organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hydr­­oxy-10-phenacyl­pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bCNRST, Division of UATRS Angle Allal Fassi/FAR, BP 8027 Hay Riad, 10000 Rabat, Morocco, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 21 February 2010; accepted 23 February 2010; online 3 March 2010)

The title compound, C20H18N2O4, consists of a benzodiazepinedione system fused to a pyrrole system. The seven-membered ring adopts a boat-shaped conformation (with the methine C atom as the prow); the five-membered ring adopts an enveloped-shaped conformation (with the hydr­oxy-bearing C atom as the flap). In the crystal, the hydr­oxy group is hydrogen bonded to the carbonyl O atom of an adjacent mol­ecule, generating a zigzag chain.

Related literature

Pyrrolo[2,1-c][1,4]benzodiazepines are potent anti­biotics produced by Streptomyces species; see: Cargill et al. (1974[Cargill, C., Bachmann, E. & Zbinden, G. (1974). J. Natl. Cancer Inst. 53, 481- 486.]). For the design of DNA inter-strand cross-linkingand conjugate agents to enhance the sequence selectivity and selectivity for tumor cells, see: Gregson et al. (2004[Gregson, S. T., Howard, P. W., Gullick, D. R., Hamaguchi, A., Corcoran, K. E., Brooks, N. A., Hartley, J. A., Jenkins, T. C., Patel, S., Guille, M. J. & Thurston, D. E. (2004). J. Med. Chem. 47, 1161-1174.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O4

  • Mr = 350.36

  • Orthorhombic, P 21 21 21

  • a = 8.8337 (2) Å

  • b = 9.9476 (2) Å

  • c = 18.9295 (4) Å

  • V = 1663.41 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.3 mm

Data collection
  • Bruker APEXII diffractometer

  • 12798 measured reflections

  • 2189 independent reflections

  • 1967 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.118

  • S = 1.15

  • 2189 reflections

  • 239 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.84 (1) 2.02 (2) 2.810 (2) 157 (4)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

Pyrrolo[2,1-c][1,4]benzodiazepines are potent antibiotics produced by Streptomyces species; see: Cargill et al. (1974). For the design of DNA inter-strand cross-linkingand conjugate agents to enhance the sequence selectivity and selectivity for tumor cells, see: Gregson et al. (2004). Top of scheme cropped - please replace

Experimental top

2-Hydroxy-pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione (2 g, 8.62 mmol), phenacyl bromide (1.7 g, 8.62 mmol), potassium carbonate (2.4 g, 17.24 mmol) and a catalytic quantity of tetra-n-butylammonium bromide was stirred under mild reflux in N,N-dimethylformamide (60 ml) for 48 h. The insoluble salts were filtered off and the solvent was removed under vacuum. The residue was separated by chromatography on silica gel with an n-hexane:ethyl acetate (3:7) solvent system. The compound was obtained as colorless crystals in 70% yield upon evaporation of the solvent.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93-0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C). The oxygen-bound H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of O–H 0.84±0.01 Å. Due to the absence of anomalous scatterers Friedel pairs were merged and the absolute configuration was arbitrarily set.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C20H18N2O4 at the 50% probability level; hydrogen atoms are drawn as arbitrary radius.
2-Hydroxy-10-phenacylpyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione top
Crystal data top
C20H18N2O4F(000) = 736
Mr = 350.36Dx = 1.399 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4805 reflections
a = 8.8337 (2) Åθ = 3.0–29.4°
b = 9.9476 (2) ŵ = 0.10 mm1
c = 18.9295 (4) ÅT = 293 K
V = 1663.41 (6) Å3Block, colorless
Z = 40.3 × 0.3 × 0.3 mm
Data collection top
Bruker APEXII
diffractometer
1967 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ϕ and ω scansh = 1111
12798 measured reflectionsk = 1212
2189 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0831P)2]
where P = (Fo2 + 2Fc2)/3
2189 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C20H18N2O4V = 1663.41 (6) Å3
Mr = 350.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8337 (2) ŵ = 0.10 mm1
b = 9.9476 (2) ÅT = 293 K
c = 18.9295 (4) Å0.3 × 0.3 × 0.3 mm
Data collection top
Bruker APEXII
diffractometer
1967 reflections with I > 2σ(I)
12798 measured reflectionsRint = 0.030
2189 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.31 e Å3
2189 reflectionsΔρmin = 0.21 e Å3
239 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0779 (2)0.39357 (16)0.24376 (9)0.0502 (4)
O20.47486 (17)0.28910 (19)0.16152 (10)0.0518 (4)
O30.1749 (3)0.72478 (18)0.14616 (10)0.0573 (5)
H30.126 (4)0.779 (3)0.1712 (18)0.096 (14)*
O40.4142 (2)0.07005 (18)0.02926 (9)0.0558 (5)
N10.2550 (2)0.18311 (17)0.13852 (9)0.0343 (4)
N20.1470 (2)0.44132 (16)0.19462 (9)0.0352 (4)
C10.1014 (2)0.18283 (19)0.11457 (11)0.0329 (4)
C20.0577 (3)0.0859 (3)0.06534 (14)0.0500 (6)
H20.12910.02610.04760.060*
C30.0909 (3)0.0780 (3)0.04276 (15)0.0566 (7)
H3A0.11850.01170.01060.068*
C40.1975 (3)0.1657 (3)0.06668 (14)0.0520 (6)
H40.29630.16130.04980.062*
C50.1575 (3)0.2611 (2)0.11618 (13)0.0412 (5)
H50.23050.32020.13320.049*
C60.0085 (2)0.27020 (19)0.14120 (10)0.0325 (4)
C70.0178 (2)0.37199 (19)0.19761 (11)0.0338 (4)
C80.1753 (3)0.5578 (2)0.23967 (11)0.0407 (5)
H8A0.23120.53250.28170.049*
H8B0.08120.60060.25360.049*
C90.2686 (3)0.6495 (2)0.19265 (12)0.0433 (5)
H90.33420.70850.22060.052*
C100.3610 (3)0.5518 (2)0.14819 (13)0.0450 (6)
H10A0.45290.52600.17270.054*
H10B0.38800.59200.10320.054*
C110.2580 (2)0.42975 (19)0.13715 (11)0.0332 (4)
H110.20780.43440.09110.040*
C120.3410 (2)0.2959 (2)0.14577 (11)0.0342 (4)
C130.3331 (3)0.0550 (2)0.14878 (11)0.0372 (4)
H13A0.25860.01420.15850.045*
H13B0.39870.06210.18970.045*
C140.4276 (2)0.0125 (2)0.08502 (11)0.0350 (4)
C150.5352 (2)0.10218 (19)0.09258 (10)0.0328 (4)
C160.5804 (3)0.1537 (2)0.15741 (12)0.0389 (5)
H160.53950.11940.19890.047*
C170.6868 (3)0.2567 (3)0.16037 (15)0.0503 (6)
H170.71750.29020.20390.060*
C180.7472 (3)0.3094 (3)0.09913 (16)0.0546 (6)
H180.81880.37780.10140.065*
C190.7009 (3)0.2605 (2)0.03459 (15)0.0500 (6)
H190.74050.29670.00680.060*
C200.5961 (2)0.1579 (2)0.03106 (12)0.0406 (5)
H200.56560.12550.01280.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0493 (9)0.0446 (8)0.0566 (9)0.0037 (8)0.0283 (8)0.0046 (8)
O20.0303 (7)0.0521 (10)0.0730 (11)0.0000 (8)0.0009 (8)0.0129 (9)
O30.0768 (13)0.0405 (9)0.0548 (11)0.0056 (10)0.0169 (10)0.0012 (8)
O40.0678 (12)0.0546 (10)0.0450 (9)0.0199 (10)0.0092 (9)0.0123 (8)
N10.0318 (8)0.0296 (8)0.0415 (9)0.0026 (7)0.0014 (7)0.0074 (7)
N20.0379 (9)0.0292 (8)0.0385 (8)0.0043 (7)0.0131 (8)0.0076 (7)
C10.0327 (9)0.0300 (9)0.0360 (9)0.0053 (8)0.0024 (8)0.0021 (8)
C20.0461 (12)0.0484 (13)0.0555 (14)0.0071 (11)0.0008 (11)0.0178 (11)
C30.0553 (14)0.0611 (15)0.0535 (14)0.0201 (14)0.0088 (12)0.0107 (12)
C40.0378 (11)0.0618 (15)0.0563 (14)0.0151 (12)0.0092 (11)0.0121 (12)
C50.0318 (10)0.0429 (11)0.0490 (12)0.0046 (9)0.0025 (10)0.0128 (10)
C60.0321 (9)0.0295 (8)0.0360 (9)0.0046 (8)0.0062 (8)0.0051 (8)
C70.0352 (9)0.0281 (9)0.0381 (9)0.0006 (9)0.0097 (9)0.0017 (7)
C80.0507 (12)0.0329 (9)0.0386 (10)0.0039 (10)0.0101 (10)0.0110 (8)
C90.0497 (12)0.0326 (10)0.0474 (11)0.0085 (10)0.0093 (11)0.0134 (9)
C100.0436 (12)0.0360 (10)0.0553 (13)0.0132 (10)0.0165 (11)0.0136 (9)
C110.0335 (9)0.0300 (9)0.0362 (9)0.0055 (8)0.0091 (9)0.0063 (8)
C120.0301 (9)0.0355 (10)0.0369 (10)0.0017 (9)0.0060 (8)0.0093 (8)
C130.0402 (10)0.0307 (9)0.0408 (10)0.0028 (9)0.0047 (10)0.0018 (8)
C140.0365 (10)0.0295 (9)0.0390 (10)0.0022 (9)0.0040 (9)0.0017 (8)
C150.0315 (9)0.0270 (8)0.0398 (10)0.0044 (8)0.0028 (8)0.0048 (7)
C160.0387 (10)0.0365 (10)0.0415 (10)0.0023 (9)0.0015 (9)0.0023 (8)
C170.0469 (13)0.0456 (12)0.0586 (14)0.0048 (12)0.0040 (12)0.0076 (11)
C180.0435 (12)0.0422 (12)0.0781 (18)0.0112 (11)0.0071 (13)0.0013 (12)
C190.0460 (13)0.0426 (12)0.0615 (14)0.0023 (11)0.0118 (11)0.0147 (11)
C200.0419 (11)0.0400 (11)0.0401 (10)0.0025 (10)0.0065 (9)0.0082 (9)
Geometric parameters (Å, º) top
O1—C71.235 (2)C8—H8B0.9700
O2—C121.221 (3)C9—C101.523 (3)
O3—C91.421 (3)C9—H90.9800
O3—H30.841 (10)C10—C111.531 (3)
O4—C141.207 (3)C10—H10A0.9700
N1—C121.362 (3)C10—H10B0.9700
N1—C11.430 (3)C11—C121.529 (3)
N1—C131.462 (3)C11—H110.9800
N2—C71.334 (3)C13—C141.528 (3)
N2—C81.460 (2)C13—H13A0.9700
N2—C111.469 (2)C13—H13B0.9700
C1—C21.396 (3)C14—C151.492 (3)
C1—C61.397 (3)C15—C161.389 (3)
C2—C31.383 (4)C15—C201.397 (3)
C2—H20.9300C16—C171.391 (3)
C3—C41.361 (4)C16—H160.9300
C3—H3A0.9300C17—C181.379 (4)
C4—C51.380 (4)C17—H170.9300
C4—H40.9300C18—C191.377 (4)
C5—C61.402 (3)C18—H180.9300
C5—H50.9300C19—C201.379 (3)
C6—C71.490 (3)C19—H190.9300
C8—C91.518 (3)C20—H200.9300
C8—H8A0.9700
C9—O3—H3107 (3)C9—C10—H10A110.7
C12—N1—C1124.24 (17)C11—C10—H10A110.7
C12—N1—C13116.19 (16)C9—C10—H10B110.7
C1—N1—C13119.21 (17)C11—C10—H10B110.7
C7—N2—C8122.12 (17)H10A—C10—H10B108.8
C7—N2—C11124.18 (16)N2—C11—C12108.02 (17)
C8—N2—C11112.35 (16)N2—C11—C10103.50 (16)
C2—C1—C6118.6 (2)C12—C11—C10113.01 (18)
C2—C1—N1118.36 (19)N2—C11—H11110.7
C6—C1—N1122.92 (17)C12—C11—H11110.7
C3—C2—C1120.5 (2)C10—C11—H11110.7
C3—C2—H2119.7O2—C12—N1121.3 (2)
C1—C2—H2119.7O2—C12—C11122.6 (2)
C4—C3—C2121.2 (2)N1—C12—C11116.05 (16)
C4—C3—H3A119.4N1—C13—C14113.23 (17)
C2—C3—H3A119.4N1—C13—H13A108.9
C3—C4—C5119.3 (2)C14—C13—H13A108.9
C3—C4—H4120.4N1—C13—H13B108.9
C5—C4—H4120.4C14—C13—H13B108.9
C4—C5—C6121.0 (2)H13A—C13—H13B107.7
C4—C5—H5119.5O4—C14—C15120.62 (19)
C6—C5—H5119.5O4—C14—C13120.4 (2)
C1—C6—C5119.35 (19)C15—C14—C13118.97 (17)
C1—C6—C7124.96 (18)C16—C15—C20118.63 (19)
C5—C6—C7115.64 (19)C16—C15—C14123.39 (18)
O1—C7—N2121.73 (19)C20—C15—C14117.96 (18)
O1—C7—C6121.22 (19)C15—C16—C17120.1 (2)
N2—C7—C6117.01 (17)C15—C16—H16119.9
N2—C8—C9103.16 (16)C17—C16—H16119.9
N2—C8—H8A111.1C18—C17—C16120.5 (2)
C9—C8—H8A111.1C18—C17—H17119.8
N2—C8—H8B111.1C16—C17—H17119.8
C9—C8—H8B111.1C19—C18—C17119.8 (2)
H8A—C8—H8B109.1C19—C18—H18120.1
O3—C9—C8111.3 (2)C17—C18—H18120.1
O3—C9—C10107.82 (19)C18—C19—C20120.2 (2)
C8—C9—C10103.35 (17)C18—C19—H19119.9
O3—C9—H9111.3C20—C19—H19119.9
C8—C9—H9111.3C19—C20—C15120.8 (2)
C10—C9—H9111.3C19—C20—H20119.6
C9—C10—C11105.27 (17)C15—C20—H20119.6
C12—N1—C1—C2136.0 (2)C8—N2—C11—C12119.19 (19)
C13—N1—C1—C236.8 (3)C7—N2—C11—C10166.1 (2)
C12—N1—C1—C647.7 (3)C8—N2—C11—C100.9 (2)
C13—N1—C1—C6139.5 (2)C9—C10—C11—N220.6 (2)
C6—C1—C2—C30.9 (4)C9—C10—C11—C12137.16 (19)
N1—C1—C2—C3177.4 (3)C1—N1—C12—O2174.6 (2)
C1—C2—C3—C41.3 (5)C13—N1—C12—O21.6 (3)
C2—C3—C4—C52.2 (4)C1—N1—C12—C118.7 (3)
C3—C4—C5—C61.0 (4)C13—N1—C12—C11178.27 (17)
C2—C1—C6—C52.1 (3)N2—C11—C12—O2112.3 (2)
N1—C1—C6—C5178.35 (18)C10—C11—C12—O21.6 (3)
C2—C1—C6—C7175.3 (2)N2—C11—C12—N164.4 (2)
N1—C1—C6—C70.9 (3)C10—C11—C12—N1178.29 (18)
C4—C5—C6—C11.1 (3)C12—N1—C13—C1478.0 (2)
C4—C5—C6—C7176.5 (2)C1—N1—C13—C1495.4 (2)
C8—N2—C7—O17.9 (3)N1—C13—C14—O411.8 (3)
C11—N2—C7—O1173.6 (2)N1—C13—C14—C15168.91 (16)
C8—N2—C7—C6170.02 (18)O4—C14—C15—C16165.7 (2)
C11—N2—C7—C64.3 (3)C13—C14—C15—C1615.1 (3)
C1—C6—C7—O1140.7 (2)O4—C14—C15—C2012.7 (3)
C5—C6—C7—O136.8 (3)C13—C14—C15—C20166.57 (19)
C1—C6—C7—N241.3 (3)C20—C15—C16—C171.4 (3)
C5—C6—C7—N2141.1 (2)C14—C15—C16—C17176.9 (2)
C7—N2—C8—C9145.4 (2)C15—C16—C17—C180.7 (4)
C11—N2—C8—C921.8 (2)C16—C17—C18—C190.5 (4)
N2—C8—C9—O382.0 (2)C17—C18—C19—C200.8 (4)
N2—C8—C9—C1033.5 (2)C18—C19—C20—C150.0 (4)
O3—C9—C10—C1184.2 (2)C16—C15—C20—C191.1 (3)
C8—C9—C10—C1133.8 (2)C14—C15—C20—C19177.3 (2)
C7—N2—C11—C1273.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.84 (1)2.02 (2)2.810 (2)157 (4)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H18N2O4
Mr350.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.8337 (2), 9.9476 (2), 18.9295 (4)
V3)1663.41 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.3 × 0.3 × 0.3
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12798, 2189, 1967
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.118, 1.15
No. of reflections2189
No. of parameters239
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.84 (1)2.02 (2)2.810 (2)157 (4)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCargill, C., Bachmann, E. & Zbinden, G. (1974). J. Natl. Cancer Inst. 53, 481– 486.  CAS PubMed Web of Science Google Scholar
First citationGregson, S. T., Howard, P. W., Gullick, D. R., Hamaguchi, A., Corcoran, K. E., Brooks, N. A., Hartley, J. A., Jenkins, T. C., Patel, S., Guille, M. J. & Thurston, D. E. (2004). J. Med. Chem. 47, 1161–1174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds