organic compounds
2-(2-Fluorobiphenyl-4-yl)-N′-(propan-2-ylidene)propanohydrazide
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: farman@qau.edu.pk
In the title compound, C18H19FN2O, the hydrazide side chain is approximately perpendicular to the central ring [dihedral angle = 76.80 (5)°]. The F atom is disordered over two positions with occupancies of 0.818 (2) and 0.182 (2). The packing consists of chains of molecules parallel to the a axis, connected by a bifurcated N—H⋯(O,N) hydrogen bond and a weak Cphenyl—H⋯O hydrogen bond. The packing is extended to a layer structure parallel to the ab plane by a weak Cphenyl—H⋯F hydrogen bond.
Related literature
For the biological activity of et al. (2009); Galal et al.(2009); Bordoloi et al. (2009). For their use as intermediates in the synthesis of see: Küçükgüzel et al. (2007); Navidpour et al. (2006); Stocks et al. (2004). For details of the preparation, see: Furniss et al. (1989).
see: KumarExperimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810009049/bt5206sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810009049/bt5206Isup2.hkl
Methyl 4-ethoxybenzoate (0.02 moles) was dissolved in 40 ml methanol in a round-bottom flask fitted with a reflux condenser and a calcium chloride drying tube. Hydrazine hydrate (80%, 0.04 moles) was added slowly and the progress of the reaction was monitored by thin layer
After completion of the reaction, the contents were concentrated under reduced pressure (Furniss et al., 1989). The resulting crude solid was filtered, washed with water and agitated with freshly distilled acetone for 1 h. The product was recrystallized from aqueous ethanol.The NH hydrogen was refined freely. Methyl hydrogens were identified in difference syntheses, idealised and refined as rigid groups with C—H 0.98 Å and H—C—H angles 109.5°, allowed to rotate but not tip. Other hydrogens were placed in calculated positions and refined using a riding model with C—Harom 0.95 and C—Hmethine 1.00 Å; the hydrogen U values were fixed at 1.5 (methyl) or 1.2 × U(eq) of the parent atom.
The fluorine atom is disordered over the two sites at C3 and C5 with occupancies 0.818 (2),0.182 (2). The methyl hydrogens at C18 are treated as an idealised hexagon (disordered over two equally occupied sites) and the short contact to O may not be structurally significant.
In the absence of significant
the Friedel opposites were merged and the is thus meaningless.Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C18H19FN2O | Dx = 1.277 Mg m−3 |
Mr = 298.35 | Melting point = 403–405 K |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5963 (3) Å | Cell parameters from 14388 reflections |
b = 7.3633 (3) Å | θ = 2.7–30.7° |
c = 27.7430 (11) Å | µ = 0.09 mm−1 |
V = 1551.77 (11) Å3 | T = 100 K |
Z = 4 | Block, colourless |
F(000) = 632 | 0.3 × 0.2 × 0.2 mm |
Oxford Diffraction Xcalibur E diffractometer | 2019 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.033 |
Graphite monochromator | θmax = 29.6°, θmin = 2.8° |
Detector resolution: 16.1419 pixels mm-1 | h = −10→10 |
ω scan | k = −10→10 |
33827 measured reflections | l = −37→38 |
2221 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.054P)2] where P = (Fo2 + 2Fc2)/3 |
2221 reflections | (Δ/σ)max = 0.004 |
210 parameters | Δρmax = 0.26 e Å−3 |
2 restraints | Δρmin = −0.17 e Å−3 |
C18H19FN2O | V = 1551.77 (11) Å3 |
Mr = 298.35 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 7.5963 (3) Å | µ = 0.09 mm−1 |
b = 7.3633 (3) Å | T = 100 K |
c = 27.7430 (11) Å | 0.3 × 0.2 × 0.2 mm |
Oxford Diffraction Xcalibur E diffractometer | 2019 reflections with I > 2σ(I) |
33827 measured reflections | Rint = 0.033 |
2221 independent reflections |
R[F2 > 2σ(F2)] = 0.031 | 2 restraints |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.26 e Å−3 |
2221 reflections | Δρmin = −0.17 e Å−3 |
210 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 6.3713 (0.0030) x + 4.0007 (0.0044) y - 1.0030 (0.0204) z = 5.8734 (0.0077) * -0.0031 (0.0011) C7 * 0.0023 (0.0012) C8 * 0.0002 (0.0014) C9 * -0.0018 (0.0013) C10 * 0.0009 (0.0012) C11 * 0.0016 (0.0012) C12 Rms deviation of fitted atoms = 0.0019 - 6.9258 (0.0030) x + 0.8494 (0.0036) y + 10.9376 (0.0231) z = 0.9826 (0.0143) Angle to previous plane (with approximate esd) = 44.25 ( 0.05 ) * -0.0036 (0.0011) C1 * 0.0203 (0.0014) C2 * 0.0261 (0.0012) C3 * -0.0276 (0.0010) F_a * 0.0066 (0.0017) C4 * -0.0181 (0.0021) C5 * 0.0140 (0.0023) F'_b * -0.0177 (0.0014) C6 Rms deviation of fitted atoms = 0.0186 3.4515 (0.0049) x - 4.4863 (0.0030) y + 18.0294 (0.0071) z = 11.4681 (0.0049) Angle to previous plane (with approximate esd) = 76.80 ( 0.05 ) * -0.0272 (0.0009) C13 * 0.0140 (0.0012) C15 * -0.0802 (0.0013) C16 * -0.0112 (0.0011) C17 * 0.1063 (0.0013) N1 * 0.0372 (0.0012) N2 * -0.0387 (0.0006) O Rms deviation of fitted atoms = 0.0557 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.72830 (18) | 0.4169 (2) | 0.51831 (5) | 0.0147 (3) | |
C2 | 0.7404 (2) | 0.6049 (2) | 0.51357 (5) | 0.0174 (3) | |
H2 | 0.7876 | 0.6764 | 0.5390 | 0.021* | |
C3 | 0.68322 (19) | 0.6863 (2) | 0.47155 (5) | 0.0176 (3) | |
H3 | 0.6923 | 0.8146 | 0.4690 | 0.021* | 0.182 (2) |
F | 0.70634 (17) | 0.86695 (15) | 0.46725 (4) | 0.0264 (3) | 0.818 (2) |
C4 | 0.61277 (19) | 0.5909 (2) | 0.43257 (5) | 0.0161 (3) | |
C5 | 0.60263 (19) | 0.4025 (2) | 0.43852 (5) | 0.0174 (3) | |
H5 | 0.5562 | 0.3308 | 0.4131 | 0.021* | 0.818 (2) |
F' | 0.5315 (7) | 0.3049 (7) | 0.40400 (17) | 0.021* | 0.182 (2) |
C6 | 0.65842 (18) | 0.31696 (19) | 0.48053 (6) | 0.0166 (3) | |
H6 | 0.6485 | 0.1888 | 0.4834 | 0.020* | |
C7 | 0.55385 (19) | 0.6825 (2) | 0.38780 (6) | 0.0185 (3) | |
C8 | 0.5944 (2) | 0.6080 (2) | 0.34264 (6) | 0.0270 (3) | |
H8 | 0.6626 | 0.5001 | 0.3406 | 0.032* | |
C9 | 0.5349 (3) | 0.6917 (3) | 0.30082 (7) | 0.0377 (5) | |
H9 | 0.5624 | 0.6403 | 0.2703 | 0.045* | |
C10 | 0.4364 (3) | 0.8486 (3) | 0.30319 (7) | 0.0382 (5) | |
H10 | 0.3962 | 0.9046 | 0.2744 | 0.046* | |
C11 | 0.3960 (2) | 0.9247 (3) | 0.34731 (7) | 0.0331 (4) | |
H11 | 0.3284 | 1.0331 | 0.3489 | 0.040* | |
C12 | 0.4548 (2) | 0.8419 (2) | 0.38960 (6) | 0.0248 (3) | |
H12 | 0.4270 | 0.8946 | 0.4199 | 0.030* | |
C13 | 0.79126 (17) | 0.33065 (19) | 0.56537 (5) | 0.0148 (3) | |
H13 | 0.9016 | 0.3937 | 0.5757 | 0.018* | |
C14 | 0.8295 (2) | 0.1268 (2) | 0.56215 (6) | 0.0204 (3) | |
H14A | 0.7195 | 0.0609 | 0.5562 | 0.031* | |
H14B | 0.8814 | 0.0850 | 0.5925 | 0.031* | |
H14C | 0.9120 | 0.1039 | 0.5357 | 0.031* | |
C15 | 0.64955 (18) | 0.36582 (19) | 0.60353 (5) | 0.0145 (3) | |
C16 | 0.5793 (2) | 0.6916 (2) | 0.69282 (6) | 0.0204 (3) | |
C17 | 0.4463 (2) | 0.7287 (3) | 0.73133 (7) | 0.0292 (4) | |
H17A | 0.3519 | 0.6382 | 0.7295 | 0.044* | |
H17B | 0.3967 | 0.8503 | 0.7267 | 0.044* | |
H17C | 0.5031 | 0.7218 | 0.7630 | 0.044* | |
C18 | 0.7172 (3) | 0.8334 (3) | 0.68449 (8) | 0.0398 (5) | |
H18A | 0.7886 | 0.7998 | 0.6565 | 0.060* | 0.50 |
H18B | 0.7928 | 0.8426 | 0.7130 | 0.060* | 0.50 |
H18C | 0.6604 | 0.9508 | 0.6786 | 0.060* | 0.50 |
H18D | 0.7059 | 0.9290 | 0.7089 | 0.060* | 0.50 |
H18E | 0.7017 | 0.8862 | 0.6523 | 0.060* | 0.50 |
H18F | 0.8341 | 0.7779 | 0.6868 | 0.060* | 0.50 |
O | 0.51235 (13) | 0.27749 (14) | 0.60489 (4) | 0.0192 (2) | |
N1 | 0.56165 (16) | 0.54268 (18) | 0.66949 (5) | 0.0185 (3) | |
N2 | 0.68360 (16) | 0.50682 (18) | 0.63339 (5) | 0.0169 (3) | |
H01 | 0.785 (3) | 0.562 (3) | 0.6336 (8) | 0.036 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0117 (6) | 0.0169 (7) | 0.0155 (7) | 0.0008 (5) | 0.0022 (5) | 0.0009 (5) |
C2 | 0.0180 (6) | 0.0160 (7) | 0.0182 (7) | −0.0017 (5) | 0.0010 (5) | −0.0020 (5) |
C3 | 0.0208 (6) | 0.0132 (6) | 0.0188 (7) | −0.0002 (5) | 0.0030 (6) | 0.0013 (6) |
F | 0.0436 (7) | 0.0107 (5) | 0.0249 (6) | −0.0022 (5) | −0.0030 (5) | 0.0015 (4) |
C4 | 0.0143 (6) | 0.0174 (7) | 0.0167 (7) | 0.0012 (5) | 0.0024 (5) | 0.0000 (5) |
C5 | 0.0167 (6) | 0.0175 (7) | 0.0180 (7) | −0.0011 (5) | −0.0003 (5) | −0.0024 (6) |
C6 | 0.0173 (6) | 0.0130 (6) | 0.0195 (7) | 0.0004 (5) | 0.0012 (5) | −0.0010 (5) |
C7 | 0.0172 (6) | 0.0192 (7) | 0.0192 (7) | −0.0033 (5) | −0.0012 (5) | 0.0038 (6) |
C8 | 0.0348 (9) | 0.0253 (8) | 0.0210 (8) | −0.0040 (7) | 0.0003 (7) | 0.0008 (7) |
C9 | 0.0572 (12) | 0.0355 (11) | 0.0204 (8) | −0.0150 (9) | −0.0073 (8) | 0.0029 (8) |
C10 | 0.0443 (11) | 0.0380 (10) | 0.0324 (10) | −0.0160 (9) | −0.0173 (9) | 0.0178 (9) |
C11 | 0.0237 (8) | 0.0333 (9) | 0.0424 (11) | −0.0010 (7) | −0.0048 (8) | 0.0176 (9) |
C12 | 0.0212 (7) | 0.0260 (8) | 0.0273 (8) | 0.0019 (6) | 0.0020 (6) | 0.0065 (7) |
C13 | 0.0122 (6) | 0.0156 (6) | 0.0168 (7) | 0.0001 (5) | 0.0000 (5) | −0.0002 (5) |
C14 | 0.0212 (7) | 0.0167 (7) | 0.0231 (8) | 0.0042 (5) | 0.0008 (6) | 0.0007 (6) |
C15 | 0.0139 (6) | 0.0148 (6) | 0.0147 (6) | 0.0023 (5) | −0.0020 (5) | 0.0019 (5) |
C16 | 0.0188 (7) | 0.0219 (7) | 0.0206 (8) | 0.0015 (6) | 0.0003 (6) | −0.0009 (6) |
C17 | 0.0313 (9) | 0.0259 (8) | 0.0303 (9) | 0.0017 (7) | 0.0109 (7) | −0.0046 (7) |
C18 | 0.0399 (11) | 0.0302 (9) | 0.0492 (12) | −0.0126 (8) | 0.0197 (9) | −0.0177 (9) |
O | 0.0148 (5) | 0.0201 (5) | 0.0226 (5) | −0.0028 (4) | 0.0010 (4) | −0.0004 (5) |
N1 | 0.0138 (5) | 0.0228 (6) | 0.0190 (6) | 0.0019 (5) | 0.0016 (5) | −0.0025 (5) |
N2 | 0.0111 (5) | 0.0207 (6) | 0.0190 (6) | −0.0006 (5) | 0.0004 (5) | −0.0036 (5) |
C1—C6 | 1.386 (2) | C2—H2 | 0.9500 |
C1—C2 | 1.394 (2) | C3—H3 | 0.9500 |
C1—C13 | 1.529 (2) | C5—H5 | 0.9500 |
C2—C3 | 1.381 (2) | C6—H6 | 0.9500 |
C3—F | 1.3472 (18) | C8—H8 | 0.9500 |
C3—C4 | 1.396 (2) | C9—H9 | 0.9500 |
C4—C5 | 1.399 (2) | C10—H10 | 0.9500 |
C4—C7 | 1.482 (2) | C11—H11 | 0.9500 |
C5—F' | 1.314 (5) | C12—H12 | 0.9500 |
C5—C6 | 1.391 (2) | C13—H13 | 1.0000 |
C7—C12 | 1.395 (2) | C14—H14A | 0.9800 |
C7—C8 | 1.402 (2) | C14—H14B | 0.9800 |
C8—C9 | 1.389 (3) | C14—H14C | 0.9800 |
C9—C10 | 1.378 (3) | C17—H17A | 0.9800 |
C10—C11 | 1.381 (3) | C17—H17B | 0.9800 |
C11—C12 | 1.395 (2) | C17—H17C | 0.9800 |
C13—C14 | 1.532 (2) | C18—H18A | 0.9800 |
C13—C15 | 1.532 (2) | C18—H18B | 0.9800 |
C15—O | 1.2291 (17) | C18—H18C | 0.9800 |
C15—N2 | 1.3530 (19) | C18—H18D | 0.9800 |
C16—N1 | 1.280 (2) | C18—H18E | 0.9800 |
C16—C17 | 1.495 (2) | C18—H18F | 0.9800 |
C16—C18 | 1.497 (2) | N2—H01 | 0.87 (3) |
N1—N2 | 1.3896 (17) | ||
C6—C1—C2 | 118.77 (13) | C9—C10—H10 | 119.9 |
C6—C1—C13 | 123.03 (13) | C11—C10—H10 | 119.9 |
C2—C1—C13 | 118.19 (12) | C10—C11—H11 | 120.1 |
C3—C2—C1 | 119.32 (13) | C12—C11—H11 | 120.1 |
F—C3—C2 | 117.53 (14) | C7—C12—H12 | 119.7 |
F—C3—C4 | 118.55 (14) | C11—C12—H12 | 119.7 |
C2—C3—C4 | 123.81 (14) | C1—C13—H13 | 108.2 |
C3—C4—C5 | 115.37 (13) | C14—C13—H13 | 108.2 |
C3—C4—C7 | 122.42 (13) | C15—C13—H13 | 108.2 |
C5—C4—C7 | 122.22 (13) | C13—C14—H14A | 109.5 |
F'—C5—C6 | 119.2 (3) | C13—C14—H14B | 109.5 |
F'—C5—C4 | 118.6 (3) | H14A—C14—H14B | 109.5 |
C6—C5—C4 | 122.08 (13) | C13—C14—H14C | 109.5 |
C1—C6—C5 | 120.65 (13) | H14A—C14—H14C | 109.5 |
C12—C7—C8 | 118.66 (14) | H14B—C14—H14C | 109.5 |
C12—C7—C4 | 121.03 (14) | C16—C17—H17A | 109.5 |
C8—C7—C4 | 120.30 (14) | C16—C17—H17B | 109.5 |
C9—C8—C7 | 120.09 (17) | H17A—C17—H17B | 109.5 |
C10—C9—C8 | 120.58 (18) | C16—C17—H17C | 109.5 |
C9—C10—C11 | 120.20 (17) | H17A—C17—H17C | 109.5 |
C10—C11—C12 | 119.82 (17) | H17B—C17—H17C | 109.5 |
C7—C12—C11 | 120.65 (16) | C16—C18—H18A | 109.5 |
C1—C13—C14 | 114.63 (12) | C16—C18—H18B | 109.5 |
C1—C13—C15 | 107.47 (11) | H18A—C18—H18B | 109.5 |
C14—C13—C15 | 109.83 (12) | C16—C18—H18C | 109.5 |
O—C15—N2 | 123.32 (14) | H18A—C18—H18C | 109.5 |
O—C15—C13 | 121.84 (13) | H18B—C18—H18C | 109.5 |
N2—C15—C13 | 114.74 (12) | C16—C18—H18D | 109.5 |
N1—C16—C17 | 116.55 (14) | H18A—C18—H18D | 141.1 |
N1—C16—C18 | 126.34 (15) | H18B—C18—H18D | 56.3 |
C17—C16—C18 | 117.10 (15) | H18C—C18—H18D | 56.3 |
C16—N1—N2 | 117.22 (13) | C16—C18—H18E | 109.5 |
C15—N2—N1 | 117.36 (12) | H18A—C18—H18E | 56.3 |
C3—C2—H2 | 120.3 | H18B—C18—H18E | 141.1 |
C1—C2—H2 | 120.3 | H18C—C18—H18E | 56.3 |
C2—C3—H3 | 118.1 | H18D—C18—H18E | 109.5 |
C4—C3—H3 | 118.1 | C16—C18—H18F | 109.5 |
C6—C5—H5 | 119.0 | H18A—C18—H18F | 56.3 |
C4—C5—H5 | 119.0 | H18B—C18—H18F | 56.3 |
C1—C6—H6 | 119.7 | H18C—C18—H18F | 141.1 |
C5—C6—H6 | 119.7 | H18D—C18—H18F | 109.5 |
C9—C8—H8 | 120.0 | H18E—C18—H18F | 109.5 |
C7—C8—H8 | 120.0 | C15—N2—H01 | 122.2 (15) |
C10—C9—H9 | 119.7 | N1—N2—H01 | 119.6 (15) |
C8—C9—H9 | 119.7 | ||
C6—C1—C2—C3 | −0.1 (2) | C4—C7—C8—C9 | 178.30 (16) |
C13—C1—C2—C3 | −179.52 (13) | C7—C8—C9—C10 | 0.3 (3) |
C1—C2—C3—F | −176.31 (14) | C8—C9—C10—C11 | 0.1 (3) |
C1—C2—C3—C4 | −0.1 (2) | C9—C10—C11—C12 | −0.2 (3) |
F—C3—C4—C5 | 176.22 (13) | C8—C7—C12—C11 | 0.5 (2) |
C2—C3—C4—C5 | 0.1 (2) | C4—C7—C12—C11 | −178.35 (14) |
F—C3—C4—C7 | −3.4 (2) | C10—C11—C12—C7 | −0.1 (3) |
C2—C3—C4—C7 | −179.51 (14) | C6—C1—C13—C14 | 19.40 (19) |
C3—C4—C5—F' | 177.4 (3) | C2—C1—C13—C14 | −161.26 (13) |
C7—C4—C5—F' | −3.0 (3) | C6—C1—C13—C15 | −102.98 (15) |
C3—C4—C5—C6 | 0.3 (2) | C2—C1—C13—C15 | 76.36 (16) |
C7—C4—C5—C6 | 179.84 (13) | C1—C13—C15—O | 77.34 (16) |
C2—C1—C6—C5 | 0.5 (2) | C14—C13—C15—O | −47.97 (18) |
C13—C1—C6—C5 | 179.81 (13) | C1—C13—C15—N2 | −99.18 (14) |
F'—C5—C6—C1 | −177.7 (3) | C14—C13—C15—N2 | 135.52 (13) |
C4—C5—C6—C1 | −0.5 (2) | C17—C16—N1—N2 | 179.62 (13) |
C3—C4—C7—C12 | −44.0 (2) | C18—C16—N1—N2 | 1.1 (2) |
C5—C4—C7—C12 | 136.45 (16) | O—C15—N2—N1 | 5.0 (2) |
C3—C4—C7—C8 | 137.17 (16) | C13—C15—N2—N1 | −178.54 (12) |
C5—C4—C7—C8 | −42.4 (2) | C16—N1—N2—C15 | −169.44 (14) |
C12—C7—C8—C9 | −0.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H01···Oi | 0.87 (3) | 2.24 (3) | 3.0633 (17) | 158 (2) |
N2—H01···N1i | 0.87 (3) | 2.45 (2) | 3.0632 (17) | 127.7 (19) |
C6—H6···Fii | 0.95 | 2.45 | 3.3537 (18) | 159 |
C2—H2···Oi | 0.95 | 2.52 | 3.3816 (19) | 150 |
C18—H18A···Oi | 0.98 | 2.29 | 3.251 (2) | 166 |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C18H19FN2O |
Mr | 298.35 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 100 |
a, b, c (Å) | 7.5963 (3), 7.3633 (3), 27.7430 (11) |
V (Å3) | 1551.77 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.3 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur E diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33827, 2221, 2019 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.694 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.076, 1.00 |
No. of reflections | 2221 |
No. of parameters | 210 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.26, −0.17 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H01···Oi | 0.87 (3) | 2.24 (3) | 3.0633 (17) | 158 (2) |
N2—H01···N1i | 0.87 (3) | 2.45 (2) | 3.0632 (17) | 127.7 (19) |
C6—H6···Fii | 0.95 | 2.45 | 3.3537 (18) | 158.6 |
C2—H2···Oi | 0.95 | 2.52 | 3.3816 (19) | 150.1 |
C18—H18A···Oi | 0.98 | 2.29 | 3.251 (2) | 165.5 |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x, y−1, z. |
References
Bordoloi, M., Kotoky, R., Mahanta, J. J., Sarma, T. C. & Kanjilal, P. B. (2009). Eur. J. Med. Chem. 44, 2754–2757. Web of Science CrossRef PubMed CAS Google Scholar
Furniss, B. S., Hannaford, A. J., Smith, P. W. G. & Tatchell, A. R. (1989). Vogels Text Book of Practical Organic Chemistry, 5th ed., p. 1269. New York: Longman Scientific and Technical, John Wiley and Sons Inc. Google Scholar
Galal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. A. & El Diwani, H. I. (2009). Eur. J. Med. Chem. 44, 1500–1508. Web of Science CrossRef PubMed CAS Google Scholar
Küçükgüzel, S. G., Küçükgüzel, I., Tatar, E., Rollas, S., Şahin, F., Güllüce, M., Clercq, E. D. & Kabasakal, L. (2007). Eur. J. Med. Chem. 42, 893–901. Web of Science PubMed Google Scholar
Kumar, P., Naarasimhan, B., Sharma, D., Judge, V. & Narang, R. (2009). Eur. J. Med. Chem. 44, 1853–1863. Web of Science CrossRef PubMed CAS Google Scholar
Navidpour, L., Shafaroodi, H., Abdi, K., Amini, M., Ghahremani, M. H., Dehpour, A. R. & Shafiee, A. (2006). Bioorg. Med. Chem. 14, 2507–2517. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stocks, M. J., Cheshire, D. R. & Reynalds, R. (2004). Org. Lett. 6, 2969–2971. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazides represent one of the most biologically active class of compounds, possessing a wide spectrum of activities such as anti-microbial (Kumar et al., 2009), anti-cancer (Galal et al., 2009) and anti-genotoxic (Bordoloi et al., 2009). They have been used as intermediates in the synthesis of a number of heterocyclic compounds such as oxadiazoles, triazoles and thiadiazoles (Küçükgüzel et al. 2007; Navidpour et al., 2006; Stocks et al., 2004). The title compound (I) was synthesized as an intermediate for onward conversion to 1,2,4-triazoles and 1,3,4-thiadiazoles and in order to explore their anti-bacterial, urease inhibition and anti-fungal activities.
The molecule of (I) is shown in Fig. 1. Molecular dimensions such as the bond lengths C16═N1 1.280 (2) or N1—N2 1.3896 (17) Å may be regarded as normal. The central ring C1–6 subtends interplanar angles of 44.25 (5)° with the ring C7–12 and 76.80 (5)° with the extended hydrazide moiety C13,15,16,17,N1,N2,O (r.m.s. deviation from latter plane 0.056 Å).
The N—H function of the hydrazide group acts as donor in a three-centre hydrogen bond to O and N1 of a molecule related by the a glide plane. The weak hydrogen bond C2—H2···O acts via the same operator, and these interactions lead to chains of molecules parallel to the a axis. The contact C6—H6···F via b axis translation connects the chains to form layers of molecules parallel to the ab plane (Fig. 2).