organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-tert-butyl-5-(4-chloro­benz­yl)thia­zol-3-ium chloride

aCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
*Correspondence e-mail: axhu0731@yahoo.com.cn

(Received 3 February 2010; accepted 25 February 2010; online 3 March 2010)

The title compound, C14H18ClN2S+·Cl, crystallizes with two formula units in the asymmetric unit. The dihedral angles between the mean planes of the chloro­phenyl and thia­zole rings are 87.8 (2) and 88.0 (2)° in the two independent mol­ecules. In the crystal, the anions and cations are connected by N—H⋯Cl hydrogen bonds.

Related literature

For 2-amino-4-aryl­thia­zol compounds, see Marcantonio et al. (2002[Marcantonio, K. M., Frey, L. F., Murry, J. A. & Chen, C. Y. (2002). Tetrahedron Lett.. 43, 8845-8848.]) and for their synthesis, see: Hu et al. (2007[Hu, A.-X., Zhang, J.-Y., Cao, G., Xu, J.-J. & Xia, L. (2007). Acta Cryst. E63, o2533.]). For related structures, see: Cao et al. (2007[Cao, G., Hu, A.-X., Xu, J.-J. & Xia, L. (2007). Acta Cryst. E63, o2534.]); He et al. (2006[He, D.-H., Cao, G. & Hu, A.-X. (2006). Acta Cryst. E62, o5637-o5638.]); Hu et al. (2007[Hu, A.-X., Zhang, J.-Y., Cao, G., Xu, J.-J. & Xia, L. (2007). Acta Cryst. E63, o2533.]); Xu et al. (2007[Xu, J.-J., Hu, A.-X. & Cao, G. (2007). Acta Cryst. E63, o533-o534.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18ClN2S+·Cl

  • Mr = 317.26

  • Monoclinic, P 21 /n

  • a = 12.0810 (5) Å

  • b = 17.0208 (8) Å

  • c = 16.6465 (7) Å

  • β = 108.587 (1)°

  • V = 3244.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 173 K

  • 0.45 × 0.41 × 0.35 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Gottingen, Germany.]) Tmin = 0.801, Tmax = 0.840

  • 16212 measured reflections

  • 7029 independent reflections

  • 5252 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.03

  • 7029 reflections

  • 349 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl3 0.88 2.33 3.0882 (16) 144
N2—H2A⋯Cl3 0.88 2.34 3.1078 (19) 146
N2—H2B⋯Cl4 0.88 2.21 3.0327 (19) 155
N3—H3⋯Cl4 0.88 2.27 3.0289 (17) 145
N4—H4A⋯Cl4 0.88 2.36 3.1131 (19) 143
N4—H4B⋯Cl3i 0.88 2.22 3.0543 (19) 157
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazole compounds are important nitrogen-containing heterocyclic compounds, because of their wide range of biological activity. 2-Amino-4-arylthiazol compounds play an important role in the field of organic pharmaceutical chemistry (Marcantonio et al., 2002). The synthesis of 2-amino-4-arylthiazoles was reported before (Cao et al., 2007, He et al., 2006, Hu et al., 2007 b, Xu et al., 2007). The title compound was prepared as part of an ongoing investigation on the synthesis and structural properties of 2-amino-4-arylthiazole derivatives.

Related literature top

For 2-amino-4-arylthiazol compounds, see Marcantonio et al. (2002) and for their synthesis, see: Hu et al. (2007). For related structures, see: Cao et al. (2007); He et al. (2006); Hu et al. (2007); Xu et al. (2007).

Experimental top

0.05 mol 2-Chloro-1-(4-chlorophenyl)-4,4-dimethyl-3-pentanone and 0.05 mol thiurea were dissolved in 100 ml EtOH and heated to reflux 12 h. After finishing the reaction, the solution was cooled and the precipitate formed was filtered out, dried, givingthe the title compound, yield 71.3 %. m.p.474–475.1 K.The crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperation.

Refinement top

All H atoms were refined using a riding model, with N—H distances of 0.88 and C—H distances ranging from 0.95 to 0.98 Å, and with Uiso(H) = 1.2Ueq(C,N), or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids.
2-Amino-4-tert-butyl-5-(4-chlorobenzyl)thiazol-3-ium chloride top
Crystal data top
C14H18ClN2S+·ClF(000) = 1328
Mr = 317.26Dx = 1.299 Mg m3
Monoclinic, P21/nMelting point: 474.5 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.0810 (5) ÅCell parameters from 7242 reflections
b = 17.0208 (8) Åθ = 2.2–27.0°
c = 16.6465 (7) ŵ = 0.52 mm1
β = 108.587 (1)°T = 173 K
V = 3244.4 (2) Å3Block, colorless
Z = 80.45 × 0.41 × 0.35 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
7029 independent reflections
Radiation source: fine-focus sealed tube5252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1515
Tmin = 0.801, Tmax = 0.840k = 216
16212 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0483P)2 + 1.4763P]
where P = (Fo2 + 2Fc2)/3
7029 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H18ClN2S+·ClV = 3244.4 (2) Å3
Mr = 317.26Z = 8
Monoclinic, P21/nMo Kα radiation
a = 12.0810 (5) ŵ = 0.52 mm1
b = 17.0208 (8) ÅT = 173 K
c = 16.6465 (7) Å0.45 × 0.41 × 0.35 mm
β = 108.587 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
7029 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5252 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.840Rint = 0.021
16212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
7029 reflectionsΔρmin = 0.19 e Å3
349 parameters
Special details top

Experimental. The 1H NMR (CDCl3,400 MHz) of 4-tert-butyl-5-(4-chlorobenzyl)thiazol-2-amine: δ (p.p.m.) 1.32(s, 9H, 3×CH3), 4.1(s, 2H, CH2),4.8(bs, 2H, NH2),7.12(d, J = 8.0 Hz, 2H, C6H4Cl 2,6-H),7.26(d, J = 8.0 Hz, 2H, C6H4Cl 3,5-H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.71220 (7)0.00215 (5)1.23595 (4)0.0741 (2)
Cl20.13936 (7)0.72411 (4)1.04620 (5)0.06191 (19)
Cl30.86628 (4)0.27452 (3)0.67478 (4)0.03947 (13)
Cl40.37086 (4)0.25787 (3)0.68564 (4)0.04414 (14)
S10.56742 (5)0.11936 (3)0.77844 (4)0.03767 (14)
S20.09432 (5)0.31590 (4)0.85845 (4)0.04243 (15)
C10.65841 (17)0.17991 (11)0.74588 (13)0.0335 (4)
C20.78072 (18)0.07566 (11)0.80669 (12)0.0307 (4)
C30.68127 (19)0.05130 (11)0.81964 (12)0.0334 (4)
C40.90343 (19)0.04129 (12)0.83044 (13)0.0378 (5)
C50.9824 (2)0.08743 (17)0.90556 (16)0.0584 (7)
H5A0.98630.14230.88900.088*
H5B1.06100.06460.92310.088*
H5C0.95070.08500.95280.088*
C60.9041 (3)0.04586 (15)0.85414 (19)0.0631 (7)
H6A0.87630.05150.90310.095*
H6B0.98370.06650.86840.095*
H6C0.85260.07520.80600.095*
C70.9498 (2)0.04806 (17)0.75503 (16)0.0545 (7)
H7A0.89650.02090.70590.082*
H7B1.02740.02400.76980.082*
H7C0.95510.10360.74120.082*
C80.6485 (2)0.01887 (12)0.86164 (13)0.0396 (5)
H8A0.69300.06480.85210.048*
H8B0.56450.03000.83350.048*
C90.66972 (19)0.01103 (12)0.95659 (13)0.0346 (4)
C100.6492 (2)0.07585 (14)0.99990 (15)0.0546 (7)
H100.62560.12390.97030.065*
C110.6625 (3)0.07207 (16)1.08559 (15)0.0636 (8)
H110.64780.11701.11460.076*
C120.6971 (2)0.00275 (15)1.12798 (14)0.0470 (6)
C130.7210 (2)0.06203 (14)1.08781 (14)0.0484 (6)
H130.74670.10941.11820.058*
C140.7073 (2)0.05744 (13)1.00207 (14)0.0452 (5)
H140.72400.10220.97390.054*
C150.17384 (17)0.28756 (13)0.79473 (14)0.0391 (5)
C160.31809 (17)0.33017 (11)0.91593 (13)0.0318 (4)
C170.22313 (18)0.34283 (12)0.93980 (13)0.0348 (4)
C180.44803 (17)0.34477 (12)0.95687 (13)0.0331 (4)
C190.4745 (2)0.38497 (14)1.04315 (14)0.0473 (6)
H19A0.43000.43401.03660.071*
H19B0.55820.39661.06580.071*
H19C0.45230.35011.08230.071*
C200.51412 (19)0.26639 (13)0.96966 (16)0.0462 (5)
H20A0.48730.23271.00750.069*
H20B0.59800.27620.99480.069*
H20C0.49920.24020.91480.069*
C210.4904 (2)0.39763 (14)0.89765 (14)0.0453 (5)
H21A0.48100.36990.84430.068*
H21B0.57290.41060.92480.068*
H21C0.44410.44610.88610.068*
C220.2038 (2)0.37428 (12)1.01857 (13)0.0383 (5)
H22A0.27250.36051.06770.046*
H22B0.13540.34701.02610.046*
C230.18367 (16)0.46231 (12)1.02080 (12)0.0314 (4)
C240.15976 (19)0.49386 (13)1.09061 (13)0.0409 (5)
H240.15270.45961.13370.049*
C250.1460 (2)0.57353 (14)1.09893 (14)0.0449 (5)
H250.13120.59401.14760.054*
C260.15426 (18)0.62310 (12)1.03541 (14)0.0388 (5)
C270.17377 (19)0.59376 (13)0.96404 (13)0.0395 (5)
H270.17660.62810.91970.047*
C280.18928 (19)0.51355 (12)0.95759 (13)0.0374 (5)
H280.20410.49330.90880.045*
N10.76480 (14)0.14883 (9)0.76544 (10)0.0305 (4)
H10.82200.17280.75320.037*
N20.62892 (16)0.24695 (11)0.70590 (14)0.0518 (5)
H2A0.68080.27400.69050.062*
H2B0.55720.26490.69450.062*
N30.28711 (14)0.29818 (10)0.83386 (11)0.0340 (4)
H30.33990.28590.80980.041*
N40.13062 (16)0.25857 (13)0.71759 (13)0.0569 (6)
H4A0.17770.24500.68910.068*
H4B0.05470.25280.69460.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0859 (5)0.1070 (6)0.0370 (3)0.0352 (4)0.0301 (3)0.0158 (3)
Cl20.0842 (5)0.0404 (3)0.0755 (5)0.0100 (3)0.0456 (4)0.0052 (3)
Cl30.0308 (3)0.0335 (3)0.0563 (3)0.0032 (2)0.0168 (2)0.0068 (2)
Cl40.0338 (3)0.0539 (3)0.0475 (3)0.0088 (2)0.0170 (2)0.0081 (2)
S10.0384 (3)0.0332 (3)0.0488 (3)0.0005 (2)0.0242 (2)0.0046 (2)
S20.0306 (3)0.0534 (3)0.0479 (3)0.0055 (2)0.0191 (2)0.0129 (3)
C10.0339 (11)0.0289 (10)0.0426 (12)0.0028 (8)0.0191 (9)0.0053 (8)
C20.0418 (11)0.0245 (9)0.0255 (10)0.0034 (8)0.0102 (8)0.0001 (7)
C30.0459 (12)0.0245 (9)0.0315 (10)0.0014 (8)0.0147 (9)0.0005 (8)
C40.0428 (12)0.0316 (11)0.0364 (11)0.0107 (9)0.0090 (9)0.0027 (9)
C50.0449 (14)0.0663 (17)0.0520 (15)0.0113 (12)0.0015 (12)0.0127 (13)
C60.0666 (17)0.0408 (14)0.0777 (19)0.0192 (13)0.0172 (15)0.0162 (13)
C70.0453 (13)0.0696 (17)0.0521 (15)0.0258 (13)0.0205 (11)0.0077 (13)
C80.0595 (14)0.0280 (10)0.0332 (11)0.0068 (9)0.0172 (10)0.0009 (8)
C90.0425 (12)0.0307 (10)0.0338 (11)0.0053 (9)0.0164 (9)0.0002 (8)
C100.0857 (19)0.0417 (13)0.0420 (13)0.0294 (13)0.0284 (13)0.0065 (10)
C110.100 (2)0.0567 (16)0.0399 (14)0.0356 (15)0.0311 (14)0.0010 (12)
C120.0496 (13)0.0640 (15)0.0326 (12)0.0179 (12)0.0206 (10)0.0089 (10)
C130.0587 (15)0.0484 (13)0.0407 (13)0.0160 (12)0.0195 (11)0.0134 (10)
C140.0623 (15)0.0334 (11)0.0447 (13)0.0125 (10)0.0240 (11)0.0034 (10)
C150.0281 (10)0.0450 (12)0.0471 (13)0.0062 (9)0.0159 (9)0.0145 (10)
C160.0342 (10)0.0256 (9)0.0361 (11)0.0035 (8)0.0117 (9)0.0034 (8)
C170.0374 (11)0.0328 (10)0.0358 (11)0.0027 (9)0.0139 (9)0.0025 (8)
C180.0331 (10)0.0292 (10)0.0342 (11)0.0053 (8)0.0067 (8)0.0019 (8)
C190.0455 (13)0.0499 (14)0.0411 (13)0.0052 (11)0.0064 (10)0.0121 (10)
C200.0384 (12)0.0364 (12)0.0591 (15)0.0005 (9)0.0089 (11)0.0026 (10)
C210.0401 (12)0.0470 (13)0.0447 (13)0.0166 (10)0.0078 (10)0.0030 (10)
C220.0460 (12)0.0386 (11)0.0354 (11)0.0022 (9)0.0199 (10)0.0022 (9)
C230.0270 (10)0.0395 (11)0.0275 (10)0.0039 (8)0.0085 (8)0.0000 (8)
C240.0469 (13)0.0484 (13)0.0327 (11)0.0143 (10)0.0203 (10)0.0085 (9)
C250.0519 (14)0.0530 (14)0.0365 (12)0.0184 (11)0.0236 (10)0.0014 (10)
C260.0368 (11)0.0366 (11)0.0452 (12)0.0068 (9)0.0161 (10)0.0027 (9)
C270.0449 (12)0.0402 (12)0.0376 (12)0.0008 (10)0.0191 (10)0.0037 (9)
C280.0480 (13)0.0402 (11)0.0274 (10)0.0005 (9)0.0169 (9)0.0030 (8)
N10.0308 (8)0.0263 (8)0.0377 (9)0.0031 (7)0.0154 (7)0.0052 (7)
N20.0365 (10)0.0377 (10)0.0897 (16)0.0130 (8)0.0322 (10)0.0280 (10)
N30.0271 (8)0.0378 (9)0.0394 (10)0.0060 (7)0.0135 (7)0.0120 (7)
N40.0279 (9)0.0891 (16)0.0538 (12)0.0124 (10)0.0129 (9)0.0382 (12)
Geometric parameters (Å, º) top
Cl1—C121.750 (2)C15—N41.318 (3)
Cl2—C261.744 (2)C15—N31.327 (3)
S1—C11.716 (2)C16—C171.346 (3)
S1—C31.762 (2)C16—N31.406 (2)
S2—C151.712 (2)C16—C181.519 (3)
S2—C171.767 (2)C17—C221.502 (3)
C1—N21.312 (3)C18—C191.530 (3)
C1—N11.331 (2)C18—C201.534 (3)
C2—C31.352 (3)C18—C211.537 (3)
C2—N11.406 (2)C19—H19A0.9800
C2—C41.524 (3)C19—H19B0.9800
C3—C81.500 (3)C19—H19C0.9800
C4—C51.527 (3)C20—H20A0.9800
C4—C71.533 (3)C20—H20B0.9800
C4—C61.534 (3)C20—H20C0.9800
C5—H5A0.9800C21—H21A0.9800
C5—H5B0.9800C21—H21B0.9800
C5—H5C0.9800C21—H21C0.9800
C6—H6A0.9800C22—C231.520 (3)
C6—H6B0.9800C22—H22A0.9900
C6—H6C0.9800C22—H22B0.9900
C7—H7A0.9800C23—C281.385 (3)
C7—H7B0.9800C23—C241.392 (3)
C7—H7C0.9800C24—C251.378 (3)
C8—C91.524 (3)C24—H240.9500
C8—H8A0.9900C25—C261.381 (3)
C8—H8B0.9900C25—H250.9500
C9—C101.383 (3)C26—C271.377 (3)
C9—C141.385 (3)C27—C281.387 (3)
C10—C111.385 (3)C27—H270.9500
C10—H100.9500C28—H280.9500
C11—C121.370 (3)N1—H10.8800
C11—H110.9500N2—H2A0.8800
C12—C131.368 (3)N2—H2B0.8800
C13—C141.385 (3)N3—H30.8800
C13—H130.9500N4—H4A0.8800
C14—H140.9500N4—H4B0.8800
C1—S1—C391.06 (10)N3—C16—C18114.59 (17)
C15—S2—C1790.97 (10)C16—C17—C22134.4 (2)
N2—C1—N1123.71 (18)C16—C17—S2110.96 (15)
N2—C1—S1125.80 (16)C22—C17—S2114.66 (15)
N1—C1—S1110.49 (14)C16—C18—C19111.79 (17)
C3—C2—N1111.08 (17)C16—C18—C20109.72 (16)
C3—C2—C4132.96 (18)C19—C18—C20108.34 (18)
N1—C2—C4115.92 (17)C16—C18—C21108.38 (16)
C2—C3—C8134.36 (19)C19—C18—C21109.12 (17)
C2—C3—S1111.08 (14)C20—C18—C21109.46 (18)
C8—C3—S1114.55 (16)C18—C19—H19A109.5
C2—C4—C5108.51 (17)C18—C19—H19B109.5
C2—C4—C7109.74 (16)H19A—C19—H19B109.5
C5—C4—C7109.6 (2)C18—C19—H19C109.5
C2—C4—C6111.26 (19)H19A—C19—H19C109.5
C5—C4—C6109.6 (2)H19B—C19—H19C109.5
C7—C4—C6108.1 (2)C18—C20—H20A109.5
C4—C5—H5A109.5C18—C20—H20B109.5
C4—C5—H5B109.5H20A—C20—H20B109.5
H5A—C5—H5B109.5C18—C20—H20C109.5
C4—C5—H5C109.5H20A—C20—H20C109.5
H5A—C5—H5C109.5H20B—C20—H20C109.5
H5B—C5—H5C109.5C18—C21—H21A109.5
C4—C6—H6A109.5C18—C21—H21B109.5
C4—C6—H6B109.5H21A—C21—H21B109.5
H6A—C6—H6B109.5C18—C21—H21C109.5
C4—C6—H6C109.5H21A—C21—H21C109.5
H6A—C6—H6C109.5H21B—C21—H21C109.5
H6B—C6—H6C109.5C17—C22—C23116.30 (17)
C4—C7—H7A109.5C17—C22—H22A108.2
C4—C7—H7B109.5C23—C22—H22A108.2
H7A—C7—H7B109.5C17—C22—H22B108.2
C4—C7—H7C109.5C23—C22—H22B108.2
H7A—C7—H7C109.5H22A—C22—H22B107.4
H7B—C7—H7C109.5C28—C23—C24117.70 (19)
C3—C8—C9115.56 (17)C28—C23—C22123.74 (18)
C3—C8—H8A108.4C24—C23—C22118.56 (18)
C9—C8—H8A108.4C25—C24—C23121.8 (2)
C3—C8—H8B108.4C25—C24—H24119.1
C9—C8—H8B108.4C23—C24—H24119.1
H8A—C8—H8B107.5C24—C25—C26118.94 (19)
C10—C9—C14117.9 (2)C24—C25—H25120.5
C10—C9—C8118.15 (18)C26—C25—H25120.5
C14—C9—C8123.92 (18)C27—C26—C25120.9 (2)
C9—C10—C11121.2 (2)C27—C26—Cl2119.87 (17)
C9—C10—H10119.4C25—C26—Cl2119.25 (16)
C11—C10—H10119.4C26—C27—C28119.2 (2)
C12—C11—C10119.1 (2)C26—C27—H27120.4
C12—C11—H11120.4C28—C27—H27120.4
C10—C11—H11120.4C23—C28—C27121.38 (19)
C13—C12—C11121.3 (2)C23—C28—H28119.3
C13—C12—Cl1119.65 (18)C27—C28—H28119.3
C11—C12—Cl1119.02 (19)C1—N1—C2116.29 (16)
C12—C13—C14118.9 (2)C1—N1—H1121.9
C12—C13—H13120.5C2—N1—H1121.9
C14—C13—H13120.5C1—N2—H2A120.0
C9—C14—C13121.4 (2)C1—N2—H2B120.0
C9—C14—H14119.3H2A—N2—H2B120.0
C13—C14—H14119.3C15—N3—C16116.31 (17)
N4—C15—N3123.75 (19)C15—N3—H3121.8
N4—C15—S2125.65 (16)C16—N3—H3121.8
N3—C15—S2110.60 (15)C15—N4—H4A120.0
C17—C16—N3111.16 (17)C15—N4—H4B120.0
C17—C16—C18134.23 (18)H4A—N4—H4B120.0
C3—S1—C1—N2179.1 (2)N3—C16—C17—S20.9 (2)
C3—S1—C1—N10.27 (16)C18—C16—C17—S2177.18 (19)
N1—C2—C3—C8177.9 (2)C15—S2—C17—C160.42 (17)
C4—C2—C3—C80.4 (4)C15—S2—C17—C22179.73 (17)
N1—C2—C3—S11.0 (2)C17—C16—C18—C192.1 (3)
C4—C2—C3—S1178.50 (18)N3—C16—C18—C19175.88 (18)
C1—S1—C3—C20.75 (16)C17—C16—C18—C20118.1 (3)
C1—S1—C3—C8178.39 (16)N3—C16—C18—C2063.9 (2)
C3—C2—C4—C5103.9 (3)C17—C16—C18—C21122.4 (3)
N1—C2—C4—C573.5 (2)N3—C16—C18—C2155.6 (2)
C3—C2—C4—C7136.4 (2)C16—C17—C22—C2391.1 (3)
N1—C2—C4—C746.2 (2)S2—C17—C22—C2388.7 (2)
C3—C2—C4—C616.8 (3)C17—C22—C23—C283.9 (3)
N1—C2—C4—C6165.77 (19)C17—C22—C23—C24176.98 (19)
C2—C3—C8—C987.5 (3)C28—C23—C24—C252.3 (3)
S1—C3—C8—C991.4 (2)C22—C23—C24—C25176.9 (2)
C3—C8—C9—C10175.3 (2)C23—C24—C25—C261.2 (4)
C3—C8—C9—C145.3 (3)C24—C25—C26—C271.1 (3)
C14—C9—C10—C111.8 (4)C24—C25—C26—Cl2178.98 (18)
C8—C9—C10—C11177.6 (3)C25—C26—C27—C282.2 (3)
C9—C10—C11—C120.3 (5)Cl2—C26—C27—C28177.89 (17)
C10—C11—C12—C131.4 (5)C24—C23—C28—C271.1 (3)
C10—C11—C12—Cl1179.3 (2)C22—C23—C28—C27178.0 (2)
C11—C12—C13—C141.5 (4)C26—C27—C28—C231.1 (3)
Cl1—C12—C13—C14179.3 (2)N2—C1—N1—C2178.6 (2)
C10—C9—C14—C131.8 (4)S1—C1—N1—C20.3 (2)
C8—C9—C14—C13177.6 (2)C3—C2—N1—C10.9 (2)
C12—C13—C14—C90.2 (4)C4—C2—N1—C1178.81 (17)
C17—S2—C15—N4179.8 (2)N4—C15—N3—C16179.7 (2)
C17—S2—C15—N30.19 (17)S2—C15—N3—C160.8 (2)
N3—C16—C17—C22179.3 (2)C17—C16—N3—C151.1 (3)
C18—C16—C17—C222.6 (4)C18—C16—N3—C15177.38 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl30.882.333.0882 (16)144
N2—H2A···Cl30.882.343.1078 (19)146
N2—H2B···Cl40.882.213.0327 (19)155
N3—H3···Cl40.882.273.0289 (17)145
N4—H4A···Cl40.882.363.1131 (19)143
N4—H4B···Cl3i0.882.223.0543 (19)157
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H18ClN2S+·Cl
Mr317.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)12.0810 (5), 17.0208 (8), 16.6465 (7)
β (°) 108.587 (1)
V3)3244.4 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.45 × 0.41 × 0.35
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.801, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
16212, 7029, 5252
Rint0.021
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.03
No. of reflections7029
No. of parameters349
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.19

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl30.882.333.0882 (16)144.1
N2—H2A···Cl30.882.343.1078 (19)146.3
N2—H2B···Cl40.882.213.0327 (19)155.1
N3—H3···Cl40.882.273.0289 (17)145.1
N4—H4A···Cl40.882.363.1131 (19)143.4
N4—H4B···Cl3i0.882.223.0543 (19)157.2
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was funded by the Central University Basic Scientific Research Fund of Hunan University.

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G., Hu, A.-X., Xu, J.-J. & Xia, L. (2007). Acta Cryst. E63, o2534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, D.-H., Cao, G. & Hu, A.-X. (2006). Acta Cryst. E62, o5637–o5638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, A.-X., Zhang, J.-Y., Cao, G., Xu, J.-J. & Xia, L. (2007). Acta Cryst. E63, o2533.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarcantonio, K. M., Frey, L. F., Murry, J. A. & Chen, C. Y. (2002). Tetrahedron Lett.. 43, 8845–8848.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J.-J., Hu, A.-X. & Cao, G. (2007). Acta Cryst. E63, o533–o534.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds