organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Methyl­amino)pyridine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 March 2010; accepted 9 March 2010; online 13 March 2010)

The non-H atoms of the title compound, C6H8N2, lie in a common plane (r.m.s. deviation = 0.034 Å). In the crystal, adjacent mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds into a zigzag chain running along the c axis.

Related literature

For the non-linear optical activity of co-crystals with substituted 4-nitro­phenol, see; Huang et al. (1997[Huang, K.-S., Britton, D. E., Etter, M. C. & Byrn, S. R. (1997). J. Mater. Chem. 7, 713-720.]). For the crystal structure of 4-amino­pyridine, see: Anderson et al. (2005[Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350-o1353.]) and for that of 4-dimethyl­pyridine, see: Ohms & Guth (1984[Ohms, U. & Guth, H. (1984). Z. Kristallogr. 166, 213-219.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N2

  • Mr = 108.14

  • Orthorhombic, P n a 21

  • a = 6.5645 (18) Å

  • b = 7.1230 (19) Å

  • c = 12.489 (4) Å

  • V = 584.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.12 × 0.12 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 5127 measured reflections

  • 707 independent reflections

  • 521 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.102

  • S = 0.99

  • 707 reflections

  • 78 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.88 (1) 2.06 (1) 2.930 (3) 168 (3)
Symmetry code: (i) [-x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The amino nitrogen atom in 4-aminopyridine, a drug used for treating multiple sclerosis, is pyramidal; the amino group engages in a N–H···N hydrogen bonding interaction with adjacent pyridyl rings to generate a chain. The amino group uses its other nitrogen atom to form an N–H···π interaction with other pyridyl rings (Anderson et al., 2005).

In the title monomethyl-substituted analogue (Scheme I, Fig. 1), all non-hydrogen atoms lie in a common plane. However, the amino nitrogen atom is slightly pyramidal, this being displaced out of the trigonal plane by 0.18 (2) Å (Σangles 353 °). On the other hand, the amino nitrogen atom in 4-dimethylaminopyridine has unambiguously planar configuration (Ohms & Guth, 1984). In the present structure, adjacent molecules are linked by an N–H···N hydrogen bond to generate a helical chain motif (Table 1).

The compound belongs to a non-centrosymmetric space group, a feature that may render it useful for second-harmonic generation, particularly as it co-crystal with 2-methoxy-4-nitrophenol shows NLO activity (Huang et al., 1997).

Related literature top

For the non-linear optical activity of co-crystals with substituted 4-nitrophenol, see; Huang et al. (1997). For the crystal structure of 4-aminopyridine, see: Anderson et al. (2005) and for that of 4-dimethylpyridine, see: Ohms & Guth (1984).

Experimental top

4-Methylaminopyridine, as purchased from the Aldrich Chemical Company, is a crystalline material.

Refinement top

Due to the absence of anomalous scatterers, 644 Friedel pairs were merged. Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The amino H-atom was located in a difference Fourier map and it was refined with a distance restraint of N–H 0.88±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of a portion of the hydrogen-bonded chain structure of 4-methylaminopyridine at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(Methylamino)pyridine top
Crystal data top
C6H8N2F(000) = 232
Mr = 108.14Dx = 1.230 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 379 reflections
a = 6.5645 (18) Åθ = 3.3–21.5°
b = 7.1230 (19) ŵ = 0.08 mm1
c = 12.489 (4) ÅT = 100 K
V = 584.0 (3) Å3Plate, colorless
Z = 40.12 × 0.12 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
521 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.093
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ω scansh = 78
5127 measured reflectionsk = 98
707 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0518P)2]
where P = (Fo2 + 2Fc2)/3
707 reflections(Δ/σ)max = 0.001
78 parametersΔρmax = 0.18 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C6H8N2V = 584.0 (3) Å3
Mr = 108.14Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 6.5645 (18) ŵ = 0.08 mm1
b = 7.1230 (19) ÅT = 100 K
c = 12.489 (4) Å0.12 × 0.12 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
521 reflections with I > 2σ(I)
5127 measured reflectionsRint = 0.093
707 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0442 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.18 e Å3
707 reflectionsΔρmin = 0.20 e Å3
78 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2579 (4)0.0086 (3)0.49959 (18)0.0219 (6)
H10.177 (4)0.027 (5)0.4440 (19)0.036 (11)*
N20.0105 (4)0.0122 (3)0.8044 (2)0.0232 (6)
C10.1745 (4)0.0004 (4)0.5993 (2)0.0193 (6)
C20.0127 (4)0.0889 (4)0.6198 (2)0.0217 (7)
H20.08130.15500.56450.026*
C30.0957 (5)0.0794 (4)0.7215 (2)0.0256 (7)
H30.22150.14170.73360.031*
C40.1690 (4)0.0944 (4)0.7840 (2)0.0220 (7)
H40.23370.15930.84110.026*
C50.2673 (4)0.0917 (4)0.6858 (2)0.0207 (7)
H50.39590.15110.67730.025*
C60.4412 (4)0.0966 (5)0.4736 (2)0.0302 (8)
H6A0.55340.05460.51950.045*
H6B0.47720.07530.39840.045*
H6C0.41680.23070.48530.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0237 (13)0.0242 (14)0.0178 (12)0.0021 (12)0.0023 (10)0.0025 (12)
N20.0277 (14)0.0232 (12)0.0189 (11)0.0006 (12)0.0005 (11)0.0001 (13)
C10.0189 (15)0.0192 (15)0.0198 (14)0.0048 (13)0.0055 (12)0.0010 (12)
C20.0231 (17)0.0218 (16)0.0201 (13)0.0003 (13)0.0031 (12)0.0033 (13)
C30.0293 (18)0.0210 (16)0.0264 (16)0.0046 (14)0.0013 (14)0.0005 (14)
C40.0248 (16)0.0223 (16)0.0188 (14)0.0016 (13)0.0039 (12)0.0009 (13)
C50.0196 (16)0.0205 (16)0.0219 (14)0.0009 (13)0.0024 (12)0.0011 (14)
C60.0242 (16)0.0408 (19)0.0256 (16)0.0051 (14)0.0028 (14)0.0005 (14)
Geometric parameters (Å, º) top
N1—C11.362 (4)C2—H20.9500
N1—C61.454 (4)C3—H30.9500
N1—H10.88 (1)C4—C51.386 (4)
N2—C41.340 (4)C4—H40.9500
N2—C31.345 (4)C5—H50.9500
C1—C51.401 (4)C6—H6A0.9800
C1—C21.407 (4)C6—H6B0.9800
C2—C31.384 (4)C6—H6C0.9800
C1—N1—C6120.8 (2)N2—C4—C5124.8 (3)
C1—N1—H1119 (2)N2—C4—H4117.6
C6—N1—H1113 (2)C5—C4—H4117.6
C4—N2—C3115.6 (3)C4—C5—C1119.1 (3)
N1—C1—C5123.5 (3)C4—C5—H5120.4
N1—C1—C2119.8 (3)C1—C5—H5120.4
C5—C1—C2116.7 (3)N1—C6—H6A109.5
C3—C2—C1119.3 (3)N1—C6—H6B109.5
C3—C2—H2120.4H6A—C6—H6B109.5
C1—C2—H2120.4N1—C6—H6C109.5
N2—C3—C2124.5 (3)H6A—C6—H6C109.5
N2—C3—H3117.7H6B—C6—H6C109.5
C2—C3—H3117.7
C6—N1—C1—C57.2 (4)C1—C2—C3—N20.6 (5)
C6—N1—C1—C2174.3 (3)C3—N2—C4—C50.5 (5)
N1—C1—C2—C3179.8 (3)N2—C4—C5—C11.2 (5)
C5—C1—C2—C31.1 (4)N1—C1—C5—C4179.4 (3)
C4—N2—C3—C21.5 (5)C2—C1—C5—C42.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.88 (1)2.06 (1)2.930 (3)168 (3)
Symmetry code: (i) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC6H8N2
Mr108.14
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)6.5645 (18), 7.1230 (19), 12.489 (4)
V3)584.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.12 × 0.12 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5127, 707, 521
Rint0.093
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.102, 0.99
No. of reflections707
No. of parameters78
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.88 (1)2.06 (1)2.930 (3)168 (3)
Symmetry code: (i) x, y, z1/2.
 

Acknowledgements

I thank the University of Malaya for supporting this study.

References

First citationAnderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, K.-S., Britton, D. E., Etter, M. C. & Byrn, S. R. (1997). J. Mater. Chem. 7, 713–720.  CSD CrossRef CAS Web of Science Google Scholar
First citationOhms, U. & Guth, H. (1984). Z. Kristallogr. 166, 213–219.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds