organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-(4-meth­oxy­phen­yl)-1-methyl-1,2,3,3a,4,11b-hexa­hydro­benzo[f]chromeno[4,3-b]pyrrole-3a-carboxyl­ate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: as_pandian59@yahoo.com

(Received 25 February 2010; accepted 17 March 2010; online 20 March 2010)

In the title compound, C25H25NO4, the pyrrolidine ring exhibits an envelope conformation and the tetra­hydro­pyran ring exhibits a half-chair conformation. The crystal structure is stabilized by inter­molecular C–H⋯π inter­actions.

Related literature

For general background to the applications and biological activity of chromenopyrrole compounds, see: Caine (1993[Caine, B. (1993). Science, 260, 1814-1816.]); Carlson (1993[Carlson, J. (1993). Neur. Transm. 94, 11-19.]); Sokoloff et al. (1990[Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147-151.]); Wilner (1985[Wilner, P. (1985). Clin. Neuropharm. 18, suppl1, 549-556.]); Biava et al. (2005[Biava, M., Porretta, G. C., Poce, G., Deidda, D., Pompei, R., Tafi, A. & Manetti, F. (2005). .Bioorg. Med. Chem. 13, 1221-1230.]); Fernandes et al. (2004[Fernandes, E., Costa, D., Toste, S. A., Lima, J. L. & Reis, S. (2004). Free Radical Biol. Med. 37, 1895-1905.]); Borthwick et al. (2000[Borthwick, A. D., Angier, S. J., Crame, A. J., Exall, A. M., Haley, T. M., Hart, G. J., Mason, A. M., Pennell, A. M. K. & Weingarten, G. G. (2000). J. Med. Chem. 43, 4452-4464.]); Jiang et al. (2004[Jiang, S., Lu, H., Liu, S., Zhao, Q., He, Y. & Debnath, A. K. (2004). Antimicrob. Agents Chemother. 48, 4349-4359.]). For a related structure, see: Nirmala et al. (2009[Nirmala, S., Kamala, E. T. S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o2028-o2029.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C25H25NO4

  • Mr = 403.46

  • Triclinic, [P \overline 1]

  • a = 7.9287 (5) Å

  • b = 10.8707 (6) Å

  • c = 11.6884 (7) Å

  • α = 95.662 (3)°

  • β = 92.332 (4)°

  • γ = 91.797 (4)°

  • V = 1001.05 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.985

  • 21741 measured reflections

  • 4776 independent reflections

  • 3836 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.164

  • S = 1.05

  • 4776 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C1/C6–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17BCg4i 0.97 2.94 3.502 (2) 119
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993), parkinson's disease (Carlson, 1993), psychoses, memory disorders (Sokoloff et al., 1990), anxiety and depression (Wilner, 1985). Pyrrole derivatives have good in vitro activities against mycobacteria and candidae (Biava et al., 2005). These derivatives also possess anti-inflammatory (Fernandes et al., 2004) and antiviral (Borthwick et al., 2000) activities. It has also been shown that N-substituted pyrrole derivatives inhibit human immuno deficiency virus type-I (HIV-I) (Jiang et al., 2004). Against this background, and in order to obtain detailed information on molecular conformation in the solid state, an X-ray study of the title compounds has been carried out.

The geometric parameters of the title molecule (Fig. 1) agree well with those reported for a similar structure (Nirmala et al., 2009). The naphthalene ring system (C1—C10) and the benzene ring (C19—C24) are oriented at an angle of 71.1 (6)° with respect to each other. The pyrrolidine ring makes dihedral angles of 57.7 (7), 60.2 (7) and 64.0 (8)° with the naphthalene ring system and the tetrahydropyran and phenyl rings, respectively.

The pyrrolodine ring adopt an envelope conformation, with the puckering parameters q2 and ϕ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters,Δ, (Nardelli, 1983) as follows: q2=0.4285 (14) Å, ϕ=222.37 (19)°, Δs(C13)= 3.46 (11) and the tetrahydropyran ring adopt a half-chair conformation, with the puckering parameters q2 and ϕ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters,Δ, (Nardelli, 1983) as follows: q2=0.3644 (14) Å, ϕ=73.5 (2)°, Δs(C14)= 12.11 (13).

The crystal packing is stabilized by C–H···π (Table. 1) hydrogen bonds

Related literature top

For general background to the applications and biological activity of chromenopyrrole compounds, see: Caine (1993); Carlson (1993); Sokoloff et al. (1990); Wilner (1985); Biava et al. (2005); Fernandes et al. (2004); Borthwick et al. (2000); Jiang et al. (2004). For a related structure, see: Nirmala et al. (2009). For ring puckering analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A mixture of (2)-methyl-4-(1-formyl naphthalen-2-ylony)-3-(4-methoxy phenyl) but-2-enoate and sarcosine were refluxed in benzene for 20hr and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. Crystals were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of showing the atom-numbering scheme and intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 30% probability level.
Methyl 3-(4-methoxyphenyl)-1-methyl-1,2,3,3a,4,11b- hexahydrobenzo[f]chromeno[4,3-b]pyrrole-3a-carboxylate top
Crystal data top
C25H25NO4Z = 2
Mr = 403.46F(000) = 428
Triclinic, P1Dx = 1.339 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9287 (5) ÅCell parameters from 4776 reflections
b = 10.8707 (6) Åθ = 1.8–28°
c = 11.6884 (7) ŵ = 0.09 mm1
α = 95.662 (3)°T = 293 K
β = 92.332 (4)°Block, colourless
γ = 91.797 (4)°0.25 × 0.22 × 0.19 mm
V = 1001.05 (10) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4776 independent reflections
Radiation source: fine-focus sealed tube3836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω and ϕ scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.981, Tmax = 0.985k = 1414
21741 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.099P)2 + 0.1502P]
where P = (Fo2 + 2Fc2)/3
4776 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C25H25NO4γ = 91.797 (4)°
Mr = 403.46V = 1001.05 (10) Å3
Triclinic, P1Z = 2
a = 7.9287 (5) ÅMo Kα radiation
b = 10.8707 (6) ŵ = 0.09 mm1
c = 11.6884 (7) ÅT = 293 K
α = 95.662 (3)°0.25 × 0.22 × 0.19 mm
β = 92.332 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4776 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3836 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.050
21741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
4776 reflectionsΔρmin = 0.34 e Å3
274 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28588 (16)0.64583 (12)0.75782 (11)0.0302 (3)
C20.3939 (2)0.54431 (14)0.75627 (13)0.0390 (3)
H20.46050.53360.82160.047*
C30.4023 (2)0.46191 (16)0.66078 (15)0.0517 (4)
H30.47300.39540.66280.062*
C40.3065 (3)0.47564 (17)0.56016 (15)0.0549 (5)
H40.31520.42000.49510.066*
C50.2008 (2)0.57083 (16)0.55850 (14)0.0467 (4)
H50.13660.57970.49170.056*
C60.18576 (18)0.65693 (13)0.65573 (12)0.0356 (3)
C70.0693 (2)0.75203 (15)0.65447 (13)0.0411 (4)
H70.00300.75900.58810.049*
C80.05266 (19)0.83293 (15)0.74783 (13)0.0407 (3)
H80.02540.89480.74580.049*
C90.15365 (17)0.82395 (13)0.84889 (12)0.0322 (3)
C100.27031 (16)0.73371 (12)0.85626 (11)0.0281 (3)
C110.36725 (15)0.72609 (11)0.96946 (11)0.0269 (3)
H110.38370.63930.98170.032*
C120.57832 (17)0.81208 (16)1.10401 (12)0.0403 (4)
H12A0.63510.89211.12380.048*
H12B0.65400.74841.12400.048*
C130.41479 (16)0.80366 (13)1.16870 (11)0.0311 (3)
H130.41510.72461.20240.037*
C140.27455 (15)0.79025 (12)1.07047 (11)0.0280 (3)
C150.22197 (17)0.91646 (12)1.03958 (12)0.0331 (3)
H15A0.16090.95651.10230.040*
H15B0.32240.96731.03040.040*
C160.12443 (17)0.71790 (14)1.10765 (12)0.0349 (3)
C170.0270 (3)0.52672 (19)1.1624 (2)0.0776 (7)
H17A0.00290.56271.23810.116*
H17B0.06410.44401.16660.116*
H17C0.07320.52481.11320.116*
C180.66502 (17)0.73843 (15)0.91570 (13)0.0394 (3)
H18A0.76660.78910.92930.059*
H18B0.63310.73100.83510.059*
H18C0.68420.65780.93960.059*
C190.38660 (16)0.90191 (13)1.26574 (11)0.0304 (3)
C200.43808 (19)1.02529 (14)1.26490 (12)0.0375 (3)
H200.49621.04941.20280.045*
C210.4050 (2)1.11255 (14)1.35383 (13)0.0410 (3)
H210.44181.19431.35160.049*
C220.31722 (18)1.07914 (14)1.44666 (12)0.0367 (3)
C230.26739 (18)0.95725 (15)1.45086 (12)0.0393 (3)
H230.21020.93341.51350.047*
C240.30326 (18)0.87017 (14)1.36077 (12)0.0365 (3)
H240.27010.78791.36450.044*
C250.1930 (2)1.1439 (2)1.62332 (14)0.0566 (5)
H25A0.08391.11001.59580.085*
H25B0.17961.21751.67410.085*
H25C0.25131.08431.66410.085*
N10.53080 (13)0.79497 (11)0.98078 (9)0.0307 (3)
O10.11812 (13)0.90921 (10)0.93631 (9)0.0414 (3)
O20.00673 (14)0.76045 (13)1.13242 (13)0.0625 (4)
O30.15812 (16)0.59997 (11)1.11635 (13)0.0602 (4)
O40.28770 (16)1.17310 (11)1.52900 (10)0.0519 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (6)0.0321 (6)0.0298 (6)0.0027 (5)0.0054 (5)0.0073 (5)
C20.0454 (8)0.0389 (7)0.0336 (7)0.0070 (6)0.0048 (6)0.0056 (6)
C30.0669 (11)0.0452 (9)0.0437 (9)0.0145 (8)0.0089 (8)0.0019 (7)
C40.0749 (12)0.0513 (10)0.0367 (9)0.0022 (9)0.0062 (8)0.0065 (7)
C50.0546 (10)0.0527 (9)0.0317 (8)0.0054 (8)0.0013 (7)0.0024 (6)
C60.0364 (7)0.0404 (7)0.0304 (7)0.0057 (6)0.0025 (5)0.0073 (6)
C70.0394 (8)0.0520 (9)0.0325 (7)0.0001 (7)0.0067 (6)0.0113 (6)
C80.0359 (7)0.0474 (8)0.0404 (8)0.0099 (6)0.0026 (6)0.0120 (6)
C90.0300 (6)0.0353 (7)0.0320 (7)0.0030 (5)0.0010 (5)0.0068 (5)
C100.0252 (6)0.0313 (6)0.0288 (6)0.0005 (5)0.0028 (5)0.0072 (5)
C110.0239 (6)0.0301 (6)0.0279 (6)0.0043 (5)0.0040 (5)0.0070 (5)
C120.0250 (6)0.0628 (10)0.0322 (7)0.0038 (6)0.0005 (5)0.0003 (6)
C130.0277 (6)0.0376 (7)0.0288 (6)0.0042 (5)0.0018 (5)0.0061 (5)
C140.0239 (6)0.0327 (6)0.0280 (6)0.0034 (5)0.0032 (5)0.0034 (5)
C150.0308 (6)0.0344 (7)0.0339 (7)0.0069 (5)0.0009 (5)0.0008 (5)
C160.0291 (7)0.0443 (8)0.0309 (7)0.0018 (6)0.0049 (5)0.0012 (6)
C170.0787 (15)0.0543 (11)0.1033 (18)0.0161 (10)0.0519 (13)0.0120 (11)
C180.0269 (7)0.0548 (9)0.0378 (7)0.0067 (6)0.0085 (6)0.0064 (6)
C190.0251 (6)0.0402 (7)0.0262 (6)0.0019 (5)0.0001 (5)0.0052 (5)
C200.0391 (7)0.0441 (8)0.0302 (7)0.0039 (6)0.0053 (6)0.0085 (6)
C210.0476 (8)0.0380 (7)0.0371 (8)0.0034 (6)0.0010 (6)0.0052 (6)
C220.0341 (7)0.0460 (8)0.0287 (7)0.0051 (6)0.0044 (5)0.0010 (6)
C230.0360 (7)0.0540 (9)0.0280 (7)0.0030 (6)0.0058 (6)0.0050 (6)
C240.0384 (7)0.0408 (7)0.0305 (7)0.0043 (6)0.0024 (6)0.0066 (6)
C250.0484 (9)0.0837 (13)0.0347 (8)0.0121 (9)0.0016 (7)0.0109 (8)
N10.0221 (5)0.0412 (6)0.0296 (6)0.0029 (4)0.0037 (4)0.0051 (4)
O10.0434 (6)0.0443 (6)0.0364 (6)0.0202 (5)0.0060 (4)0.0007 (4)
O20.0303 (6)0.0720 (9)0.0899 (10)0.0074 (5)0.0210 (6)0.0215 (7)
O30.0556 (7)0.0393 (6)0.0896 (10)0.0023 (5)0.0395 (7)0.0125 (6)
O40.0600 (7)0.0559 (7)0.0375 (6)0.0077 (6)0.0027 (5)0.0085 (5)
Geometric parameters (Å, º) top
C1—C21.4171 (19)C14—C151.5193 (18)
C1—C61.4234 (19)C15—O11.4274 (16)
C1—C101.4331 (18)C15—H15A0.9700
C2—C31.366 (2)C15—H15B0.9700
C2—H20.9300C16—O21.1864 (17)
C3—C41.397 (3)C16—O31.3304 (19)
C3—H30.9300C17—O31.444 (2)
C4—C51.353 (3)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—C61.411 (2)C17—H17C0.9600
C5—H50.9300C18—N11.4503 (16)
C6—C71.408 (2)C18—H18A0.9600
C7—C81.346 (2)C18—H18B0.9600
C7—H70.9300C18—H18C0.9600
C8—C91.413 (2)C19—C241.3823 (19)
C8—H80.9300C19—C201.391 (2)
C9—O11.3547 (17)C20—C211.376 (2)
C9—C101.3757 (18)C20—H200.9300
C10—C111.5137 (17)C21—C221.385 (2)
C11—N11.4715 (17)C21—H210.9300
C11—C141.5365 (17)C22—O41.3652 (17)
C11—H110.9800C22—C231.377 (2)
C12—N11.4661 (18)C23—C241.389 (2)
C12—C131.5321 (19)C23—H230.9300
C12—H12A0.9700C24—H240.9300
C12—H12B0.9700C25—O41.415 (2)
C13—C191.5078 (18)C25—H25A0.9600
C13—C141.5584 (18)C25—H25B0.9600
C13—H130.9800C25—H25C0.9600
C14—C161.5083 (19)
C2—C1—C6116.85 (13)C11—C14—C13102.15 (9)
C2—C1—C10123.60 (12)O1—C15—C14112.60 (11)
C6—C1—C10119.53 (12)O1—C15—H15A109.1
C3—C2—C1121.38 (14)C14—C15—H15A109.1
C3—C2—H2119.3O1—C15—H15B109.1
C1—C2—H2119.3C14—C15—H15B109.1
C2—C3—C4121.19 (16)H15A—C15—H15B107.8
C2—C3—H3119.4O2—C16—O3122.75 (14)
C4—C3—H3119.4O2—C16—C14125.01 (14)
C5—C4—C3119.19 (15)O3—C16—C14112.14 (11)
C5—C4—H4120.4O3—C17—H17A109.5
C3—C4—H4120.4O3—C17—H17B109.5
C4—C5—C6121.58 (15)H17A—C17—H17B109.5
C4—C5—H5119.2O3—C17—H17C109.5
C6—C5—H5119.2H17A—C17—H17C109.5
C7—C6—C5120.90 (14)H17B—C17—H17C109.5
C7—C6—C1119.31 (13)N1—C18—H18A109.5
C5—C6—C1119.77 (14)N1—C18—H18B109.5
C8—C7—C6120.99 (13)H18A—C18—H18B109.5
C8—C7—H7119.5N1—C18—H18C109.5
C6—C7—H7119.5H18A—C18—H18C109.5
C7—C8—C9120.09 (13)H18B—C18—H18C109.5
C7—C8—H8120.0C24—C19—C20117.15 (13)
C9—C8—H8120.0C24—C19—C13119.33 (12)
O1—C9—C10124.81 (12)C20—C19—C13123.51 (12)
O1—C9—C8113.03 (12)C21—C20—C19121.51 (13)
C10—C9—C8122.12 (13)C21—C20—H20119.2
C9—C10—C1117.93 (12)C19—C20—H20119.2
C9—C10—C11118.97 (12)C20—C21—C22120.28 (14)
C1—C10—C11122.96 (11)C20—C21—H21119.9
N1—C11—C10114.52 (10)C22—C21—H21119.9
N1—C11—C14101.23 (10)O4—C22—C23124.85 (14)
C10—C11—C14111.22 (10)O4—C22—C21115.66 (14)
N1—C11—H11109.9C23—C22—C21119.49 (13)
C10—C11—H11109.9C22—C23—C24119.42 (13)
C14—C11—H11109.9C22—C23—H23120.3
N1—C12—C13106.97 (11)C24—C23—H23120.3
N1—C12—H12A110.3C19—C24—C23122.11 (14)
C13—C12—H12A110.3C19—C24—H24118.9
N1—C12—H12B110.3C23—C24—H24118.9
C13—C12—H12B110.3O4—C25—H25A109.5
H12A—C12—H12B108.6O4—C25—H25B109.5
C19—C13—C12118.15 (12)H25A—C25—H25B109.5
C19—C13—C14115.05 (10)O4—C25—H25C109.5
C12—C13—C14103.36 (10)H25A—C25—H25C109.5
C19—C13—H13106.5H25B—C25—H25C109.5
C12—C13—H13106.5C18—N1—C12110.87 (11)
C14—C13—H13106.5C18—N1—C11115.47 (11)
C16—C14—C15110.32 (11)C12—N1—C11106.57 (10)
C16—C14—C11114.99 (11)C9—O1—C15118.16 (10)
C15—C14—C11108.79 (10)C16—O3—C17115.85 (14)
C16—C14—C13109.58 (11)C22—O4—C25117.54 (14)
C15—C14—C13110.74 (11)
C6—C1—C2—C30.6 (2)C12—C13—C14—C1587.13 (13)
C10—C1—C2—C3178.95 (14)C19—C13—C14—C11158.84 (11)
C1—C2—C3—C41.0 (3)C12—C13—C14—C1128.58 (13)
C2—C3—C4—C51.5 (3)C16—C14—C15—O169.67 (14)
C3—C4—C5—C60.4 (3)C11—C14—C15—O157.34 (14)
C4—C5—C6—C7176.93 (16)C13—C14—C15—O1168.84 (10)
C4—C5—C6—C11.3 (2)C15—C14—C16—O214.5 (2)
C2—C1—C6—C7176.53 (13)C11—C14—C16—O2137.97 (16)
C10—C1—C6—C71.9 (2)C13—C14—C16—O2107.68 (17)
C2—C1—C6—C51.7 (2)C15—C14—C16—O3169.18 (12)
C10—C1—C6—C5179.87 (13)C11—C14—C16—O345.69 (16)
C5—C6—C7—C8178.81 (15)C13—C14—C16—O368.65 (15)
C1—C6—C7—C80.6 (2)C12—C13—C19—C24145.25 (14)
C6—C7—C8—C90.5 (2)C14—C13—C19—C2492.10 (15)
C7—C8—C9—O1177.94 (14)C12—C13—C19—C2035.71 (18)
C7—C8—C9—C100.3 (2)C14—C13—C19—C2086.94 (16)
O1—C9—C10—C1176.35 (12)C24—C19—C20—C211.1 (2)
C8—C9—C10—C11.0 (2)C13—C19—C20—C21177.95 (13)
O1—C9—C10—C110.5 (2)C19—C20—C21—C220.7 (2)
C8—C9—C10—C11176.85 (12)C20—C21—C22—O4178.57 (13)
C2—C1—C10—C9176.25 (13)C20—C21—C22—C231.8 (2)
C6—C1—C10—C92.07 (19)O4—C22—C23—C24179.22 (13)
C2—C1—C10—C110.6 (2)C21—C22—C23—C241.2 (2)
C6—C1—C10—C11177.76 (11)C20—C19—C24—C231.7 (2)
C9—C10—C11—N193.00 (14)C13—C19—C24—C23177.37 (12)
C1—C10—C11—N191.35 (14)C22—C23—C24—C190.6 (2)
C9—C10—C11—C1421.00 (17)C13—C12—N1—C18150.22 (12)
C1—C10—C11—C14154.65 (12)C13—C12—N1—C1123.81 (14)
N1—C12—C13—C19132.33 (12)C10—C11—N1—C1874.85 (14)
N1—C12—C13—C143.96 (15)C14—C11—N1—C18165.40 (11)
N1—C11—C14—C16161.46 (11)C10—C11—N1—C12161.56 (11)
C10—C11—C14—C1676.47 (14)C14—C11—N1—C1241.81 (12)
N1—C11—C14—C1574.25 (12)C10—C9—O1—C157.9 (2)
C10—C11—C14—C1547.82 (14)C8—C9—O1—C15174.55 (12)
N1—C11—C14—C1342.87 (12)C14—C15—O1—C937.70 (17)
C10—C11—C14—C13164.94 (10)O2—C16—O3—C172.3 (3)
C19—C13—C14—C1678.79 (14)C14—C16—O3—C17174.09 (16)
C12—C13—C14—C16150.94 (11)C23—C22—O4—C252.7 (2)
C19—C13—C14—C1543.13 (15)C21—C22—O4—C25177.75 (14)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C1/C6–C10 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O30.982.482.8514 (18)102
C13—H13···O30.982.532.9610 (18)107
C17—H17B···Cg4i0.972.943.502 (2)119
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC25H25NO4
Mr403.46
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9287 (5), 10.8707 (6), 11.6884 (7)
α, β, γ (°)95.662 (3), 92.332 (4), 91.797 (4)
V3)1001.05 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
21741, 4776, 3836
Rint0.050
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.164, 1.05
No. of reflections4776
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C1/C6–C10 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O30.98002.48002.8514 (18)102.00
C13—H13···O30.98002.53002.9610 (18)107.00
C17—H17B···Cg4i0.972.943.502 (2)119
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

ST and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBiava, M., Porretta, G. C., Poce, G., Deidda, D., Pompei, R., Tafi, A. & Manetti, F. (2005). .Bioorg. Med. Chem. 13, 1221–1230.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBorthwick, A. D., Angier, S. J., Crame, A. J., Exall, A. M., Haley, T. M., Hart, G. J., Mason, A. M., Pennell, A. M. K. & Weingarten, G. G. (2000). J. Med. Chem. 43, 4452–4464.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaine, B. (1993). Science, 260, 1814–1816.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCarlson, J. (1993). Neur. Transm. 94, 11–19.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFernandes, E., Costa, D., Toste, S. A., Lima, J. L. & Reis, S. (2004). Free Radical Biol. Med. 37, 1895–1905.  Web of Science CrossRef CAS Google Scholar
First citationJiang, S., Lu, H., Liu, S., Zhao, Q., He, Y. & Debnath, A. K. (2004). Antimicrob. Agents Chemother. 48, 4349–4359.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNirmala, S., Kamala, E. T. S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o2028–o2029.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147–151.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilner, P. (1985). Clin. Neuropharm. 18, suppl1, 549–556.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds