organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro­phen­yl)succinamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 7 March 2010; accepted 9 March 2010; online 17 March 2010)

In the title compound, C10H10ClNO3, the N—H and C=O bonds in the amide segment are trans to each other. In the crystal structure, the mol­ecules are linked into infinite chains through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For our study of the effect of ring and side-chain substitutions on the structures of anilides and for related structures, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009a). Acta Cryst. E65, o1827.],b[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o399.]; 2010[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2010). Acta Cryst. E66, o394.]); Jagannathan et al. (1994[Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10ClNO3

  • Mr = 227.64

  • Orthorhombic, P b c a

  • a = 10.0308 (8) Å

  • b = 11.1810 (9) Å

  • c = 19.036 (2) Å

  • V = 2135.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 299 K

  • 0.24 × 0.20 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.922, Tmax = 0.980

  • 8200 measured reflections

  • 2184 independent reflections

  • 1137 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.152

  • S = 1.02

  • 2184 reflections

  • 142 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O1i 0.82 (2) 1.92 (2) 2.693 (3) 158 (5)
N1—H1N⋯O2ii 0.85 (2) 2.02 (2) 2.872 (4) 173 (3)
Symmetry codes: (i) -x, -y, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of ring and side chain substitutions on the structures of anilides (Gowda et al., 2009a,b; 2010), the crystal structure of N-(3-chlorophenyl)succinamic acid (I) has been determined. The conformations of N—H and C=O bonds in the amide segment are anti to each other, similar to those observed in N-(2-chlorophenyl)succinamic acid (II)(Gowda et al., 2009b) and N-(4-chlorophenyl)succinamic acid (III) (Gowda et al., 2009a) and N-(3-methylphenyl)succinamic acid (IV)(Gowda et al., 2010). But the conformation of the amide oxygen and the carbonyl oxygen of the acid segment are syn to each other, similar to that observed in (IV), but contrary contrary to the anti conformation observed in (II) and (III). Further, the conformation of both the C=O bonds are anti to the H atoms of their adjacent –CH2 groups (Fig. 1) and the C=O and O—H bonds of the acid group are in syn position to each other, similar to that observed in (II), (III) and (IV).

The conformation of the amide hydrogen is syn to the meta- Cl group in the benzene ring, similar to that of the ortho-Cl in (II), but contrary to the anti conformation observed between the amide hydrogen and the meta-methyl group in (IV).

The N—H···O and O—H···O intermolecular hydrogen bonds pack the mpolecules into infinite chains in the structure (Table 1, Fig.2).

The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Related literature top

For our study of the effect of ring and side-chain substitutions on the

structures of anilides and for related structures, see: Gowda et al. (2009a,b; 2010); Jagannathan et al. (1994).

Experimental top

The solution of succinic anhydride (0.01 mole) in toluene (25 ml) was treated dropwise with the solution of m-chloroaniline (0.01 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one h and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted m-chloroaniline. The resultant solid N-(3-chlorophenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol.

The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra. The plate like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms of the OH and NH group were located in a difference map and refined with a distance restraint of O—H = 0.82 (2) %A and N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(3-Chlorophenyl)succinamic acid top
Crystal data top
C10H10ClNO3F(000) = 944
Mr = 227.64Dx = 1.416 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2016 reflections
a = 10.0308 (8) Åθ = 2.7–27.7°
b = 11.1810 (9) ŵ = 0.34 mm1
c = 19.036 (2) ÅT = 299 K
V = 2135.0 (3) Å3Plate, colourless
Z = 80.24 × 0.20 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2184 independent reflections
Radiation source: fine-focus sealed tube1137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Rotation method data acquisition using ω and ϕ scans.θmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 912
Tmin = 0.922, Tmax = 0.980k = 1213
8200 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0603P)2 + 1.1737P]
where P = (Fo2 + 2Fc2)/3
2184 reflections(Δ/σ)max = 0.012
142 parametersΔρmax = 0.30 e Å3
2 restraintsΔρmin = 0.39 e Å3
Crystal data top
C10H10ClNO3V = 2135.0 (3) Å3
Mr = 227.64Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.0308 (8) ŵ = 0.34 mm1
b = 11.1810 (9) ÅT = 299 K
c = 19.036 (2) Å0.24 × 0.20 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2184 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1137 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.980Rint = 0.045
8200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0582 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
2184 reflectionsΔρmin = 0.39 e Å3
142 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25030 (11)0.71276 (10)0.20800 (6)0.0858 (4)
O10.0249 (2)0.23883 (19)0.02471 (13)0.0655 (7)
O20.1845 (3)0.0367 (2)0.03891 (14)0.0673 (7)
O30.0091 (3)0.0318 (2)0.09646 (13)0.0651 (7)
H3O0.033 (5)0.097 (2)0.081 (2)0.098*
N10.1200 (3)0.3941 (2)0.03276 (15)0.0539 (8)
H1N0.181 (3)0.431 (3)0.0101 (16)0.065*
C10.0900 (3)0.4445 (3)0.09884 (18)0.0484 (8)
C20.1706 (4)0.5390 (3)0.12010 (18)0.0523 (9)
H20.23950.56540.09130.063*
C30.1482 (4)0.5930 (3)0.1835 (2)0.0574 (10)
C40.0471 (5)0.5568 (4)0.2270 (2)0.0714 (12)
H40.03290.59430.27000.086*
C50.0325 (5)0.4644 (4)0.2058 (2)0.0741 (12)
H50.10150.43930.23490.089*
C60.0129 (4)0.4072 (3)0.1420 (2)0.0627 (10)
H60.06820.34460.12840.075*
C70.0649 (3)0.2997 (3)0.00050 (19)0.0480 (8)
C80.1239 (3)0.2756 (3)0.07174 (17)0.0519 (9)
H8A0.21830.25900.06640.062*
H8B0.11510.34680.10040.062*
C90.0587 (4)0.1716 (3)0.10939 (18)0.0566 (9)
H9A0.03730.18240.10860.068*
H9B0.08700.17160.15810.068*
C100.0920 (4)0.0530 (3)0.07727 (17)0.0444 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0739 (7)0.0821 (8)0.1014 (9)0.0073 (6)0.0183 (7)0.0295 (6)
O10.0610 (15)0.0445 (13)0.091 (2)0.0112 (12)0.0190 (14)0.0046 (12)
O20.0650 (17)0.0477 (14)0.0894 (19)0.0055 (13)0.0291 (16)0.0059 (13)
O30.0739 (18)0.0504 (14)0.0712 (17)0.0174 (15)0.0159 (14)0.0058 (13)
N10.0531 (18)0.0452 (16)0.063 (2)0.0146 (14)0.0162 (15)0.0029 (14)
C10.049 (2)0.0408 (18)0.055 (2)0.0040 (16)0.0087 (18)0.0059 (16)
C20.045 (2)0.054 (2)0.058 (2)0.0041 (18)0.0071 (17)0.0025 (17)
C30.053 (2)0.057 (2)0.062 (2)0.0130 (18)0.009 (2)0.0002 (19)
C40.088 (3)0.075 (3)0.052 (3)0.019 (3)0.008 (2)0.004 (2)
C50.083 (3)0.074 (3)0.066 (3)0.007 (3)0.032 (2)0.018 (2)
C60.060 (2)0.054 (2)0.074 (3)0.0032 (19)0.018 (2)0.0106 (19)
C70.0447 (18)0.0346 (16)0.065 (2)0.0046 (15)0.0048 (19)0.0118 (16)
C80.056 (2)0.0356 (17)0.064 (2)0.0035 (16)0.0013 (19)0.0076 (16)
C90.065 (2)0.0490 (19)0.056 (2)0.0029 (18)0.0134 (19)0.0037 (17)
C100.047 (2)0.0430 (19)0.0430 (19)0.0012 (16)0.0024 (17)0.0039 (15)
Geometric parameters (Å, º) top
Cl1—C31.749 (4)C4—C51.366 (6)
O1—C71.226 (4)C4—H40.9300
O2—C101.195 (4)C5—C61.388 (5)
O3—C101.313 (4)C5—H50.9300
O3—H3O0.820 (19)C6—H60.9300
N1—C71.349 (4)C7—C81.504 (5)
N1—C11.411 (4)C8—C91.515 (4)
N1—H1N0.853 (18)C8—H8A0.9700
C1—C61.384 (5)C8—H8B0.9700
C1—C21.391 (5)C9—C101.498 (4)
C2—C31.369 (5)C9—H9A0.9700
C2—H20.9300C9—H9B0.9700
C3—C41.371 (5)
C10—O3—H3O111 (3)C1—C6—H6120.4
C7—N1—C1130.1 (3)C5—C6—H6120.4
C7—N1—H1N116 (2)O1—C7—N1123.5 (3)
C1—N1—H1N114 (2)O1—C7—C8122.8 (3)
C6—C1—C2119.4 (3)N1—C7—C8113.7 (3)
C6—C1—N1124.6 (3)C7—C8—C9113.2 (3)
C2—C1—N1116.0 (3)C7—C8—H8A108.9
C3—C2—C1119.8 (3)C9—C8—H8A108.9
C3—C2—H2120.1C7—C8—H8B108.9
C1—C2—H2120.1C9—C8—H8B108.9
C2—C3—C4121.6 (4)H8A—C8—H8B107.7
C2—C3—Cl1118.5 (3)C10—C9—C8112.9 (3)
C4—C3—Cl1119.9 (3)C10—C9—H9A109.0
C5—C4—C3118.5 (4)C8—C9—H9A109.0
C5—C4—H4120.7C10—C9—H9B109.0
C3—C4—H4120.7C8—C9—H9B109.0
C4—C5—C6121.7 (4)H9A—C9—H9B107.8
C4—C5—H5119.2O2—C10—O3123.5 (3)
C6—C5—H5119.2O2—C10—C9123.9 (3)
C1—C6—C5119.1 (4)O3—C10—C9112.6 (3)
C7—N1—C1—C64.0 (6)N1—C1—C6—C5179.8 (3)
C7—N1—C1—C2176.7 (3)C4—C5—C6—C10.2 (6)
C6—C1—C2—C30.6 (5)C1—N1—C7—O11.2 (5)
N1—C1—C2—C3179.9 (3)C1—N1—C7—C8178.9 (3)
C1—C2—C3—C40.4 (5)O1—C7—C8—C91.7 (4)
C1—C2—C3—Cl1179.2 (3)N1—C7—C8—C9178.4 (3)
C2—C3—C4—C50.0 (6)C7—C8—C9—C1071.0 (4)
Cl1—C3—C4—C5178.8 (3)C8—C9—C10—O218.4 (5)
C3—C4—C5—C60.1 (6)C8—C9—C10—O3162.3 (3)
C2—C1—C6—C50.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1i0.82 (2)1.92 (2)2.693 (3)158 (5)
N1—H1N···O2ii0.85 (2)2.02 (2)2.872 (4)173 (3)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H10ClNO3
Mr227.64
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)299
a, b, c (Å)10.0308 (8), 11.1810 (9), 19.036 (2)
V3)2135.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.24 × 0.20 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.922, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
8200, 2184, 1137
Rint0.045
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.152, 1.02
No. of reflections2184
No. of parameters142
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.39

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1i0.820 (19)1.92 (2)2.693 (3)158 (5)
N1—H1N···O2ii0.853 (18)2.024 (19)2.872 (4)173 (3)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009a). Acta Cryst. E65, o1827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2010). Acta Cryst. E66, o394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds