metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Meth­oxy­carbon­yl)quinolinium tetra­chlorido(quinoline-2-carboxyl­ato-κ2N,O)stannate(IV) methanol solvate

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 March 2010; accepted 5 March 2010; online 10 March 2010)

In the title salt, (C11H10NO2)[SnCl4(C10H6NO2)]·CH3OH, the Sn atom is chelated by the quinolincarboxyl­ate unit and it exists in a distorted octa­hedral coordination geometry. The cation is linked to the solvent mol­ecule by an N—H⋯O hydrogen bond; the solvent mol­ecule is linked to the anion by an O—H⋯O hydrogen bond.

Related literature

For the structure of 2-(ethoxy­carbon­yl)quinolinium n-butyl­trichlorido(quinolin-2-carboxyl­ato)stannate(IV), see: Wang et al. (2008[Wang, H., Yin, H. & Sun, Y. (2008). Acta Cryst. E64, m272.]).

[Scheme 1]

Experimental

Crystal data
  • (C11H10NO2)[SnCl4(C10H6NO2)]·CH4O

  • Mr = 652.89

  • Monoclinic, P 21 /n

  • a = 8.4109 (4) Å

  • b = 33.2728 (16) Å

  • c = 10.0241 (5) Å

  • β = 112.8616 (6)°

  • V = 2584.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.633, Tmax = 0.813

  • 24727 measured reflections

  • 5924 independent reflections

  • 5288 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 1.17

  • 5924 reflections

  • 317 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2 0.84 (1) 1.95 (1) 2.785 (4) 176 (5)
N3—H3⋯O5 0.86 (1) 1.85 (2) 2.693 (4) 166 (4)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Quinolin-2-carboxylic acid forms a number of compounds with organotin(IV) systems in which the deprotonated anion N,O-chelates to the tin atom. Such organotin carboxylates are conveniently synthesized by the reaction of an organotin chloride with the sodium salt of the carboxylic acid. Curiously, the reaction of sodium quinolin-2-carboxylate with n-butyltin trichloride furnishes the n-butyltrichlorido(quinolincarboxylato)stannate anion, whose charge is balanced by an ethyl quinoliniumcarboxylate cation (Wang et al., 2008). The ethyl unit arises from the ethanol solvent used in the synthesis.

In our hands, the reaction of quinolin-2-carboxylic acid with stannic chloride has yielded a similar salt, which crystallizes as a methanol solvate (Scheme I, Fig. 1). The solvent is also involved in the esterification of the acid to furnish the cation. The cation is linked to the solvent molecule by an N–H···O hydrogen bond; the solvent molecule is linked to the anion by an O–H···O hydrogen bond.

Related literature top

For the structure of 2-(ethoxycarbonyl)quinolinium n-butyltrichlorido(quinolin-2-carboxylato)stannate, see: Wang et al. (2008).

Experimental top

Stannic chloride pentahydrate (1 mmol, 0.350 g) and quinaldic acid (2 mmol, 0.173 g) were dissolved in dry methanol. The solvent was allowed to evaporate to afford colorless crystals after 1 week.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The nitrogen- and oxygen-bound ones were located in a difference Fourier map, and were refined isotropically with distance restraints of N–H = O–H 0.86±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of [C11H10NO2][SnCl4(C10H6NO2)].CH3OH; ellipsoids are drawn at the 50% probability level and H atoms are of arbitrary radius. Hydrogen bonds are drawn as dashed lines.
2-(Methoxycarbonyl)quinolinium tetrachlorido(quinoline-2-carboxylato-κ2N,O)stannate(IV) methanol solvate top
Crystal data top
(C11H10NO2)[SnCl4(C10H6NO2)]·CH4OF(000) = 1296
Mr = 652.89Dx = 1.678 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9921 reflections
a = 8.4109 (4) Åθ = 2.3–28.1°
b = 33.2728 (16) ŵ = 1.44 mm1
c = 10.0241 (5) ÅT = 293 K
β = 112.8616 (6)°Wedge, colorless
V = 2584.9 (2) Å30.35 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5924 independent reflections
Radiation source: fine-focus sealed tube5288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.633, Tmax = 0.813k = 4342
24727 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0423P)2 + 3.5411P]
where P = (Fo2 + 2Fc2)/3
5924 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.38 e Å3
2 restraintsΔρmin = 1.15 e Å3
Crystal data top
(C11H10NO2)[SnCl4(C10H6NO2)]·CH4OV = 2584.9 (2) Å3
Mr = 652.89Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4109 (4) ŵ = 1.44 mm1
b = 33.2728 (16) ÅT = 293 K
c = 10.0241 (5) Å0.35 × 0.25 × 0.15 mm
β = 112.8616 (6)°
Data collection top
Bruker SMART APEX
diffractometer
5924 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5288 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.813Rint = 0.026
24727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.38 e Å3
5924 reflectionsΔρmin = 1.15 e Å3
317 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.77625 (3)0.625981 (7)0.62161 (2)0.03525 (9)
Cl10.79773 (15)0.56055 (3)0.53317 (11)0.0513 (2)
Cl20.86453 (17)0.60335 (4)0.86654 (11)0.0633 (3)
Cl31.06377 (14)0.64544 (4)0.66027 (14)0.0661 (3)
Cl40.47849 (13)0.61972 (3)0.58488 (12)0.0492 (2)
O10.6997 (4)0.64512 (8)0.4078 (3)0.0419 (6)
O20.6522 (5)0.69652 (10)0.2599 (3)0.0665 (9)
O30.1333 (4)0.58105 (10)0.2844 (4)0.0573 (8)
O40.2708 (4)0.62339 (9)0.1913 (4)0.0566 (8)
O50.5646 (4)0.63000 (9)0.0768 (3)0.0476 (6)
N10.7356 (4)0.69426 (9)0.6318 (3)0.0388 (7)
N30.4799 (4)0.56215 (9)0.1803 (3)0.0376 (6)
C10.6875 (5)0.68256 (12)0.3810 (4)0.0439 (9)
C20.7133 (5)0.71104 (11)0.5058 (4)0.0408 (8)
C30.7086 (7)0.75223 (13)0.4836 (5)0.0591 (12)
H3A0.69190.76260.39300.071*
C40.7287 (7)0.77719 (13)0.5963 (5)0.0638 (13)
H40.72970.80490.58400.077*
C50.7481 (6)0.76113 (12)0.7317 (5)0.0505 (10)
C60.7654 (7)0.78527 (14)0.8525 (6)0.0676 (14)
H60.77100.81310.84550.081*
C70.7741 (8)0.76872 (16)0.9772 (6)0.0747 (16)
H70.78310.78511.05500.090*
C80.7696 (8)0.72689 (16)0.9909 (5)0.0726 (15)
H80.77430.71571.07740.087*
C90.7581 (7)0.70231 (14)0.8775 (5)0.0573 (12)
H90.75710.67460.88820.069*
C100.7480 (5)0.71862 (11)0.7467 (4)0.0421 (8)
C110.2513 (5)0.59121 (12)0.2346 (4)0.0423 (8)
C120.3641 (5)0.55578 (11)0.2379 (4)0.0412 (8)
C130.3513 (6)0.51870 (13)0.2949 (5)0.0530 (10)
H130.26860.51430.33370.064*
C140.4601 (7)0.48872 (13)0.2940 (5)0.0599 (12)
H140.45280.46390.33390.072*
C150.5835 (6)0.49474 (12)0.2337 (4)0.0503 (10)
C160.7009 (7)0.46501 (15)0.2295 (6)0.0681 (14)
H160.70100.43990.27030.082*
C170.8142 (7)0.47287 (17)0.1659 (6)0.0739 (16)
H170.89140.45310.16380.089*
C180.8150 (6)0.51091 (17)0.1030 (6)0.0671 (14)
H180.89170.51560.05840.081*
C190.7058 (5)0.54069 (14)0.1064 (5)0.0524 (10)
H190.70810.56560.06550.063*
C200.5903 (5)0.53305 (11)0.1727 (4)0.0418 (8)
C210.0198 (7)0.61294 (16)0.2925 (7)0.0707 (14)
H21A0.06610.60200.32310.106*
H21B0.03550.62510.19890.106*
H21C0.08590.63280.36090.106*
C220.4323 (7)0.64239 (17)0.0535 (5)0.0680 (13)
H22A0.32220.63600.05110.102*
H22B0.44450.62880.13340.102*
H22C0.44000.67090.06490.102*
H30.490 (6)0.5852 (7)0.145 (4)0.051 (13)*
H50.589 (7)0.6495 (10)0.135 (4)0.069 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03944 (14)0.03703 (14)0.02901 (13)0.00101 (10)0.01300 (10)0.00026 (9)
Cl10.0677 (7)0.0394 (5)0.0486 (5)0.0063 (4)0.0244 (5)0.0038 (4)
Cl20.0838 (8)0.0711 (7)0.0352 (5)0.0275 (6)0.0232 (5)0.0130 (5)
Cl30.0402 (6)0.0898 (9)0.0675 (7)0.0076 (5)0.0202 (5)0.0077 (6)
Cl40.0413 (5)0.0480 (5)0.0587 (6)0.0016 (4)0.0200 (4)0.0033 (4)
O10.0560 (16)0.0409 (14)0.0290 (12)0.0004 (12)0.0168 (11)0.0010 (10)
O20.113 (3)0.0531 (18)0.0342 (15)0.0056 (18)0.0291 (17)0.0064 (13)
O30.0554 (18)0.0594 (19)0.071 (2)0.0112 (14)0.0394 (16)0.0129 (15)
O40.067 (2)0.0469 (17)0.067 (2)0.0100 (14)0.0382 (17)0.0064 (14)
O50.0541 (17)0.0469 (16)0.0389 (14)0.0048 (13)0.0151 (13)0.0037 (12)
N10.0468 (17)0.0349 (16)0.0379 (16)0.0054 (13)0.0199 (14)0.0032 (12)
N30.0431 (17)0.0348 (16)0.0344 (15)0.0011 (13)0.0147 (13)0.0012 (12)
C10.054 (2)0.046 (2)0.0339 (18)0.0029 (17)0.0194 (17)0.0027 (15)
C20.050 (2)0.0383 (19)0.0363 (18)0.0022 (16)0.0187 (16)0.0012 (15)
C30.089 (4)0.043 (2)0.050 (2)0.006 (2)0.032 (2)0.0099 (19)
C40.096 (4)0.034 (2)0.067 (3)0.006 (2)0.039 (3)0.002 (2)
C50.064 (3)0.036 (2)0.058 (2)0.0072 (18)0.031 (2)0.0069 (18)
C60.096 (4)0.041 (2)0.078 (3)0.011 (2)0.046 (3)0.021 (2)
C70.111 (5)0.063 (3)0.070 (3)0.015 (3)0.057 (3)0.030 (3)
C80.114 (5)0.069 (3)0.055 (3)0.018 (3)0.055 (3)0.016 (2)
C90.089 (3)0.045 (2)0.051 (2)0.012 (2)0.042 (2)0.0110 (19)
C100.052 (2)0.0368 (19)0.043 (2)0.0080 (16)0.0240 (18)0.0077 (15)
C110.043 (2)0.046 (2)0.0396 (19)0.0044 (16)0.0181 (17)0.0102 (16)
C120.045 (2)0.040 (2)0.0386 (19)0.0048 (16)0.0167 (16)0.0045 (15)
C130.064 (3)0.044 (2)0.056 (2)0.010 (2)0.028 (2)0.0029 (19)
C140.083 (3)0.036 (2)0.058 (3)0.007 (2)0.024 (2)0.0033 (19)
C150.059 (3)0.037 (2)0.043 (2)0.0062 (18)0.0070 (19)0.0042 (16)
C160.078 (3)0.045 (3)0.064 (3)0.018 (2)0.009 (3)0.006 (2)
C170.062 (3)0.070 (3)0.073 (3)0.028 (3)0.008 (3)0.017 (3)
C180.046 (3)0.083 (4)0.068 (3)0.009 (2)0.018 (2)0.024 (3)
C190.045 (2)0.058 (3)0.054 (2)0.0022 (19)0.0180 (19)0.011 (2)
C200.042 (2)0.0378 (19)0.0391 (19)0.0025 (15)0.0087 (16)0.0082 (15)
C210.061 (3)0.075 (3)0.093 (4)0.003 (2)0.048 (3)0.024 (3)
C220.086 (4)0.077 (3)0.043 (2)0.001 (3)0.027 (2)0.001 (2)
Geometric parameters (Å, º) top
Sn1—O12.083 (2)C7—C81.400 (7)
Sn1—N12.305 (3)C7—H70.9300
Sn1—Cl12.3838 (10)C8—C91.373 (6)
Sn1—Cl32.3853 (11)C8—H80.9300
Sn1—Cl22.3937 (10)C9—C101.391 (6)
Sn1—Cl42.3947 (10)C9—H90.9300
O1—C11.270 (5)C11—C121.505 (5)
O2—C11.223 (4)C12—C131.382 (6)
O3—C111.317 (5)C13—C141.356 (7)
O3—C211.451 (6)C13—H130.9300
O4—C111.190 (5)C14—C151.404 (7)
O5—C221.409 (6)C14—H140.9300
O5—H50.842 (10)C15—C161.410 (6)
N1—C21.325 (5)C15—C201.425 (6)
N1—C101.379 (5)C16—C171.362 (8)
N3—C121.328 (5)C16—H160.9300
N3—C201.364 (5)C17—C181.415 (8)
N3—H30.860 (10)C17—H170.9300
C1—C21.517 (5)C18—C191.360 (6)
C2—C31.387 (6)C18—H180.9300
C3—C41.358 (6)C19—C201.397 (6)
C3—H3A0.9300C19—H190.9300
C4—C51.408 (6)C21—H21A0.9600
C4—H40.9300C21—H21B0.9600
C5—C61.413 (6)C21—H21C0.9600
C5—C101.423 (5)C22—H22A0.9600
C6—C71.342 (7)C22—H22B0.9600
C6—H60.9300C22—H22C0.9600
O1—Sn1—N175.66 (10)C8—C9—C10120.5 (4)
O1—Sn1—Cl186.24 (8)C8—C9—H9119.8
N1—Sn1—Cl1161.86 (8)C10—C9—H9119.8
O1—Sn1—Cl388.44 (8)N1—C10—C9121.0 (3)
N1—Sn1—Cl383.31 (9)N1—C10—C5119.9 (3)
Cl1—Sn1—Cl395.15 (4)C9—C10—C5119.0 (4)
O1—Sn1—Cl2179.45 (8)O4—C11—O3126.9 (4)
N1—Sn1—Cl2104.89 (8)O4—C11—C12122.5 (4)
Cl1—Sn1—Cl293.21 (4)O3—C11—C12110.6 (3)
Cl3—Sn1—Cl291.59 (5)N3—C12—C13120.7 (4)
O1—Sn1—Cl488.95 (8)N3—C12—C11115.3 (3)
N1—Sn1—Cl485.89 (8)C13—C12—C11123.9 (4)
Cl1—Sn1—Cl495.12 (4)C14—C13—C12119.5 (4)
Cl3—Sn1—Cl4169.21 (4)C14—C13—H13120.2
Cl2—Sn1—Cl491.12 (4)C12—C13—H13120.2
C1—O1—Sn1119.0 (2)C13—C14—C15120.8 (4)
C11—O3—C21116.3 (4)C13—C14—H14119.6
C22—O5—H5108 (4)C15—C14—H14119.6
C2—N1—C10119.0 (3)C16—C15—C14123.8 (5)
C2—N1—Sn1110.0 (2)C16—C15—C20118.0 (5)
C10—N1—Sn1130.7 (2)C14—C15—C20118.2 (4)
C12—N3—C20122.7 (3)C17—C16—C15120.3 (5)
C12—N3—H3122 (3)C17—C16—H16119.8
C20—N3—H3116 (3)C15—C16—H16119.8
O2—C1—O1123.4 (4)C16—C17—C18120.4 (4)
O2—C1—C2118.9 (4)C16—C17—H17119.8
O1—C1—C2117.6 (3)C18—C17—H17119.8
N1—C2—C3123.6 (4)C19—C18—C17121.3 (5)
N1—C2—C1116.4 (3)C19—C18—H18119.3
C3—C2—C1120.0 (3)C17—C18—H18119.3
C4—C3—C2119.0 (4)C18—C19—C20118.7 (5)
C4—C3—H3A120.5C18—C19—H19120.6
C2—C3—H3A120.5C20—C19—H19120.6
C3—C4—C5120.0 (4)N3—C20—C19120.8 (4)
C3—C4—H4120.0N3—C20—C15118.0 (4)
C5—C4—H4120.0C19—C20—C15121.2 (4)
C4—C5—C6123.1 (4)O3—C21—H21A109.5
C4—C5—C10118.3 (4)O3—C21—H21B109.5
C6—C5—C10118.6 (4)H21A—C21—H21B109.5
C7—C6—C5121.0 (4)O3—C21—H21C109.5
C7—C6—H6119.5H21A—C21—H21C109.5
C5—C6—H6119.5H21B—C21—H21C109.5
C6—C7—C8120.3 (4)O5—C22—H22A109.5
C6—C7—H7119.8O5—C22—H22B109.5
C8—C7—H7119.8H22A—C22—H22B109.5
C9—C8—C7120.5 (5)O5—C22—H22C109.5
C9—C8—H8119.8H22A—C22—H22C109.5
C7—C8—H8119.8H22B—C22—H22C109.5
N1—Sn1—O1—C18.4 (3)Sn1—N1—C10—C912.5 (6)
Cl1—Sn1—O1—C1170.3 (3)C2—N1—C10—C54.1 (6)
Cl3—Sn1—O1—C175.1 (3)Sn1—N1—C10—C5168.4 (3)
Cl2—Sn1—O1—C1169 (9)C8—C9—C10—N1179.7 (5)
Cl4—Sn1—O1—C194.5 (3)C8—C9—C10—C50.6 (7)
O1—Sn1—N1—C210.0 (3)C4—C5—C10—N12.4 (7)
Cl1—Sn1—N1—C26.0 (5)C6—C5—C10—N1178.4 (4)
Cl3—Sn1—N1—C280.1 (3)C4—C5—C10—C9176.7 (5)
Cl2—Sn1—N1—C2170.0 (2)C6—C5—C10—C92.5 (7)
Cl4—Sn1—N1—C2100.0 (3)C21—O3—C11—O42.7 (6)
O1—Sn1—N1—C10177.0 (3)C21—O3—C11—C12177.7 (4)
Cl1—Sn1—N1—C10179.0 (2)C20—N3—C12—C130.6 (6)
Cl3—Sn1—N1—C1092.9 (3)C20—N3—C12—C11179.0 (3)
Cl2—Sn1—N1—C103.0 (3)O4—C11—C12—N34.2 (6)
Cl4—Sn1—N1—C1087.0 (3)O3—C11—C12—N3175.5 (3)
Sn1—O1—C1—O2176.1 (3)O4—C11—C12—C13176.2 (4)
Sn1—O1—C1—C25.7 (5)O3—C11—C12—C134.1 (5)
C10—N1—C2—C32.8 (6)N3—C12—C13—C141.0 (6)
Sn1—N1—C2—C3171.2 (4)C11—C12—C13—C14179.4 (4)
C10—N1—C2—C1175.6 (3)C12—C13—C14—C151.1 (7)
Sn1—N1—C2—C110.4 (4)C13—C14—C15—C16179.8 (5)
O2—C1—C2—N1174.0 (4)C13—C14—C15—C200.5 (7)
O1—C1—C2—N14.2 (6)C14—C15—C16—C17178.4 (5)
O2—C1—C2—C34.5 (6)C20—C15—C16—C171.3 (7)
O1—C1—C2—C3177.3 (4)C15—C16—C17—C180.2 (8)
N1—C2—C3—C40.4 (8)C16—C17—C18—C191.2 (8)
C1—C2—C3—C4178.8 (4)C17—C18—C19—C200.5 (7)
C2—C3—C4—C52.1 (8)C12—N3—C20—C19177.7 (4)
C3—C4—C5—C6178.5 (5)C12—N3—C20—C152.1 (5)
C3—C4—C5—C100.8 (8)C18—C19—C20—N3179.2 (4)
C4—C5—C6—C7176.3 (6)C18—C19—C20—C151.1 (6)
C10—C5—C6—C72.9 (8)C16—C15—C20—N3178.3 (4)
C5—C6—C7—C81.3 (9)C14—C15—C20—N32.0 (6)
C6—C7—C8—C90.7 (10)C16—C15—C20—C192.0 (6)
C7—C8—C9—C101.0 (9)C14—C15—C20—C19177.8 (4)
C2—N1—C10—C9175.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O20.84 (1)1.95 (1)2.785 (4)176 (5)
N3—H3···O50.86 (1)1.85 (2)2.693 (4)166 (4)

Experimental details

Crystal data
Chemical formula(C11H10NO2)[SnCl4(C10H6NO2)]·CH4O
Mr652.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.4109 (4), 33.2728 (16), 10.0241 (5)
β (°) 112.8616 (6)
V3)2584.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.633, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
24727, 5924, 5288
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.17
No. of reflections5924
No. of parameters317
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 1.15

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O20.84 (1)1.95 (1)2.785 (4)176 (5)
N3—H3···O50.86 (1)1.85 (2)2.693 (4)166 (4)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Yin, H. & Sun, Y. (2008). Acta Cryst. E64, m272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds