6.3 and sufficiently high concentrations (> ca. 1 mM, depending on the ionic strength of the medium). In the pH range 4.5 to 6.3, HV10O285- is the major species, coexistent with minor amounts of V10O286-. Stabilisation by organic counter-ions can extend the range of stability of decavanadates into the alkaline regime (Wang et al., 2003). The centro-symmetric decavanadate contains three distinct types of vanadium centres: The eight peripheral vanadium ions, Va [O=V(µ-O)23-O)26-O)] and Vb [O=V(µ-O)46-O)] carry one terminal and five bridging oxido ligands, while the two central Vc type vanadium ions are hexa-coordinated by bridging oxygens.

The title compound shows a unique interaction between the decavanadate and dinuclear aquasodium counterions: The structure comprises a discrete non-protonated decavanadate anion [V10O28]6-, sandwiched by two [{Na(H2O)3}2(µ-H2O)2]2+ cations via aqua ligands, and further connected to chains by bridging [{Na(H2O)3}2(µ-H2O)2]2+ cations (Figs. 1, 2 and 3). The sandwiching dinuclear aquasodium cations coordinate to the oxido ligands O1 and O2 of the four Va type vanadium ions (V2 and V3) of the decavanadate, while two opposed O=Vb groups (O3=V4) participate in the chain construction; the second O=Vb group, O14=V5, is not involved in direct bonding. The oxygen O14 is, however, hydrogen bonded to the aqua ligand H20a (O14···H20a = 2.017 Å). In addition, there are two molecules of water of hydration (O27) which are hydrogen bonded to one of the aqua ligands (H27b···O25 = 1.912 Å) and weakly hydrogen bonded to the doubly bridging O9 of decavanadate (H27a···O9 = 2.197 Å).

Related literature top

Decavanadates with hydrated inorganic cations (Na+, K+), though with different molecular and supramolecular arrangements from that in the title structure, have been reported by, for example, Durif et al. (1980); Matias et al. (2000); Lee & Joo (2003); Wang et al. (2003); Guo & Yao (2007). More common are deca- and other polyoxidovanadates with organic counter-ions such as glycyl-glycinium (Crans et al., 1994) or cryptands and related macrocyclic OxN2 cations (Farahbakhsh et al., 1998; Wang et al., 2003). For the impact of decavanadates as building blocks for supermolecular assemblies, see: Ferreira da Silva et al. (2003). For the interaction of decavanadate with reverse micelles, see: Baruah et al. (2006).

Experimental top

NaVO3 (0.07 g, 0.55 mmol) and N-(2-hydroxibenzyl)-N-(2-picolyl)-glycine (H2L; 0.15 g, 0.55 mmol) were dissolved in 10 ml of deionised water/THF 9:1 and stirred at room temp. for three hours. The 51V NMR showed the presence of H2VO4-, H2V2O72-, V4O124-, V5O155- and an oxidovanadium complex of L2-. The solvent volume was reduced to 3 ml, layered with CH3CN, and kept at 8 °C. Yellow crystals of the title compound formed within a week.

Refinement top

The positions of the H atoms were taken from the difference Fourier map and refined with H—O distances of 0.84 Å and H—O—H angles of104.5 °.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view (50% probability level; hydrogen atoms omitted) of the decavanadate(6-) anion with its sandwiching and bridging [{Na(H2O)3}2(µ-H2O)2]2+ counter-ions.
[Figure 2] Fig. 2. Polygonal representation of a three-membered chain section. The decavanadates are shown in blue, the [{Na(H2O)3}2(µ-H2O)2]2+ counter-ions in yellow.
[Figure 3] Fig. 3. Detail view of the µ-[{Na(H2O)3}2(µ-H2O)2]2+ unit connecting two decavanadates via O4 and O4a.
Hexakis(tetraaquasodium) decavanadate(V) dihydrate top
Crystal data top
[Na(H2O)4]6[V10O28]·2H2OZ = 1
Mr = 1563.76F(000) = 780
Triclinic, P1Dx = 2.169 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6144 (9) ÅCell parameters from 4566 reflections
b = 11.7260 (11) Åθ = 4.7–55.9°
c = 11.8691 (11) ŵ = 2.05 mm1
α = 92.446 (1)°T = 100 K
β = 113.582 (1)°Block, orange
γ = 100.274 (1)°0.50 × 0.24 × 0.10 mm
V = 1197.01 (19) Å3
Data collection top
Bruker SMART
diffractometer
5049 independent reflections
Radiation source: fine-focus sealed tube4621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ω–scanθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1112
Tmin = 0.428, Tmax = 0.822k = 1415
7584 measured reflectionsl = 158
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0224P)2 + 1.1216P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5049 reflectionsΔρmax = 0.36 e Å3
396 parametersΔρmin = 0.42 e Å3
39 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0004 (2)
Crystal data top
[Na(H2O)4]6[V10O28]·2H2Oγ = 100.274 (1)°
Mr = 1563.76V = 1197.01 (19) Å3
Triclinic, P1Z = 1
a = 9.6144 (9) ÅMo Kα radiation
b = 11.7260 (11) ŵ = 2.05 mm1
c = 11.8691 (11) ÅT = 100 K
α = 92.446 (1)°0.50 × 0.24 × 0.10 mm
β = 113.582 (1)°
Data collection top
Bruker SMART
diffractometer
5049 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4621 reflections with I > 2σ(I)
Tmin = 0.428, Tmax = 0.822Rint = 0.010
7584 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02239 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
5049 reflectionsΔρmin = 0.42 e Å3
396 parameters
Special details top

Experimental. Crystals were grown from a solution of sodiumvanadate in water-THF-methanol

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. O—H lengths were fixed to 0.84 A, H—O—H angles to 104.5 degrees.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.32866 (3)0.49894 (2)0.49773 (3)0.00662 (7)
V20.36691 (3)0.43084 (2)0.25206 (3)0.00734 (7)
V30.52081 (3)0.31293 (2)0.62715 (3)0.00707 (7)
V40.22632 (3)0.24259 (2)0.37700 (3)0.00789 (7)
V50.54694 (3)0.24381 (3)0.38087 (3)0.00819 (7)
Na10.68380 (9)0.20347 (7)0.04171 (7)0.01458 (16)
Na20.00968 (8)0.06905 (6)0.36995 (7)0.01258 (15)
Na30.20510 (8)0.51845 (6)0.09634 (7)0.01183 (15)
O10.30955 (15)0.47278 (11)0.11639 (11)0.0112 (3)
O20.57790 (15)0.27004 (11)0.76214 (12)0.0117 (3)
O30.06723 (14)0.14613 (11)0.33464 (12)0.0116 (3)
O40.43595 (14)0.44985 (10)0.65664 (11)0.0074 (2)
O50.30505 (14)0.54867 (10)0.34087 (11)0.0078 (2)
O60.32409 (14)0.22657 (10)0.54530 (11)0.0089 (2)
O70.60556 (14)0.22842 (10)0.54878 (11)0.0089 (2)
O80.47848 (14)0.32382 (10)0.24227 (11)0.0091 (2)
O90.19622 (14)0.32182 (10)0.23905 (11)0.0091 (2)
O100.17201 (14)0.38447 (10)0.44432 (11)0.0092 (2)
O110.35146 (14)0.16030 (10)0.34055 (11)0.0093 (2)
O120.45138 (13)0.38945 (10)0.44775 (11)0.0072 (2)
O130.72840 (14)0.38759 (11)0.45042 (11)0.0091 (2)
O140.63150 (15)0.15212 (11)0.34249 (12)0.0134 (3)
O150.08001 (15)0.64704 (12)0.03043 (12)0.0139 (3)
O160.43615 (15)0.66748 (12)0.03469 (12)0.0136 (3)
O170.13702 (16)0.61325 (13)0.27889 (12)0.0163 (3)
O180.31590 (15)0.38521 (11)0.16898 (12)0.0128 (3)
O190.03436 (15)0.37867 (12)0.19183 (12)0.0139 (3)
O200.18096 (15)0.01604 (11)0.42273 (12)0.0117 (3)
O210.76870 (16)0.15411 (13)0.15731 (13)0.0178 (3)
O220.20085 (16)0.14460 (12)0.17792 (13)0.0178 (3)
O230.23048 (15)0.07292 (11)0.33278 (12)0.0128 (3)
O240.01105 (16)0.26635 (12)0.41579 (13)0.0163 (3)
O250.83366 (19)0.08376 (13)0.08832 (14)0.0236 (3)
O260.47074 (19)0.03597 (14)0.12596 (16)0.0294 (4)
O270.8411 (2)0.14147 (13)0.03821 (14)0.0281 (4)
H15A0.0004 (18)0.657 (2)0.0896 (15)0.0406 (17)*
H15B0.055 (3)0.642 (2)0.0294 (14)0.0406 (17)*
H16A0.459 (3)0.670 (2)0.0956 (14)0.0406 (17)*
H16B0.509 (2)0.646 (2)0.0210 (16)0.0406 (17)*
H17A0.178 (2)0.601 (3)0.3279 (17)0.0406 (17)*
H17B0.0421 (8)0.605 (3)0.3240 (18)0.0406 (17)*
H18A0.349 (3)0.402 (2)0.2226 (19)0.0406 (17)*
H18B0.273 (3)0.3144 (7)0.187 (2)0.0406 (17)*
H19A0.112 (2)0.404 (2)0.2358 (18)0.0406 (17)*
H19B0.020 (3)0.334 (2)0.2412 (17)0.0406 (17)*
H20A0.238 (2)0.0307 (16)0.391 (2)0.0406 (17)*
H20B0.241 (2)0.0771 (13)0.423 (3)0.0406 (17)*
H21A0.8521 (17)0.131 (2)0.191 (2)0.0406 (17)*
H21B0.785 (3)0.2171 (14)0.201 (2)0.0406 (17)*
H22A0.202 (3)0.148 (2)0.1070 (11)0.0406 (17)*
H22B0.279 (2)0.118 (2)0.170 (2)0.0406 (17)*
H23A0.287 (2)0.0058 (9)0.351 (2)0.0406 (17)*
H23B0.287 (2)0.1167 (16)0.373 (2)0.0406 (17)*
H24A0.0900 (17)0.291 (2)0.460 (2)0.0406 (17)*
H24B0.0612 (19)0.304 (2)0.431 (2)0.0406 (17)*
H25A0.824 (3)0.085 (2)0.1616 (8)0.0406 (17)*
H25B0.9284 (10)0.109 (2)0.0442 (18)0.0406 (17)*
H26A0.410 (3)0.0259 (12)0.128 (3)0.0406 (17)*
H26B0.519 (3)0.015 (2)0.166 (2)0.0406 (17)*
H27A0.804 (3)0.1880 (16)0.1037 (13)0.0406 (17)*
H27B0.827 (3)0.0763 (10)0.061 (2)0.0406 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.00643 (14)0.00731 (14)0.00662 (14)0.00154 (11)0.00308 (11)0.00185 (11)
V20.00903 (14)0.00742 (14)0.00493 (14)0.00141 (11)0.00236 (11)0.00133 (10)
V30.00797 (14)0.00698 (14)0.00611 (14)0.00169 (11)0.00257 (11)0.00235 (10)
V40.00671 (14)0.00731 (14)0.00883 (15)0.00045 (11)0.00281 (11)0.00129 (11)
V50.00842 (14)0.00770 (14)0.00935 (15)0.00218 (11)0.00441 (12)0.00113 (11)
Na10.0139 (4)0.0171 (4)0.0115 (4)0.0026 (3)0.0042 (3)0.0041 (3)
Na20.0119 (4)0.0134 (3)0.0121 (4)0.0025 (3)0.0049 (3)0.0001 (3)
Na30.0108 (3)0.0148 (3)0.0101 (4)0.0029 (3)0.0044 (3)0.0030 (3)
O10.0128 (6)0.0117 (6)0.0076 (6)0.0016 (5)0.0031 (5)0.0019 (5)
O20.0140 (6)0.0114 (6)0.0107 (6)0.0031 (5)0.0055 (5)0.0040 (5)
O30.0094 (6)0.0107 (6)0.0129 (6)0.0007 (5)0.0032 (5)0.0025 (5)
O40.0078 (6)0.0085 (6)0.0068 (6)0.0017 (5)0.0041 (5)0.0017 (4)
O50.0076 (6)0.0093 (6)0.0063 (6)0.0020 (5)0.0026 (5)0.0022 (4)
O60.0081 (6)0.0089 (6)0.0095 (6)0.0004 (5)0.0037 (5)0.0028 (5)
O70.0101 (6)0.0080 (6)0.0096 (6)0.0026 (5)0.0046 (5)0.0023 (5)
O80.0107 (6)0.0101 (6)0.0078 (6)0.0022 (5)0.0051 (5)0.0013 (5)
O90.0088 (6)0.0087 (6)0.0083 (6)0.0010 (5)0.0026 (5)0.0013 (5)
O100.0072 (6)0.0107 (6)0.0095 (6)0.0014 (5)0.0034 (5)0.0019 (5)
O110.0105 (6)0.0080 (6)0.0093 (6)0.0015 (5)0.0040 (5)0.0013 (5)
O120.0078 (6)0.0081 (5)0.0066 (6)0.0017 (5)0.0038 (5)0.0023 (4)
O130.0084 (6)0.0117 (6)0.0085 (6)0.0030 (5)0.0043 (5)0.0027 (5)
O140.0154 (7)0.0131 (6)0.0150 (7)0.0057 (5)0.0085 (5)0.0029 (5)
O150.0127 (6)0.0182 (7)0.0114 (7)0.0040 (5)0.0053 (5)0.0026 (5)
O160.0102 (6)0.0210 (7)0.0104 (6)0.0048 (5)0.0045 (5)0.0038 (5)
O170.0118 (6)0.0279 (8)0.0114 (7)0.0073 (6)0.0057 (5)0.0055 (6)
O180.0137 (7)0.0141 (6)0.0124 (7)0.0023 (5)0.0073 (5)0.0025 (5)
O190.0105 (6)0.0175 (7)0.0132 (7)0.0040 (5)0.0040 (5)0.0021 (5)
O200.0114 (6)0.0105 (6)0.0141 (7)0.0019 (5)0.0060 (5)0.0039 (5)
O210.0152 (7)0.0238 (7)0.0142 (7)0.0064 (6)0.0049 (6)0.0050 (6)
O220.0181 (7)0.0187 (7)0.0145 (7)0.0034 (6)0.0046 (6)0.0019 (6)
O230.0132 (6)0.0101 (6)0.0160 (7)0.0040 (5)0.0060 (5)0.0039 (5)
O240.0136 (7)0.0182 (7)0.0166 (7)0.0032 (5)0.0056 (6)0.0052 (5)
O250.0362 (9)0.0216 (7)0.0160 (7)0.0114 (7)0.0117 (7)0.0039 (6)
O260.0223 (8)0.0300 (9)0.0292 (9)0.0075 (7)0.0096 (7)0.0008 (7)
O270.0489 (10)0.0138 (7)0.0126 (7)0.0018 (7)0.0074 (7)0.0008 (6)
Geometric parameters (Å, º) top
V1—O13i1.7061 (12)V5—O71.8682 (13)
V1—O101.7071 (12)V5—O81.8722 (13)
V1—O51.9130 (12)V5—O132.0609 (13)
V1—O41.9237 (12)V5—O122.3278 (12)
V1—O122.1042 (12)V5—V1i3.0935 (5)
V1—O12i2.1094 (12)Na1—O212.3073 (16)
V1—V43.0832 (5)Na1—O2ii2.3682 (14)
V1—V5i3.0935 (5)Na1—O252.3760 (17)
V2—O11.6102 (13)Na1—O16iii2.4051 (15)
V2—O81.8184 (12)Na1—O262.4108 (17)
V2—O91.8393 (12)Na1—O15iii2.4205 (16)
V2—O4i2.0014 (12)Na1—Na3iii3.3703 (11)
V2—O52.0110 (12)Na2—O202.3303 (15)
V2—O122.2400 (12)Na2—O232.3419 (15)
V2—V3i3.0798 (5)Na2—O222.3608 (16)
V2—V53.1090 (4)Na2—O20iv2.3926 (15)
V2—V43.1173 (4)Na2—O242.4003 (15)
V3—O21.6078 (13)Na2—O32.5741 (15)
V3—O61.8191 (12)Na2—Na2iv3.5112 (15)
V3—O71.8240 (12)Na3—O182.3522 (15)
V3—O42.0034 (12)Na3—O152.3730 (15)
V3—O5i2.0126 (12)Na3—O192.3831 (15)
V3—O122.2414 (12)Na3—O172.3852 (15)
V3—V2i3.0798 (5)Na3—O162.3937 (16)
V3—V53.1181 (5)Na3—O12.4391 (14)
V4—O31.6095 (13)Na3—Na1iii3.3704 (11)
V4—O111.8333 (12)O2—Na1v2.3682 (14)
V4—O91.8640 (13)O4—V2i2.0014 (12)
V4—O61.8713 (13)O5—V3i2.0126 (12)
V4—O102.0516 (13)O12—V1i2.1094 (12)
V4—O122.3337 (12)O13—V1i1.7061 (12)
V4—V53.0620 (5)O15—Na1iii2.4205 (16)
V5—O141.6095 (13)O16—Na1iii2.4051 (15)
V5—O111.8177 (13)O20—Na2iv2.3926 (15)
O13i—V1—O10106.37 (6)O11—V5—V1i125.15 (4)
O13i—V1—O596.99 (6)O7—V5—V1i77.89 (4)
O10—V1—O597.54 (6)O8—V5—V1i78.58 (4)
O13i—V1—O497.07 (6)O13—V5—V1i31.20 (3)
O10—V1—O496.89 (6)O12—V5—V1i42.97 (3)
O5—V1—O4156.12 (5)V4—V5—V1i91.989 (11)
O13i—V1—O12165.75 (6)O14—V5—V2135.42 (5)
O10—V1—O1287.88 (5)O11—V5—V282.17 (4)
O5—V1—O1280.69 (5)O7—V5—V2123.05 (4)
O4—V1—O1280.93 (5)O8—V5—V232.07 (4)
O13i—V1—O12i87.52 (5)O13—V5—V281.70 (3)
O10—V1—O12i166.10 (5)O12—V5—V245.93 (3)
O5—V1—O12i80.97 (5)V4—V5—V260.678 (10)
O4—V1—O12i80.46 (5)V1i—V5—V261.445 (11)
O12—V1—O12i78.23 (5)O14—V5—V3132.95 (5)
O13i—V1—V4145.10 (4)O11—V5—V381.93 (4)
O10—V1—V438.74 (4)O7—V5—V331.95 (4)
O5—V1—V489.49 (4)O8—V5—V3123.26 (4)
O4—V1—V489.95 (4)O13—V5—V381.33 (4)
O12—V1—V449.15 (3)O12—V5—V345.82 (3)
O12i—V1—V4127.38 (3)V4—V5—V360.666 (9)
O13i—V1—V5i38.74 (4)V1i—V5—V361.256 (9)
O10—V1—V5i145.11 (4)V2—V5—V391.526 (12)
O5—V1—V5i89.73 (4)O21—Na1—O2ii172.30 (6)
O4—V1—V5i89.25 (4)O21—Na1—O2590.19 (6)
O12—V1—V5i127.01 (3)O2ii—Na1—O2597.51 (6)
O12i—V1—V5i48.78 (3)O21—Na1—O16iii83.28 (5)
V4—V1—V5i176.157 (13)O2ii—Na1—O16iii89.04 (5)
O1—V2—O8102.98 (6)O25—Na1—O16iii171.59 (6)
O1—V2—O9102.33 (6)O21—Na1—O2693.99 (6)
O8—V2—O994.90 (6)O2ii—Na1—O2686.67 (6)
O1—V2—O4i100.68 (6)O25—Na1—O2686.32 (6)
O8—V2—O4i90.06 (5)O16iii—Na1—O2699.38 (6)
O9—V2—O4i154.69 (5)O21—Na1—O15iii87.34 (5)
O1—V2—O5100.31 (6)O2ii—Na1—O15iii93.26 (5)
O8—V2—O5154.79 (5)O25—Na1—O15iii84.44 (6)
O9—V2—O589.42 (5)O16iii—Na1—O15iii89.94 (5)
O4i—V2—O576.19 (5)O26—Na1—O15iii170.67 (6)
O1—V2—O12174.83 (6)O21—Na1—Na3iii85.15 (4)
O8—V2—O1280.85 (5)O2ii—Na1—Na3iii89.87 (4)
O9—V2—O1280.63 (5)O25—Na1—Na3iii129.08 (5)
O4i—V2—O1275.68 (5)O16iii—Na1—Na3iii45.25 (4)
O5—V2—O1275.36 (5)O26—Na1—Na3iii144.54 (5)
O1—V2—V3i90.43 (5)O15iii—Na1—Na3iii44.75 (4)
O8—V2—V3i129.81 (4)O20—Na2—O23165.69 (6)
O9—V2—V3i129.49 (4)O20—Na2—O2283.88 (5)
O4i—V2—V3i39.76 (3)O23—Na2—O22104.40 (6)
O5—V2—V3i40.07 (4)O20—Na2—O20iv83.96 (5)
O12—V2—V3i84.43 (3)O23—Na2—O20iv87.70 (5)
O1—V2—V5135.86 (5)O22—Na2—O20iv167.80 (6)
O8—V2—V533.14 (4)O20—Na2—O24104.87 (5)
O9—V2—V583.38 (4)O23—Na2—O2487.28 (5)
O4i—V2—V587.43 (4)O22—Na2—O2488.00 (5)
O5—V2—V5123.65 (4)O20iv—Na2—O2494.22 (5)
O12—V2—V548.30 (3)O20—Na2—O384.71 (5)
V3i—V2—V5119.735 (13)O23—Na2—O382.43 (5)
O1—V2—V4135.06 (5)O22—Na2—O399.54 (5)
O8—V2—V483.55 (4)O20iv—Na2—O380.26 (5)
O9—V2—V432.92 (4)O24—Na2—O3168.48 (5)
O4i—V2—V4123.96 (4)O20—Na2—Na2iv42.66 (4)
O5—V2—V486.79 (4)O23—Na2—Na2iv128.01 (5)
O12—V2—V448.31 (3)O22—Na2—Na2iv126.53 (5)
V3i—V2—V4119.559 (13)O20iv—Na2—Na2iv41.30 (3)
V5—V2—V458.915 (11)O24—Na2—Na2iv102.74 (5)
O2—V3—O6103.48 (6)O3—Na2—Na2iv79.83 (4)
O2—V3—O7102.71 (6)O18—Na3—O15176.93 (6)
O6—V3—O795.00 (6)O18—Na3—O1986.84 (5)
O2—V3—O4100.39 (6)O15—Na3—O1990.19 (5)
O6—V3—O489.99 (5)O18—Na3—O1793.73 (5)
O7—V3—O4154.50 (5)O15—Na3—O1785.47 (5)
O2—V3—O5i99.91 (6)O19—Na3—O1789.84 (5)
O6—V3—O5i154.60 (5)O18—Na3—O1691.43 (5)
O7—V3—O5i89.34 (5)O15—Na3—O1691.37 (5)
O4—V3—O5i76.10 (5)O19—Na3—O16170.38 (6)
O2—V3—O12174.75 (6)O17—Na3—O1680.82 (5)
O6—V3—O1280.41 (5)O18—Na3—O194.70 (5)
O7—V3—O1280.28 (5)O15—Na3—O186.72 (5)
O4—V3—O1275.92 (5)O19—Na3—O1102.83 (5)
O5i—V3—O1275.68 (5)O17—Na3—O1165.13 (6)
O2—V3—V2i90.00 (5)O16—Na3—O186.74 (5)
O6—V3—V2i129.69 (4)O18—Na3—Na1iii136.94 (4)
O7—V3—V2i129.37 (4)O15—Na3—Na1iii45.90 (4)
O4—V3—V2i39.71 (4)O19—Na3—Na1iii135.65 (4)
O5i—V3—V2i40.03 (3)O17—Na3—Na1iii81.97 (4)
O12—V3—V2i84.78 (3)O16—Na3—Na1iii45.52 (4)
O2—V3—V5135.29 (5)O1—Na3—Na1iii83.50 (4)
O6—V3—V583.08 (4)V2—O1—Na3174.54 (8)
O7—V3—V532.82 (4)V3—O2—Na1v174.33 (8)
O4—V3—V5124.04 (4)V4—O3—Na2132.53 (7)
O5i—V3—V587.26 (4)V1—O4—V2i107.65 (6)
O12—V3—V548.14 (3)V1—O4—V3107.11 (6)
V2i—V3—V5119.925 (12)V2i—O4—V3100.53 (5)
O3—V4—O11102.05 (6)V1—O5—V2107.67 (6)
O3—V4—O9103.67 (6)V1—O5—V3i107.41 (6)
O11—V4—O991.64 (6)V2—O5—V3i99.89 (5)
O3—V4—O6101.25 (6)V3—O6—V4115.52 (6)
O11—V4—O691.17 (6)V3—O7—V5115.23 (6)
O9—V4—O6153.74 (5)V2—O8—V5114.79 (6)
O3—V4—O10101.85 (6)V2—O9—V4114.65 (6)
O11—V4—O10156.05 (5)V1—O10—V4109.89 (6)
O9—V4—O1084.06 (5)V5—O11—V4114.00 (6)
O6—V4—O1082.86 (5)V1—O12—V1i101.77 (5)
O3—V4—O12175.93 (6)V1—O12—V293.61 (5)
O11—V4—O1281.69 (5)V1i—O12—V293.48 (5)
O9—V4—O1277.65 (5)V1—O12—V393.23 (5)
O6—V4—O1276.94 (5)V1i—O12—V393.28 (5)
O10—V4—O1274.37 (5)V2—O12—V3169.21 (6)
O3—V4—V5134.88 (5)V1—O12—V5169.98 (6)
O11—V4—V532.84 (4)V1i—O12—V588.26 (4)
O9—V4—V584.37 (4)V2—O12—V585.77 (4)
O6—V4—V583.93 (4)V3—O12—V586.05 (4)
O10—V4—V5123.22 (4)V1—O12—V487.85 (4)
O12—V4—V548.85 (3)V1i—O12—V4170.38 (6)
O3—V4—V1133.22 (5)V2—O12—V485.91 (4)
O11—V4—V1124.69 (4)V3—O12—V486.02 (4)
O9—V4—V178.79 (4)V5—O12—V482.12 (4)
O6—V4—V178.18 (4)V1i—O13—V5110.05 (6)
O10—V4—V131.37 (3)Na3—O15—Na1iii89.35 (5)
O12—V4—V143.00 (3)Na3—O15—H15A111.5 (18)
V5—V4—V191.854 (11)Na1iii—O15—H15A119.1 (19)
O3—V4—V2135.91 (5)Na3—O15—H15B126.4 (18)
O11—V4—V281.71 (4)Na1iii—O15—H15B105.9 (19)
O9—V4—V232.43 (4)Na3—O16—Na1iii89.23 (5)
O6—V4—V2122.73 (4)Na3—O16—H16A106.5 (19)
O10—V4—V282.14 (4)Na1iii—O16—H16A129.7 (17)
O12—V4—V245.79 (3)Na3—O16—H16B108.6 (19)
V5—V4—V260.407 (10)Na1iii—O16—H16B114.1 (17)
V1—V4—V261.458 (11)Na3—O17—H17A118.5 (18)
O14—V5—O11103.91 (6)Na3—O17—H17B116.8 (18)
O14—V5—O7101.10 (6)Na3—O18—H18A120.3 (18)
O11—V5—O791.89 (6)Na3—O18—H18B120.2 (18)
O14—V5—O8103.41 (6)Na3—O19—H19A116.6 (19)
O11—V5—O891.81 (6)Na3—O19—H19B103.9 (19)
O7—V5—O8153.53 (5)Na2—O20—Na2iv96.04 (5)
O14—V5—O1399.72 (6)Na2—O20—H20A128.0 (19)
O11—V5—O13156.35 (5)Na2iv—O20—H20A107.5 (19)
O7—V5—O1382.59 (5)Na2—O20—H20B108.1 (18)
O8—V5—O1383.57 (5)Na2iv—O20—H20B110.5 (19)
O14—V5—O12173.77 (6)Na1—O21—H21A122 (2)
O11—V5—O1282.18 (5)Na1—O21—H21B103.8 (19)
O7—V5—O1277.12 (5)Na2—O22—H22A128.5 (18)
O8—V5—O1277.44 (5)Na2—O22—H22B111.2 (18)
O13—V5—O1274.17 (5)Na2—O23—H23A109.7 (19)
O14—V5—V4137.06 (5)Na2—O23—H23B115.3 (19)
O11—V5—V433.16 (4)Na2—O24—H24A125.2 (18)
O7—V5—V484.53 (4)Na2—O24—H24B119.5 (17)
O8—V5—V484.34 (4)Na1—O25—H25A111.3 (19)
O13—V5—V4123.19 (4)Na1—O25—H25B110.5 (19)
O12—V5—V449.02 (3)Na1—O26—H26A159 (2)
O14—V5—V1i130.92 (5)Na1—O26—H26B85.0 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+1, z; (iv) x, y, z+1; (v) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O9vi0.84 (2)2.07 (2)2.912 (2)178 (2)
O15—H15B···O19vi0.84 (2)2.04 (2)2.862 (2)169 (3)
O16—H16A···O8iii0.84 (2)2.06 (2)2.892 (2)178 (3)
O16—H16B···O18iii0.84 (2)1.99 (2)2.820 (2)171 (2)
O17—H17A···O13iii0.84 (2)1.99 (2)2.816 (2)166 (3)
O17—H17B···O10vi0.84 (2)2.01 (2)2.837 (2)168 (3)
O18—H18A···O4ii0.84 (3)1.98 (3)2.815 (2)176 (2)
O18—H18B···O22vii0.84 (2)2.01 (2)2.822 (2)164 (2)
O19—H19A···O5vi0.84 (2)1.97 (2)2.804 (2)175 (2)
O19—H19B···O24vii0.84 (2)2.23 (2)3.022 (2)158 (2)
O20—H20A···O14viii0.84 (2)2.02 (2)2.846 (2)170 (2)
O20—H20B···O6iv0.84 (2)1.91 (2)2.724 (2)164 (2)
O21—H21A···O3ix0.84 (2)2.06 (2)2.821 (2)150 (2)
O21—H21B···O17iii0.84 (2)2.03 (2)2.843 (2)162 (2)
O22—H22A···O27viii0.84 (2)1.93 (2)2.752 (2)168 (2)
O22—H22B···O26vii0.84 (2)2.12 (2)2.950 (3)170 (2)
O23—H23A···O110.84 (2)1.96 (2)2.756 (2)158 (2)
O23—H23B···O7x0.84 (2)1.86 (2)2.694 (2)173 (2)
O24—H24A···O13x0.84 (2)2.19 (2)3.016 (2)168 (2)
O24—H24B···O10iv0.84 (2)2.29 (2)3.072 (2)155 (2)
O25—H25A···O23xi0.84 (2)1.88 (2)2.706 (2)170 (3)
O25—H25B···O27xii0.84 (2)1.99 (2)2.810 (3)167 (2)
O26—H26A···O21xi0.84 (2)1.97 (2)2.796 (2)167 (3)
O26—H26B···O14xi0.84 (3)2.56 (2)3.026 (2)116 (2)
O27—H27A···O9xi0.84 (2)2.20 (2)2.983 (2)156 (3)
O27—H27B···O250.84 (2)1.91 (2)2.739 (2)169 (2)
Symmetry codes: (ii) x, y, z1; (iii) x+1, y+1, z; (iv) x, y, z+1; (vi) x, y+1, z; (vii) x, y, z; (viii) x1, y, z; (ix) x+1, y, z; (x) x+1, y, z+1; (xi) x+1, y, z; (xii) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Na(H2O)4]6[V10O28]·2H2O
Mr1563.76
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6144 (9), 11.7260 (11), 11.8691 (11)
α, β, γ (°)92.446 (1), 113.582 (1), 100.274 (1)
V3)1197.01 (19)
Z1
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.50 × 0.24 × 0.10
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.428, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
7584, 5049, 4621
Rint0.010
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.057, 1.06
No. of reflections5049
No. of parameters396
No. of restraints39
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.42

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15B···O19i0.84 (2)2.04 (2)2.862 (2)169 (3)
O16—H16B···O18ii0.84 (2)1.99 (2)2.820 (2)171 (2)
O17—H17A···O13ii0.84 (2)1.99 (2)2.816 (2)166 (3)
O17—H17B···O10i0.84 (2)2.01 (2)2.837 (2)168 (3)
O18—H18A···O4iii0.84 (3)1.98 (3)2.815 (2)176 (2)
O18—H18B···O22iv0.84 (2)2.01 (2)2.822 (2)164 (2)
O19—H19A···O5i0.84 (2)1.97 (2)2.804 (2)175 (2)
O20—H20A···O14v0.84 (2)2.02 (2)2.846 (2)170 (2)
O20—H20B···O6vi0.84 (2)1.91 (2)2.724 (2)164 (2)
O22—H22A···O27v0.84 (2)1.93 (2)2.752 (2)168 (2)
O23—H23B···O7vii0.84 (2)1.86 (2)2.694 (2)173 (2)
O25—H25A···O23viii0.84 (2)1.88 (2)2.706 (2)170 (3)
O25—H25B···O27ix0.84 (2)1.99 (2)2.810 (3)167 (2)
O26—H26A···O21viii0.84 (2)1.97 (2)2.796 (2)167 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y, z1; (iv) x, y, z; (v) x1, y, z; (vi) x, y, z+1; (vii) x+1, y, z+1; (viii) x+1, y, z; (ix) x+2, y, z.
 

Acknowledgements

This work was supported by the German Academic Exchange Service (DAAD) and the Swedish Research School in Pharmaceutical Sciences. We thank Oliver Schuster, University of Fribourg, for the preparation of Fig. 2.

References

First citationBaruah, B., Roden, J. M., Sedgwick, M., Correra, N. M., Crans, D. C. & Levinger, N. E. (2006). J. Am. Chem. Soc. 128, 12758–12765.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrans, D. C., Mahroof-Tahir, M., Anderson, O. P. & Miller, M. M. (1994). Inorg. Chem. 33, 5586–5590.  CSD CrossRef CAS Web of Science Google Scholar
First citationDurif, A., Averbuch-Pouchot, M. T. & Guitel, J. C. (1980). Acta Cryst. B36, 680–682.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarahbakhsh, M., Koegeler, P., Schmidt, H. & Rehder, D. (1998). Inorg. Chem. Commun. 1, 111–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerreira da Silva, J. L., Minas da Piedade, M. F. & Duarte, M. T. (2003). Inorg. Chim. Acta, 356, 222–242.  Web of Science CrossRef CAS Google Scholar
First citationGuo, H.-X. & Yao, Z.-L. (2007). Acta Cryst. C63, i51–i53.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, U. & Joo, H.-C. (2003). Acta Cryst. E59, i122–i124.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMatias, P. M., Pessoa, J. C., Duarte, M. T. & Madeira, C. (2000). Acta Cryst. C56, e75–e76.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, D., Zhang, W., Gruening, K. & Rehder, D. (2003). J. Mol. Struct. 656, 79–91.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages i30-i31
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds