organic compounds
(2S,4R)-4-Ammonio-5-oxopyrrolidine-2-carboxylate
aInstitute of Organic Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland, and bInstitute of General and Ecological Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland
*Correspondence e-mail: wmwolf@p.lodz.pl
In the 5H8N2O3, the molecules exist in the zwitterionic form. The pyrrolidine ring adopts an with the unsubstituted endocyclic C atom situated at the flap. The other four endocyclic atoms are coplanar with the exocyclic carbonyl O atom, with an r.m.s. deviation from the mean plane of 0.06 Å. The carboxylate substituent is located axially, while the ammonium group occupies an equatorial position. In the the molecules are linked through N—H⋯O hydrogen bonds, forming a three-dimensional network.
of the title compound, CRelated literature
For molecular recognition in N-methyl amino acids and proline residues, see: Dugave & Demange (2003). For the construction of modified amino acids, see: Dumy et al. (1997); Keller et al. (1998); Mutter et al. (1999); Tuchscherer & Mutter (2001); Paul et al. (1992). For pyroglutamic acid derivatives, see: Zabrocki et al. (1988); Kaczmarek et al. (2005). For the preparation of the title compound, see: Kaczmarek et al. (2001); Kaczmarek (2009). For asymmetry parameters, see: Griffin et al. (1984).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2003); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810004277/bt5187sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810004277/bt5187Isup2.hkl
An optically pure (ee>99%) N'-benzyloxycarbonyl protected precursor of the title compound was hydrogenated in methanol solution over 10% palladium on
which resulted in precipitation of the final product. After filtration of solids final product was washed out of the catalyst with the aim of water. The (2S,4R)-4-aminopyroglutamic acid crystals were grown from this water solution by slow evaporation.Data collection: SMART (Bruker, 2003); cell
SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).C5H8N2O3 | Dx = 1.502 Mg m−3 |
Mr = 144.13 | Melting point: 423(2) K |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 7056 reflections |
a = 5.9790 (3) Å | θ = 6.1–70.8° |
b = 9.3665 (4) Å | µ = 1.08 mm−1 |
c = 11.3809 (5) Å | T = 293 K |
V = 637.36 (5) Å3 | Prism, colourless |
Z = 4 | 0.40 × 0.40 × 0.10 mm |
F(000) = 304 |
Bruker SMART APEX diffractometer | 1169 independent reflections |
Radiation source: fine-focus sealed tube | 1168 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ω scans | θmax = 70.8°, θmin = 6.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −6→5 |
Tmin = 0.707, Tmax = 0.900 | k = −11→11 |
7227 measured reflections | l = −13→13 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0468P)2 + 0.0681P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.069 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.13 e Å−3 |
1169 reflections | Δρmin = −0.17 e Å−3 |
125 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.047 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 461 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.1 (2) |
C5H8N2O3 | V = 637.36 (5) Å3 |
Mr = 144.13 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 5.9790 (3) Å | µ = 1.08 mm−1 |
b = 9.3665 (4) Å | T = 293 K |
c = 11.3809 (5) Å | 0.40 × 0.40 × 0.10 mm |
Bruker SMART APEX diffractometer | 1169 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 1168 reflections with I > 2σ(I) |
Tmin = 0.707, Tmax = 0.900 | Rint = 0.030 |
7227 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.069 | Δρmax = 0.13 e Å−3 |
S = 1.08 | Δρmin = −0.17 e Å−3 |
1169 reflections | Absolute structure: Flack (1983), 461 Friedel pairs |
125 parameters | Absolute structure parameter: 0.1 (2) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.85679 (17) | −0.10762 (9) | 0.57781 (8) | 0.0373 (3) | |
H2 | 0.838 (4) | 0.3509 (18) | 0.9130 (15) | 0.042 (4)* | |
O2 | 0.57914 (17) | 0.04638 (10) | 0.55325 (8) | 0.0383 (3) | |
O3 | 0.6519 (2) | 0.46234 (9) | 0.68254 (10) | 0.0469 (3) | |
N1 | 0.8566 (2) | 0.27436 (11) | 0.61237 (10) | 0.0353 (3) | |
H1 | 0.917 (4) | 0.3094 (19) | 0.5549 (17) | 0.054 (5)* | |
C1 | 0.7725 (2) | 0.01571 (13) | 0.58351 (10) | 0.0283 (3) | |
C5 | 0.9163 (2) | 0.12935 (13) | 0.64357 (11) | 0.0304 (3) | |
H51 | 1.078 (3) | 0.1140 (16) | 0.6258 (13) | 0.032 (4)* | |
C4 | 0.8646 (3) | 0.12504 (13) | 0.77672 (11) | 0.0340 (3) | |
H41 | 0.807 (3) | 0.0354 (17) | 0.8009 (15) | 0.045 (5)* | |
H42 | 0.995 (4) | 0.156 (2) | 0.8147 (18) | 0.056 (5)* | |
C3 | 0.6848 (2) | 0.23810 (12) | 0.79144 (11) | 0.0297 (3) | |
H31 | 0.541 (3) | 0.1976 (15) | 0.7877 (14) | 0.030 (4)* | |
N2 | 0.7038 (2) | 0.31400 (11) | 0.90532 (10) | 0.0310 (3) | |
H4 | 0.607 (3) | 0.3822 (18) | 0.9140 (14) | 0.036 (4)* | |
H3 | 0.695 (3) | 0.249 (2) | 0.9630 (14) | 0.042 (4)* | |
C2 | 0.7255 (2) | 0.34135 (13) | 0.68928 (11) | 0.0319 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0425 (6) | 0.0262 (4) | 0.0432 (5) | 0.0027 (4) | −0.0079 (4) | −0.0062 (4) |
O2 | 0.0334 (6) | 0.0347 (5) | 0.0466 (5) | −0.0016 (4) | −0.0093 (4) | 0.0089 (4) |
O3 | 0.0561 (7) | 0.0309 (5) | 0.0536 (6) | 0.0133 (5) | 0.0046 (5) | 0.0104 (4) |
N1 | 0.0451 (7) | 0.0234 (5) | 0.0374 (6) | −0.0044 (5) | 0.0072 (5) | 0.0050 (4) |
C1 | 0.0331 (7) | 0.0267 (6) | 0.0251 (5) | −0.0021 (4) | 0.0001 (5) | 0.0034 (4) |
C5 | 0.0311 (7) | 0.0241 (6) | 0.0361 (6) | −0.0008 (5) | 0.0004 (5) | 0.0004 (5) |
C4 | 0.0435 (8) | 0.0250 (6) | 0.0335 (6) | 0.0040 (5) | −0.0074 (6) | 0.0002 (5) |
C3 | 0.0294 (7) | 0.0257 (5) | 0.0340 (6) | −0.0027 (5) | −0.0020 (4) | 0.0037 (5) |
N2 | 0.0327 (7) | 0.0257 (5) | 0.0345 (5) | 0.0022 (5) | 0.0027 (4) | 0.0029 (4) |
C2 | 0.0321 (7) | 0.0270 (6) | 0.0367 (6) | −0.0015 (5) | −0.0022 (5) | 0.0044 (5) |
O1—C1 | 1.2621 (16) | C4—C3 | 1.5187 (19) |
O2—C1 | 1.2399 (17) | C4—H41 | 0.949 (17) |
O3—C2 | 1.2179 (16) | C4—H42 | 0.94 (2) |
N1—C2 | 1.3321 (17) | C3—N2 | 1.4826 (16) |
N1—C5 | 1.4485 (15) | C3—C2 | 1.5318 (16) |
N1—H1 | 0.82 (2) | C3—H31 | 0.939 (17) |
C1—C5 | 1.5295 (17) | N2—H2 | 0.88 (2) |
C5—C4 | 1.5470 (17) | N2—H4 | 0.867 (18) |
C5—H51 | 0.997 (17) | N2—H3 | 0.898 (18) |
C2—N1—C5 | 115.19 (10) | C3—C4—H41 | 109.0 (11) |
O3—C2—N1 | 127.55 (12) | C5—C4—H41 | 112.3 (10) |
O3—C2—C3 | 125.30 (12) | C3—C4—H42 | 108.7 (13) |
N1—C2—C3 | 107.15 (11) | C5—C4—H42 | 106.1 (13) |
N1—C5—C1 | 113.86 (10) | H41—C4—H42 | 116.4 (17) |
N1—C5—C4 | 102.44 (10) | N2—C3—C4 | 112.11 (10) |
C1—C5—C4 | 107.90 (10) | N2—C3—C2 | 110.40 (10) |
C3—C4—C5 | 103.37 (10) | N2—C3—H31 | 107.7 (9) |
C4—C3—C2 | 104.12 (10) | C4—C3—H31 | 111.1 (9) |
C2—N1—H1 | 126.6 (13) | C2—C3—H31 | 111.5 (9) |
C5—N1—H1 | 117.8 (13) | C3—N2—H2 | 110.3 (11) |
O2—C1—O1 | 124.76 (12) | C3—N2—H4 | 113.6 (11) |
O2—C1—C5 | 119.14 (11) | H2—N2—H4 | 107.9 (16) |
O1—C1—C5 | 115.82 (11) | C3—N2—H3 | 108.0 (11) |
N1—C5—H51 | 108.9 (9) | H2—N2—H3 | 104.4 (16) |
C1—C5—H51 | 110.7 (9) | H4—N2—H3 | 112.3 (15) |
C4—C5—H51 | 112.9 (8) | ||
N1—C5—C4—C3 | 26.38 (13) | O2—C1—C5—N1 | −26.96 (16) |
C5—C4—C3—C2 | −25.98 (13) | O1—C1—C5—N1 | 158.87 (11) |
C5—N1—C2—O3 | −179.48 (14) | O2—C1—C5—C4 | 86.02 (13) |
C5—N1—C2—C3 | 1.41 (16) | O1—C1—C5—C4 | −88.15 (13) |
C4—C3—C2—N1 | 16.23 (14) | C1—C5—C4—C3 | −94.06 (11) |
C4—C3—C2—O3 | −162.91 (14) | C5—C4—C3—N2 | −145.33 (10) |
C2—N1—C5—C4 | −17.99 (15) | N2—C3—C2—O3 | −42.41 (18) |
C2—N1—C5—C1 | 98.23 (14) | N2—C3—C2—N1 | 136.73 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.82 (2) | 2.07 (2) | 2.8535 (15) | 161.2 (18) |
N2—H2···O1ii | 0.88 (2) | 1.87 (2) | 2.7346 (16) | 168.5 (17) |
N2—H3···O1iii | 0.897 (17) | 1.886 (17) | 2.7788 (14) | 173.4 (17) |
N2—H4···O2iv | 0.868 (17) | 1.935 (17) | 2.7967 (15) | 172.3 (17) |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+3/2, −y, z+1/2; (iv) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C5H8N2O3 |
Mr | 144.13 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 5.9790 (3), 9.3665 (4), 11.3809 (5) |
V (Å3) | 637.36 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.08 |
Crystal size (mm) | 0.40 × 0.40 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.707, 0.900 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7227, 1169, 1168 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.613 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.069, 1.08 |
No. of reflections | 1169 |
No. of parameters | 125 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.13, −0.17 |
Absolute structure | Flack (1983), 461 Friedel pairs |
Absolute structure parameter | 0.1 (2) |
Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.82 (2) | 2.07 (2) | 2.8535 (15) | 161.2 (18) |
N2—H2···O1ii | 0.88 (2) | 1.87 (2) | 2.7346 (16) | 168.5 (17) |
N2—H3···O1iii | 0.897 (17) | 1.886 (17) | 2.7788 (14) | 173.4 (17) |
N2—H4···O2iv | 0.868 (17) | 1.935 (17) | 2.7967 (15) | 172.3 (17) |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+3/2, −y, z+1/2; (iv) −x+1, y+1/2, −z+3/2. |
Acknowledgements
Financial support from the Ministry of Science and Higher Education, Poland (project No. 2P05F00129) is gratefully acknowledged.
References
Bruker (2003). SADABS, SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dugave, Ch. & Demange, L. (2003). Chem. Rev. 103, 2475–2532. Web of Science CrossRef PubMed CAS Google Scholar
Dumy, P., Keller, M., Ryan, D. E., Rohwedder, B., Wöhr, T. & Mutter, M. (1997). J. Am. Chem. Soc. 119, 918–925. CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Griffin, J. F., Duax, W. L. & Weeks, C. M. (1984). Atlas of Steroid Structure, Vol. 2, p. 8. New York: IFI/Plenum. Google Scholar
Kaczmarek, K. (2009). Private communication. Google Scholar
Kaczmarek, K., Kaleta, M., Chung, N. N., Schiller, P. W. & Zabrocki, J. (2001). Acta Biochimica Pol. 48, 1159–1163. CAS Google Scholar
Kaczmarek, K., Wolf, W. M. & Zabrocki, J. (2005). Acta Cryst. E61, o629–o631. Web of Science CSD CrossRef IUCr Journals Google Scholar
Keller, M., Sager, C., Dumy, P., Schutkowski, M., Fischer, G. S. & Mutter, M. (1998). J. Am. Chem. Soc. 120, 2714–2720. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mutter, M., Wöhr, T., Gioria, S. & Keller, M. (1999). Biopolymers (Peptide Science) 51, 121–128. Web of Science CrossRef PubMed CAS Google Scholar
Paul, P. K. C., Burney, P. A., Campbell, M. M. & Osguthorpe, D. J. (1992). Bioorg. & Med. Chem. Lett. 2, 141–144. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tuchscherer, G. & Mutter, M. (2001). Chimia, 55, 306–313. CAS Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
Zabrocki, J., Smith, G. D., Dunbar, J. B., Ijima, H. & Marshall, G. R. (1988). J. Am. Chem. Soc. 110, 5875–5880. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-methyl amino acids and proline residues in the peptide chain may cause the cis-trans isomerisation of the amide bond and lead to conformational changes, which influence the molecular recognition (Dugave & Demange, 2003). Importance of the cis-amide bonds for the peptide bioactivity led to the construction of modified amino acids, which could lock a peptide bond in the cis-geometry (Dumy et al., 1997; Keller et al., 1998; Mutter et al., 1999; Tuchscherer & Mutter, 2001). In particular, Paul et al. (1992) designed mimetics of the cis-peptide bond based on the substitituted pyroglutamic acid residue. In contrast with a tetrazole replacement for the peptide bond, the pyroglutamic acid derivatives are more rigid (Zabrocki et al., 1988). Their carboxylic group could be either donor or acceptor of hydrogen bond without invloving the polypeptide main chain amide moieties (Kaczmarek et al., 2005).
The 4-aminopyroglutamic acid is a particularly useful residue for building the conformationally restricted peptide chains. Depending on the absolute configuration at both chiral centers it may be applied to construct the VIa or VIb β-turn mimetics.
The title compound may be obtained by two different methods elaborated by us, i.e. by electrophilic amination reaction of N-protected (S)-pyroglutamate ester, which gives separable 9:1 mixture of (2S,4R) and (2S,4S) diastereoisomers (Kaczmarek et al., 2001) or through Michael addition of dehydroalanine derivatives to sodium salt of N-benzyloxycarbonylaminomalonate ester, which gives after hydrolysis and decarboxylation mixture of all four possible stereomers. The details of the last reaction and resolution of stereoisomers will be described elsewhere (Kaczmarek, 2009).
A view of the title compound is given in Fig. 1. The molecule has two chiral centres viz. C3 and C5. Their absolute configurations follow from the synthetic procedure and are R and S, respectively.
The pyrrolidine ring adopts an envelope conformation with N1, C2, C3 and C5 almost coplanar and the C4 situated at the flap.
Additionally, the former four endocyclic atoms are coplanar with the exocyclic carbonyl oxygen, the average r.m.s. deviation from the mean plane is 0.06 Å.
The three lowest ring asymmetry parameters (Griffin et al., 1984) are: CS(C4) = 1.26 (14), C2(C2) = 11.92 (14), C2(N1) = 15.46 (14)°. The carboxylate substituent is located axially in conformation stabilized by the short N1···O2 contact [2.787 (2) Å], while the ammonium group occupies equatorial position.
In the crystal each molecule is linked through N—H ···O hydrogen bonds with eight adjacent molecules, their deatils are shown in Table 2 and Fig. 2.