organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-5-nitro­pyridine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 March 2010; accepted 9 March 2010; online 17 March 2010)

The non-H atoms of the title compound, C5H3ClN2O2, almost lie in a common plane (r.m.s. deviation = 0.090 Å). In the crystal, adjacent mol­ecules feature a short Cl⋯O contact [3.068 (4) Å], forming a chain; these chains are consolidated into a layer structure by non-classical C—H⋯O inter­actions.

Related literature

For the mechanism of the reaction between 2-chloro-5-nitro­pyridine and aryl­oxide ions, see: El-Bardan (1999[El-Bardan, A. A. (1999). J. Phys. Org. Chem. 13, 347-353.]); Haynes & Pett (2007[Haynes, L. R. W. & Pett, V. B. (2007). J. Org. Chem. 72, 633-635.]); Zeller et al. (2007[Zeller, M., Pett, V. B. & Haynes, L. R. W. (2007). Acta Cryst. C63, o343-o346.]).

[Scheme 1]

Experimental

Crystal data
  • C5H3ClN2O2

  • Mr = 158.54

  • Triclinic, P 1

  • a = 3.7599 (8) Å

  • b = 5.8641 (13) Å

  • c = 7.0189 (15) Å

  • α = 84.687 (3)°

  • β = 89.668 (3)°

  • γ = 76.020 (3)°

  • V = 149.50 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 100 K

  • 0.45 × 0.15 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.786, Tmax = 0.983

  • 1379 measured reflections

  • 1114 independent reflections

  • 1071 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.143

  • S = 1.17

  • 1114 reflections

  • 91 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.59 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 449 Friedel pairs

  • Flack parameter: −0.05 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.50 3.361 (7) 151
Symmetry code: (i) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

We have synthesized some nitropyridyl aryl ethers by the reaction of the aryloxide ion with the chlorine-substituted nitropyridine. The mechanism of this reaction has been reported (El-Bardan, 1999). With 2-chloro-5-nitropyridine, additional hydroxide base should not be used as the compound undergoes ring opening (Haynes & Pett, 2007; Zeller et al., 2007).

2-Chloro-5-nitropyridine (Scheme I, Fig. 1) is a flat molecule; the non-hydrogen atoms all lie in a common plane (r.m.s. deviation 0.090 Å). Adjacent molecules interact by a Cl···O contact [3.068 (4) Å] to form a chain. The chains are consolidated into a layer structure by a non-classical C–H···O interaction; this interaction involves the second oxygen atom of the nitro group.

Related literature top

For the mechanism of the reaction between 2-chloro-5-nitropyridine and aryloxide ions, see: El-Bardan (1999); Haynes & Pett (2007); Zeller et al. (2007).

Experimental top

2-Chloro-5-nitropyridine as supplied by Aldrich Chemical Company is crystalline.

Refinement top

H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The checking program PLATON detects some pseudo symmetry. However, as the Flack parameter refined to nearly zero, the non-centric space group must be the correct one. Nevertheless, an attempt was made to treat the structure as a whole-molecule-disordered structure but this gave a model with bad bond dimensions.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of 2-chloro-5-nitropyridine at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Chloro-5-nitropyridine top
Crystal data top
C5H3ClN2O2Z = 1
Mr = 158.54F(000) = 80
Triclinic, P1Dx = 1.761 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.7599 (8) ÅCell parameters from 637 reflections
b = 5.8641 (13) Åθ = 2.9–28.2°
c = 7.0189 (15) ŵ = 0.56 mm1
α = 84.687 (3)°T = 100 K
β = 89.668 (3)°Plate, colorless
γ = 76.020 (3)°0.45 × 0.15 × 0.03 mm
V = 149.50 (6) Å3
Data collection top
Bruker SMART APEX
diffractometer
1114 independent reflections
Radiation source: fine-focus sealed tube1071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.786, Tmax = 0.983k = 77
1379 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.070P)2 + 0.2047P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.001
1114 reflectionsΔρmax = 0.63 e Å3
91 parametersΔρmin = 0.59 e Å3
3 restraintsAbsolute structure: Flack (1983), 449 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (14)
Crystal data top
C5H3ClN2O2γ = 76.020 (3)°
Mr = 158.54V = 149.50 (6) Å3
Triclinic, P1Z = 1
a = 3.7599 (8) ÅMo Kα radiation
b = 5.8641 (13) ŵ = 0.56 mm1
c = 7.0189 (15) ÅT = 100 K
α = 84.687 (3)°0.45 × 0.15 × 0.03 mm
β = 89.668 (3)°
Data collection top
Bruker SMART APEX
diffractometer
1114 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1071 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.983Rint = 0.022
1379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.143Δρmax = 0.63 e Å3
S = 1.17Δρmin = 0.59 e Å3
1114 reflectionsAbsolute structure: Flack (1983), 449 Friedel pairs
91 parametersAbsolute structure parameter: 0.05 (14)
3 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.5000 (2)0.50003 (18)0.49998 (17)0.0193 (3)
O10.8088 (11)0.9486 (7)1.2731 (6)0.0254 (9)
O20.3611 (12)1.2366 (7)1.1607 (7)0.0259 (10)
N10.7126 (12)0.5558 (8)0.8407 (7)0.0161 (10)
N20.5729 (13)1.0408 (10)1.1526 (7)0.0170 (11)
C10.5156 (14)0.6688 (11)0.6894 (8)0.0180 (11)
C20.3197 (14)0.9038 (9)0.6723 (8)0.0137 (11)
H20.18370.97350.55920.016*
C30.3320 (17)1.0316 (12)0.8277 (10)0.0182 (13)
H30.20171.19220.82600.022*
C40.5415 (15)0.9162 (10)0.9860 (8)0.0146 (11)
C50.7254 (14)0.6800 (10)0.9887 (8)0.0173 (11)
H50.86440.60501.09950.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0220 (6)0.0165 (6)0.0198 (6)0.0033 (4)0.0008 (4)0.0072 (4)
O10.028 (2)0.024 (2)0.023 (2)0.0037 (17)0.0085 (18)0.0027 (18)
O20.034 (2)0.015 (2)0.024 (2)0.0062 (16)0.0050 (17)0.0097 (17)
N10.015 (2)0.014 (2)0.019 (2)0.0011 (18)0.0014 (18)0.0041 (18)
N20.018 (2)0.016 (3)0.018 (3)0.005 (2)0.002 (2)0.006 (2)
C10.016 (2)0.019 (3)0.020 (3)0.004 (2)0.003 (2)0.005 (2)
C20.013 (2)0.014 (2)0.013 (3)0.001 (2)0.0043 (18)0.001 (2)
C30.017 (3)0.016 (3)0.021 (3)0.002 (2)0.000 (2)0.004 (2)
C40.015 (2)0.013 (2)0.016 (3)0.003 (2)0.0011 (19)0.005 (2)
C50.017 (2)0.015 (3)0.018 (3)0.003 (2)0.001 (2)0.003 (2)
Geometric parameters (Å, º) top
Cl1—C11.739 (6)C2—C31.387 (9)
O1—N21.219 (7)C2—H20.9500
O2—N21.235 (7)C3—C41.387 (9)
N1—C11.325 (7)C3—H30.9500
N1—C51.330 (7)C4—C51.389 (8)
N2—C41.455 (8)C5—H50.9500
C1—C21.391 (7)
C1—N1—C5116.7 (5)C2—C3—C4117.6 (6)
O1—N2—O2124.1 (6)C2—C3—H3121.2
O1—N2—C4118.4 (6)C4—C3—H3121.2
O2—N2—C4117.4 (5)C3—C4—C5120.8 (5)
N1—C1—C2126.0 (5)C3—C4—N2120.5 (5)
N1—C1—Cl1115.4 (4)C5—C4—N2118.7 (5)
C2—C1—Cl1118.6 (4)N1—C5—C4122.0 (5)
C3—C2—C1117.0 (5)N1—C5—H5119.0
C3—C2—H2121.5C4—C5—H5119.0
C1—C2—H2121.5
C5—N1—C1—C20.6 (7)O1—N2—C4—C3166.8 (5)
C5—N1—C1—Cl1179.2 (4)O2—N2—C4—C311.9 (9)
N1—C1—C2—C30.1 (8)O1—N2—C4—C513.1 (8)
Cl1—C1—C2—C3178.6 (4)O2—N2—C4—C5168.1 (5)
C1—C2—C3—C40.8 (8)C1—N1—C5—C40.1 (8)
C2—C3—C4—C51.2 (8)C3—C4—C5—N10.8 (8)
C2—C3—C4—N2178.7 (4)N2—C4—C5—N1179.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.503.361 (7)151
Symmetry code: (i) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC5H3ClN2O2
Mr158.54
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)3.7599 (8), 5.8641 (13), 7.0189 (15)
α, β, γ (°)84.687 (3), 89.668 (3), 76.020 (3)
V3)149.50 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.45 × 0.15 × 0.03
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.786, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
1379, 1114, 1071
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.143, 1.17
No. of reflections1114
No. of parameters91
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.59
Absolute structureFlack (1983), 449 Friedel pairs
Absolute structure parameter0.05 (14)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.503.361 (7)151
Symmetry code: (i) x1, y, z1.
 

Acknowledgements

I thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Bardan, A. A. (1999). J. Phys. Org. Chem. 13, 347–353.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaynes, L. R. W. & Pett, V. B. (2007). J. Org. Chem. 72, 633–635.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationZeller, M., Pett, V. B. & Haynes, L. R. W. (2007). Acta Cryst. C63, o343–o346.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds