organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-(4-methyl­phen­yl)benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 3 March 2010; accepted 4 March 2010; online 10 March 2010)

In the title compound, C14H15NO2S, the two aromatic rings enclose a dihedral angle of 70.53 (10)°. A weak intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For the synthesis, see: Deng & Mani (2006[Deng, X. & Mani, N. S. (2006). Green Chem. 8, 835-838.]). For the biological activity of sulfonamides, see: Pandya et al. (2003[Pandya, R., Murashima, T., Tedeschi, L. & Barrett, A. G. M. (2003). J. Org. Chem. 68, 8274-8276.]); Supuran & Scozzafava (2000[Supuran, C. T. & Scozzafava, A. (2000). J. Enzyme Inhib. Med. Chem. 15, 597-610.]). For the effects of substituents on the crystal structures of and bond lengths in aryl sulfonamides, see: Sharif et al. (2010[Sharif, S., Akkurt, M., Khan, I. U., Salariya, M. A. & Ahmad, S. (2010). Acta Cryst. E66, o73-o74.]); Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692.], 2009[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o800.], 2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o14.]); Nirmala et al. (2009a[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009a). Acta Cryst. E65, o3184.],b[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009b). Acta Cryst. E65, o3208.])·For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO2S

  • Mr = 261.34

  • Triclinic, [P \overline 1]

  • a = 8.6419 (8) Å

  • b = 8.8016 (8) Å

  • c = 9.2509 (7) Å

  • α = 88.187 (4)°

  • β = 77.010 (4)°

  • γ = 74.812 (4)°

  • V = 661.41 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.28 × 0.17 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 11831 measured reflections

  • 3259 independent reflections

  • 2323 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.01

  • 3259 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.81 (3) 2.11 (3) 2.904 (2) 170 (2)
C4—H4⋯O1 0.93 2.45 3.049 (2) 122
Symmetry code: (i) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides are well known for their antibacterial and enzyme inhibitor properties (Pandya et al., 2003). Aromatic sulfonamides were also reported to inhibit the growth of tumor cells (Supuran & Scozzafava, 2000). In continuation of our studies (Sharif et al., 2010), herein, we report the crystal structure of the title compound.

The title molecule (I), (Fig. 1), is bent at the N atom with the C8—SO2—NH—C5 torsion angle of -60.71 (18)°. The dihedral angle between the two aromatic rings is 70.53 (10)°.

The molecular conformation of the title compound is stabilized by a weak intramolecular C—H···O hydrogen bond, generating an S(6) ring motif (Etter, 1990; Bernstein et al., 1995) (Table 1). In the crystal structure of the title compound, inversion-related molecules are linked into dimers by pairs of N—H···O hydrogen bonds, forming an R22(8) graph-set motif (Table 1 and Fig. 2).

Related literature top

For the synthesis, see: Deng & Mani (2006). For the biological activity of sulfonamides, see: Pandya et al. (2003); Supuran & Scozzafava (2000). For the effects of substituents on the crystal structures of and bond lengths in aryl sulfonamides, see: Sharif et al. (2010); Gowda et al. (2008, 2009, 2010); Nirmala et al. (2009a,b).For graph-set notation, see: Bernstein et al. (1995); Etter (1990).

Experimental top

The synthesis of the title compound was performed by the procedure reported by Deng & Mani (2006). 4-methyl aniline 0.535 g (5 mmol) was dissolved in 10 ml distilled water and pH of the solution was adjusted to 8 by using (3 M) Na2CO3. p-toluene sulfonyl chloride 0.95 g (5 mmol) was added under continuous stirring at room temperature. pH of the reaction mixture during stirring was maintained between 8-9 with 3 M Na2CO3. When the solution was clear, pH was adjusted to 2-3 using 3 M HCl. The precipitate formed was filtered and recrystallized from methanol.

Refinement top

The H atom bonded to N was refined freely. The other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H = 0.93-0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atoms labelled and displacement ellipsoids depicted at the 30% probability level for all non-H atoms.
[Figure 2] Fig. 2. Partial packing view showing the formation of dimers through N—H···O hydrogen bonds [symmetry code: - x, 2 -y, 2 -z]. For the sake of clarity, H atoms not involved in hydrogen bonding are omitted. Hydrogen bonding is indicated by dashed lines.
4-Methyl-N-(4-methylphenyl)benzenesulfonamide top
Crystal data top
C14H15NO2SZ = 2
Mr = 261.34F(000) = 276
Triclinic, P1Dx = 1.312 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6419 (8) ÅCell parameters from 3233 reflections
b = 8.8016 (8) Åθ = 2.4–25.6°
c = 9.2509 (7) ŵ = 0.24 mm1
α = 88.187 (4)°T = 296 K
β = 77.010 (4)°Rod like, light brown
γ = 74.812 (4)°0.28 × 0.17 × 0.08 mm
V = 661.41 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2323 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.038
Graphite monochromatorθmax = 28.4°, θmin = 3.4°
ϕ and ω scansh = 1111
11831 measured reflectionsk = 1111
3259 independent reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.0376P]
where P = (Fo2 + 2Fc2)/3
3259 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H15NO2Sγ = 74.812 (4)°
Mr = 261.34V = 661.41 (10) Å3
Triclinic, P1Z = 2
a = 8.6419 (8) ÅMo Kα radiation
b = 8.8016 (8) ŵ = 0.24 mm1
c = 9.2509 (7) ÅT = 296 K
α = 88.187 (4)°0.28 × 0.17 × 0.08 mm
β = 77.010 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2323 reflections with I > 2σ(I)
11831 measured reflectionsRint = 0.038
3259 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.24 e Å3
3259 reflectionsΔρmin = 0.21 e Å3
169 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18536 (5)0.76639 (5)0.92202 (4)0.0448 (2)
O10.34628 (15)0.66385 (16)0.90275 (15)0.0579 (4)
O20.10049 (15)0.83328 (15)1.06641 (12)0.0537 (4)
N10.1950 (2)0.91823 (19)0.81866 (16)0.0471 (5)
C10.4564 (3)0.9071 (3)0.1918 (2)0.0860 (9)
C20.3869 (3)0.9072 (3)0.3562 (2)0.0589 (7)
C30.4706 (3)0.8100 (3)0.4474 (2)0.0635 (7)
C40.4115 (2)0.8091 (2)0.5988 (2)0.0570 (7)
C50.2605 (2)0.9077 (2)0.66194 (18)0.0423 (5)
C60.1743 (2)1.0070 (2)0.5727 (2)0.0559 (6)
C70.2379 (3)1.0074 (3)0.4220 (2)0.0661 (8)
C80.0609 (2)0.66738 (19)0.85725 (18)0.0428 (5)
C90.1315 (2)0.5487 (2)0.7513 (2)0.0608 (7)
C100.0316 (3)0.4755 (2)0.6978 (2)0.0668 (8)
C110.1361 (2)0.5162 (2)0.7502 (2)0.0526 (6)
C120.2036 (2)0.6345 (2)0.8566 (2)0.0597 (7)
C130.1067 (2)0.7097 (2)0.9103 (2)0.0566 (7)
C140.2439 (3)0.4335 (3)0.6927 (2)0.0702 (8)
H10.118 (3)0.994 (3)0.843 (2)0.068 (7)*
H1A0.528900.975100.171900.1290*
H1B0.368300.944100.141600.1290*
H1C0.516500.801900.156900.1290*
H30.571800.741600.405400.0760*
H40.472900.742600.657500.0680*
H60.072301.074500.614200.0670*
H70.178801.076800.363600.0790*
H90.245000.518000.716000.0730*
H100.079200.396700.624500.0800*
H120.316900.664300.893100.0720*
H130.154500.789500.982700.0680*
H14A0.279900.489300.610300.1050*
H14B0.338000.431000.770200.1050*
H14C0.182500.327800.661100.1050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0441 (3)0.0466 (3)0.0429 (2)0.0104 (2)0.0093 (2)0.0033 (2)
O10.0451 (7)0.0608 (8)0.0641 (8)0.0050 (6)0.0149 (6)0.0001 (6)
O20.0579 (8)0.0586 (8)0.0416 (6)0.0118 (6)0.0084 (5)0.0055 (6)
N10.0467 (9)0.0452 (9)0.0461 (8)0.0127 (8)0.0018 (6)0.0058 (7)
C10.0891 (17)0.131 (2)0.0475 (11)0.0617 (17)0.0057 (10)0.0124 (12)
C20.0595 (13)0.0780 (14)0.0495 (10)0.0430 (11)0.0023 (9)0.0089 (10)
C30.0528 (12)0.0689 (13)0.0619 (12)0.0190 (10)0.0074 (9)0.0175 (10)
C40.0472 (11)0.0590 (12)0.0575 (11)0.0080 (9)0.0032 (8)0.0046 (9)
C50.0404 (9)0.0443 (9)0.0449 (9)0.0197 (8)0.0036 (7)0.0069 (7)
C60.0432 (10)0.0656 (12)0.0558 (11)0.0151 (9)0.0042 (8)0.0038 (9)
C70.0588 (13)0.0898 (16)0.0566 (11)0.0317 (12)0.0141 (9)0.0142 (11)
C80.0452 (10)0.0391 (9)0.0426 (8)0.0108 (7)0.0070 (7)0.0009 (7)
C90.0454 (11)0.0571 (12)0.0748 (13)0.0116 (9)0.0022 (9)0.0200 (10)
C100.0683 (14)0.0542 (12)0.0765 (14)0.0164 (11)0.0098 (11)0.0226 (10)
C110.0611 (12)0.0487 (10)0.0549 (10)0.0222 (9)0.0189 (9)0.0085 (8)
C120.0452 (11)0.0654 (13)0.0676 (12)0.0160 (10)0.0080 (9)0.0067 (10)
C130.0465 (11)0.0610 (12)0.0581 (11)0.0120 (9)0.0032 (8)0.0160 (9)
C140.0783 (15)0.0678 (14)0.0790 (14)0.0320 (12)0.0324 (12)0.0043 (11)
Geometric parameters (Å, º) top
S1—O11.4217 (14)C11—C141.511 (3)
S1—O21.4324 (12)C11—C121.372 (2)
S1—N11.6276 (16)C12—C131.373 (3)
S1—C81.7576 (18)C1—H1A0.9600
N1—C51.429 (2)C1—H1B0.9600
N1—H10.81 (3)C1—H1C0.9600
C1—C21.504 (3)C3—H30.9300
C2—C71.376 (4)C4—H40.9300
C2—C31.368 (3)C6—H60.9300
C3—C41.379 (3)C7—H70.9300
C4—C51.376 (3)C9—H90.9300
C5—C61.375 (2)C10—H100.9300
C6—C71.379 (3)C12—H120.9300
C8—C131.374 (3)C13—H130.9300
C8—C91.373 (2)C14—H14A0.9600
C9—C101.382 (3)C14—H14B0.9600
C10—C111.374 (3)C14—H14C0.9600
S1···H43.0400H1···O2i2.11 (3)
O1···C43.049 (2)H1A···N1iv2.8000
O2···N1i2.904 (2)H1A···C5iv3.0100
O2···C14ii3.377 (3)H1B···H72.4300
O1···H42.4500H1C···H32.4700
O1···H92.6100H3···H1C2.4700
O1···H12iii2.8900H3···H9vii2.5400
O2···H132.6100H4···S13.0400
O2···H1i2.11 (3)H4···O12.4500
N1···O2i2.904 (2)H6···H12.3000
N1···H1Aiv2.8000H6···C7v3.0400
C2···C4iv3.481 (3)H7···H1B2.4300
C4···O13.049 (2)H9···O12.6100
C4···C2iv3.481 (3)H9···H3vii2.5400
C6···C6v3.595 (3)H10···H14C2.4400
C6···C7v3.587 (3)H12···O1viii2.8900
C7···C6v3.587 (3)H12···H14B2.4500
C14···O2ii3.377 (3)H13···O22.6100
C2···H14Cvi3.0800H14B···H122.4500
C5···H1Aiv3.0100H14C···H102.4400
C7···H6v3.0400H14C···C2vi3.0800
H1···H62.3000
O1—S1—O2119.28 (8)C2—C1—H1A109.00
O1—S1—N1108.52 (9)C2—C1—H1B110.00
O1—S1—C8108.38 (8)C2—C1—H1C109.00
O2—S1—N1104.26 (8)H1A—C1—H1B109.00
O2—S1—C8108.41 (8)H1A—C1—H1C109.00
N1—S1—C8107.41 (8)H1B—C1—H1C109.00
S1—N1—C5123.93 (13)C2—C3—H3118.00
C5—N1—H1112.3 (13)C4—C3—H3119.00
S1—N1—H1114.3 (16)C3—C4—H4120.00
C1—C2—C7121.5 (2)C5—C4—H4120.00
C1—C2—C3121.5 (2)C5—C6—H6120.00
C3—C2—C7117.01 (18)C7—C6—H6120.00
C2—C3—C4122.9 (2)C2—C7—H7119.00
C3—C4—C5119.16 (18)C6—C7—H7119.00
C4—C5—C6119.03 (16)C8—C9—H9120.00
N1—C5—C6118.64 (16)C10—C9—H9120.00
N1—C5—C4122.18 (16)C9—C10—H10119.00
C5—C6—C7120.51 (18)C11—C10—H10119.00
C2—C7—C6121.4 (2)C11—C12—H12119.00
C9—C8—C13119.86 (17)C13—C12—H12119.00
S1—C8—C9119.76 (14)C8—C13—H13120.00
S1—C8—C13120.37 (13)C12—C13—H13120.00
C8—C9—C10119.12 (17)C11—C14—H14A109.00
C9—C10—C11121.65 (16)C11—C14—H14B109.00
C10—C11—C14121.20 (17)C11—C14—H14C110.00
C10—C11—C12118.13 (17)H14A—C14—H14B109.00
C12—C11—C14120.68 (17)H14A—C14—H14C109.00
C11—C12—C13121.15 (17)H14B—C14—H14C109.00
C8—C13—C12120.09 (16)
O1—S1—N1—C556.26 (18)C3—C4—C5—C61.4 (3)
O2—S1—N1—C5175.62 (16)C3—C4—C5—N1177.08 (19)
C8—S1—N1—C560.71 (18)C4—C5—C6—C70.3 (3)
O1—S1—C8—C13155.34 (14)N1—C5—C6—C7176.04 (19)
O2—S1—C8—C1324.51 (16)C5—C6—C7—C21.3 (3)
N1—S1—C8—C1387.60 (15)S1—C8—C9—C10177.84 (13)
O2—S1—C8—C9156.51 (14)C13—C8—C9—C101.2 (3)
N1—S1—C8—C991.38 (15)S1—C8—C13—C12178.40 (14)
O1—S1—C8—C925.69 (16)C9—C8—C13—C120.6 (3)
S1—N1—C5—C6134.31 (16)C8—C9—C10—C111.4 (3)
S1—N1—C5—C450.0 (2)C9—C10—C11—C121.0 (3)
C3—C2—C7—C61.5 (4)C9—C10—C11—C14178.98 (17)
C1—C2—C7—C6179.9 (2)C10—C11—C12—C130.5 (3)
C7—C2—C3—C40.2 (4)C14—C11—C12—C13179.57 (17)
C1—C2—C3—C4178.9 (2)C11—C12—C13—C80.2 (3)
C2—C3—C4—C51.2 (4)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1, z+2; (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x, y+2, z+1; (vi) x, y+1, z+1; (vii) x+1, y+1, z+1; (viii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.81 (3)2.11 (3)2.904 (2)170 (2)
C4—H4···O10.932.453.049 (2)122
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC14H15NO2S
Mr261.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.6419 (8), 8.8016 (8), 9.2509 (7)
α, β, γ (°)88.187 (4), 77.010 (4), 74.812 (4)
V3)661.41 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.28 × 0.17 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11831, 3259, 2323
Rint0.038
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.01
No. of reflections3259
No. of parameters169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.81 (3)2.11 (3)2.904 (2)170 (2)
C4—H4···O10.932.453.049 (2)122
Symmetry code: (i) x, y+2, z+2.
 

Footnotes

Additional corresponding author, e-mail: iuklodhi@yahoo.com.

Acknowledgements

The authors are grateful to Mr Muhammad Hussain of Bana Inter­national for providing technical support to the Materials Chemistry Laboratory, Government College University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, X. & Mani, N. S. (2006). Green Chem. 8, 835–838.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120-126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o14.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009a). Acta Cryst. E65, o3184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009b). Acta Cryst. E65, o3208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPandya, R., Murashima, T., Tedeschi, L. & Barrett, A. G. M. (2003). J. Org. Chem. 68, 8274–8276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharif, S., Akkurt, M., Khan, I. U., Salariya, M. A. & Ahmad, S. (2010). Acta Cryst. E66, o73–o74.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T. & Scozzafava, A. (2000). J. Enzyme Inhib. Med. Chem. 15, 597–610.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds